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Abstract 

Vegetation and the water cycle are inherently coupled across a wide range of spatial and temporal 
scales. Water availability interacts with plant ecophysiology and controls vegetation functioning. 
Concurrently, vegetation has direct and indirect effects on energy, water, carbon, and nutrients 
cycles. A better understanding and modelling of plant-water interactions demands for highly 
interdisciplinary approaches. We present an overview of the main processes and relevant 
interactions between water and plants across a range of spatial scales, from the cell level of leaves, 
where stomatal controls occur, to drought stress at the level of a single tree, up to the integrating 
scales of a watershed, region, and the globe. A review of process representations in models at 
different scales is presented. More specifically, three main model families are identified: (i) models 
of plant hydraulics that mechanistically simulate stomatal controls and/or water transport at the 
tree level; (ii) ecohydrological models that simulate plot- to catchment-scale water, energy and 
carbon fluxes; and (iii) terrestrial biosphere models that simulate carbon, water, and nutrient 
dynamics at the regional and global scales and address feedbacks between Earth’s vegetation and 

1 

 

This article is protected by copyright. All rights reserved.

This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may
lead to differences between this version and the Version of Record. Please cite this article as doi:
10.1002/WAT2.1125

http://dx.doi.org/10.1002/WAT2.1125
http://dx.doi.org/10.1002/WAT2.1125


the climate system. We identify special features and similarities across the model families. Examples 
of where plant-water interactions are especially important and how they have led to key scientific 
findings are highlighted. Finally, we discuss the various data sources that are currently available to 
force and validate existing models and we present perspectives on the evolution of the field. 

Introduction 

Transpiration is the process of water transfer from soil to the atmosphere through plant tissues, 
during this process water changes its phase and exits from the plant. On average, transpiration 
amounts to roughly 40 % of the land precipitation1,2,3 and the correspondent latent heat constitutes 
about 38 % of the net radiation absorbed by the land surface4. Therefore, it is not surprising that 
vegetation plays a fundamental role in hydrology and climatology5,6. Transpiration occurs almost 
entirely through small openings in the leaves called stomata7. This pathway is the same through 
which plants acquire carbon and thus represents a major nexus between hydrology and the carbon 
cycle. Plants lose about 100-500 molecules of water to fix one molecule of CO2

8, with water 
representing a key element determining vegetation function and performance. The coupling of 
transpiration and photosynthesis creates important feedbacks between water, carbon, and nutrient 
cycles. Soil biogeochemistry and nutrient dynamics are in fact directly connected to water 
availability, because soil biota dynamics and rock weathering depend on soil moisture content9,10, 
and also indirectly, through the effect that soil water content has on vegetation growth and litter 
production. Despite the strong connection between vegetation and hydrology, historically, in 
hydrological applications, vegetation has been represented with constant factors embedded in 
equations for computing bulk evapotranspiration, as for example in the Penman-Monteith 
equation11. Concurrently, in many ecological applications with detailed characterization of plant 
processes, hydrology has been represented with a simple bucket approximation12,13.  

Given the central role of water-plant interactions in the climate system, representations of 
vegetation attributes and especially stomatal functioning were included in early Earth System 
Models (ESMs)13,14,15,16. Since then, in the last two decades, ecohydrology (or hydroecology) has been 
an emerging scientific field, as testified by the growth of the number of published articles and 
citation metrics beyond the average increase in scientific productivity (Fig. 1). This has been also the 
result of the emphasis placed on water-vegetation interactions in a series of seminal works17,18,19,20. 
Ecohydrology has been less recognized as an emerging field in ecology, because many ecologists and 
ecophysiologists would have regarded themselves as “ecohydrologist” well before this term became 
popularized by hydrologists21. Notwithstanding, the emergence of ecohydrology as a well-
distinguished discipline helped a better exchange and an explicit linkage between the two scientific 
communities. Along with the emergence of ecohydrology, an increasing number of quantitative 
studies focusing on the carbon, water, and nutrient cycles, at the regional and global scales, have 
appeared within the realm of “biogeosciences”, under the growing pressure to better understand 
carbon cycle feedbacks to climate change22,23,24. There are studies nowadays in which the boundaries 
between the fields of ecohydrology, ecophysiology, and biogeosciences are very subtle and mostly a 
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matter of spatiotemporal scales. Beyond affecting water, carbon, and nutrient cycles, vegetation 
functioning has important implications for addressing other relevant questions, as for example in 
assessments of land-use change impacts25, evaluation of ecosystem services26, soil resources and 
landscape formation27, as well as crop productivity28. These are all topics where water availability 
interacts with plant ecophysiology to produce complex dynamics, which are unlikely to be uncovered 
with narrowly disciplinary approaches that ignore or trivialize either hydrological or vegetation 
components. Clearly, the perception of significance and integration of vegetation processes into 
various fields of environmental research has recently undergone a significant transformation.  

It is important to underline that ecohydrology should not be regarded as the analysis of how 
vegetation properties and organization affect streamflow. It is a broader discipline that examines the 
two-way interactions between the entire hydrological cycle and plant functioning.  When the main 
interest is on relatively short-term (≈ decade) analyses of streamflow and water availability or in 
hydrological engineering design, classic hydrological tools such as the Penman-Monteith equation 

can often suffice the purpose of representing vegetation and approaches that involve multiple 
processes and feedbacks such as carbon cycle or plant physiology are unlikely to improve 
considerably predictive capabilities or specific design criteria. However, when the focus shifts toward 
land-surface climate feedbacks, carbon and nutrients cycles or the aim is to elucidate ecological 
mechanisms through which water availability affects vegetation functioning, then the necessity of 
explicitly accounting for vegetation physiology and anatomy and/or soil biogeochemistry becomes 
extremely relevant. Furthermore, feedbacks between vegetation and water cycle cannot be 
captured, if these are not explicitly represented in models, and hypothesis testing can be severely 
impaired by simplified model structures. An illustrative example is provided by potential effects that 
model complexity and explicit consideration of elevated CO2 feedbacks can have in evaluating 
drought trends29,30 or aridity projections in a changing climate31,32. Too simple representation of 
vegetation has been shown to provide quite misleading assessments. Another example is 
represented by the study of the effects of land cover change (e.g., deforestation, grassland 
management) on evapotranspiration and streamflow. Detailed numerical analyses25,33 and actual 
observations34,35,36 suggest that the impact of land cover change on the hydrological cycle, may be 
typically less pronounced in comparison to results obtained with model simulations using simplified 
approaches (e.g.,37), or from small scale manipulation experiments38. However, if the effects of 
disturbances or long-term analyses (≈ multiple decades) are sought, water cycle is more tightly 
connected to the vegetation cover (e.g.,39,40). For instance, shifts in forest composition due to 
species-specific mortality have been shown to produce hydrological relevant consequences41. The 
latter is the result of processes typically unaccounted for in classic ecohydrology such as soil-
biogeochemistry, forest demography, and disturbances, which therefore may represent 
fundamental “ecohydrological” components. Another example of ecohydrological links among 
vegetation, energy, and water cycle is vegetation-snow interaction. Plant canopy that intercepts 
snow typically favors sublimation, thereby reducing the amount of snowpack at the ground. 
Vegetation also alters the radiation balance, shading ground snowpack from direct radiation, yet 
typically increasing the longwave radiation reaching the ground during snow melting periods42,43,44. 
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Additionally, the presence of vegetation affects the turbulent exchanges modifying the wind 
profile45,46. All of these processes are highly non-linear and can contribute to the increase or 
decrease of total snow-melt below vegetation, when compared to cleared areas47. 

In this overview, we provide an essential description of the main processes and relevant interactions 
between water and plants across a range of spatial scales, from the cell level of leaves, where 
stomatal controls occur, to drought stress at the level of a single tree; up to the integrating scales of 
a watershed, region, and the globe (Fig. 1). We treat only terrestrial ecosystems and leave aside 
aquatic plants in water bodies and oceans48. Water controls are also regarded from the plant 
perspective and therefore issues related with vegetation as mechanical roughness element and its 
effect on modulating river and overland flows49,50,51 are not addressed. In combination with the 
description of the physical and ecological processes, we also refer to models available in literature 
that simulate specific processes at the different scales.  We only focus on those models that simulate 
the temporal and, eventually, spatial dynamics of key vegetation states (e.g., Leaf Area Index, LAI). 
With the above constrain, we do not explicitly discuss steady-state models and analytical derivations 
(e.g.,52,53,54,55,56,57), which have led to considerable advances in the understanding of plant water 
interactions but are less amenable to address real case studies. Models developed in forestry 
research for simulating long-term (≈century) forest succession and management58,59 are also 
excluded because of the rather minimalistic representation of hydrological processes. Finally, we 
favour models with a certain degree of generality that can be applied beyond the specific conditions 
for which they were derived.   

Examples where plant-water interactions are especially important and have already led to key 
scientific findings are presented. We also focus on which data are currently available to force and 
validate the existing models, concluding with perspectives on the evolution of the field. 

Cell to plant scale 

Plants developed a vascular system consisting of non-living and living cells, in which water, 
carbohydrates, and nutrients can move without an active “pump” such as a heart, designed to 
control and coordinate such movements60. Vascular plants need to solve the problem of water and 
nutrient transport from soil to different plant organs, especially leaves, which are exposed to 
continued dehydration because of partial contact with the sub-saturated atmosphere through 
stomatal apertures. Concurrently, plants have to transport the products of photosynthesis, such as 
sugars, from the leaves to the other living organs. To overcome the lack of a central pump, plants 
exploit physical gradients in water potential (the energy state of water61) and concentrations of 
osmotic substances62. The mechanisms for water entering the roots and leaving the leaves are 
described in Section “Stomatal Controls” and “Root controls”, while in Section “Plant Vascular 
Transport” we provide the key elements of water transport mechanisms within plants. Fluxes of 
water or mass are expressed using a “flux-gradient” relation, where the flux is proportional to a 
gradient in the “concentration” of the driving quantity, times a conductance term. Throughout the 
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text, we reference existing models with different degrees of approximation of the current process 
understanding. We refer the reader to more specific reviews and books for a complete treatment of 
plant physiology and plant vascular transport8,63,64,65,66,67 . 

Stomatal controls 

Leaves are the sites where water transported from the xylem, i.e., the non-living vascular conduits of 
plants used for water transport from roots to leaves, is evaporated (commonly referred to as 
“transpired”) to the atmosphere. At the same time, carbon from the atmosphere is assimilated 
through the photosynthetic reaction, which takes place in the chloroplasts, mostly located in the 
mesophyll cells68,69,70[Box 1]. Water is transported to the terminal part of the xylem network in the 
leaf veins, while carbon is loaded and exported in the opposite direction in the phloem (the vascular 
conduits that transport sugars produced by photosynthesis to other tissues in the plant, Fig. 2). 
Stomatal size and density and leaf venation have been recognized to be important for plant 
functioning and evolution71,72,73. At the same time the bulk of the resistance to water transport in the 
leaf is occurring outside the venation network74,75,76. Transpiration to the external atmosphere takes 
place through stomatal apertures of few micrometers in size (2-40 μm), mostly located in the lower 
side of the leaf7,77. Stomatal apertures are the common pathways for water and carbon fluxes and 
therefore represent one of the most essential linkages between ecological and hydrological 
dynamics. There is a large amount of literature on environmental factors influencing stomatal 
aperture, such as light, temperature, CO2, vapour pressure deficit78,79,80,81 but despite the critical role 
that stomata play, the details of their regulation are still not fully understood82.  Ultimately, stomata 
are largely biologically regulated and it is through these tiny apertures (or lack of thereof, if leaves 
are shed) that vegetation imprints a unique signature on the water cycle.   

Each stoma is surrounded by a pair of guard cells that are, in turn, in contact with multiple epidermal 
cells (Fig. 2). Stomata tend to open when guard cells increase their turgor (the sum of water 
potential and osmotic pressure, see equation (4)), while an increase in epidermal cell turgor plays in 
the opposite direction, exerting a hydromechanical negative feedback83,84,85 (Fig. 2b). Since the guard 
cell turgor is the sum of osmotic pressure and water potential, stomatal aperture is controlled by 
both hydraulic and chemical factors86 (Fig. 2c). Stomata close when water potential in the leaf drops, 
because of a large transpiration flux or low water potential in the upstream xylem conduits87,88,89. 
The hydraulic control acts directly in the reduction of guard cell turgor, while chemical signals are 
less well quantified90. However, it is well established that chemical factors are essential for stomata 
opening in response to light91,92,93. Furthermore, chemicals compounds, such as Abscisic Acid (ABA), 
are typically released in response to water stress from the leaves and roots94,95,96 and contribute to a 
reduction in the stomatal aperture97. Release of ABA is an important evolutionary trait since in early 
plants such as lycophyte and ferns, stomata closure is purely hydraulically controlled98. A differential 
sensitivity of stomata aperture to chemical compounds is a likely explanation why certain plants 
close stomata considerably in response to dehydratation, keeping a fairly constant leaf water 
potential (commonly referred to as “isohydric behaviour”), while others tend to keep stomata open 
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to favour carbon assimilation, experiencing larger fluctuations and lower values of the leaf water 
potential (“anisohydric behaviour”).      

Models have been presented to describe mechanistically stomatal behaviour and reproduce the 
hydraulic dynamics in the leaf84,99,100,101,102,103,104,105,106 or simply to reproduce functional relations in 
agreement with observations78,107,108. Representing in models the exact mechanisms through which 
stomata respond to the external environment and chemical signals109,110,111 still represents an open 
research frontier. Mechanistic models have been mostly applied in plant physiological studies, while 
ecohydrological models and ESMs adopted empirical/conceptual solutions, where different 
environmental factors are treated independently78, or the stomatal conductance (gs) is assumed to 
be proportional to carbon assimilation (An) and inversely related to leaf interior CO2 concentration 
(ci) and Vapour Pressure Deficit (VPD). These are for instance the structures of the Ball-Berry112 and 
Leuning equations113,114:  

( )VPDf
C

Aagg
i

n
s Γ−

+= 0                                                                            (1) 

where g0 is the residual (or “leakage”) stomatal conductance, when An is equal to zero, a is an 
empirical parameter and Γ is the CO2 compensation point, i.e.,  the concentration of CO2 at which the 
rate of carbon dioxide uptake is exactly balanced by the rate of carbon dioxide release in respiration. 
The Leuning equation (Eq. 1) is widely used and typically requires an estimate of net assimilation An, 
which is carried out using biochemical models of photosynthesis, such as the Farquhar model or its 
subsequent refinements115,116,117,118,119.  

An alternative approach to characterizing stomatal regulation is to assume that stomatal aperture is 
regulated to maximize carbon gain, while minimizing water loss120,121.  These approaches, known as 
“optimality arguments” are appealing from theoretical standpoint because they are based on 
ecological evolutionary principles and seem to be corroborated by observed stomatal behaviour121. 
However, they require specific assumptions for the optimality function and temporal and spatial 
scales of integration, which all have been questioned82. Specific formulations of the optimality 
principle lead to different analytical expressions for leaf-scale conductance122,123,124 and the approach 
starts to be  also adopted in ESMs125.  Note that most of the models referenced above do not directly 
account for effects induced by plant water stress beyond VPD, which needs to be introduced 
empirically, by either directly modifying gs, or the parameters of the biochemical photosynthesis 
model126,127, or some of the terms in the analytical form of optimal stomatal conductance128. 

Root controls 

Roots represent an interface between plants and soil, providing entrance and initially distributed 
pathways for fluxes of water and nutrients from the external environment to the plant. The soil 
environment surrounding the root is called “rhizosphere” and can present strong gradients of water 
potentials and nutrient concentrations129,130,131,132. Roots with diameters smaller than 2 mm are 
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generally defined as “fine roots”, while roots of larger diameter are named “coarse roots”. Fine roots 
are mostly composed of living tissues and are essential for the uptake of water and nutrients, while 
coarse roots serve as aggregated conduits for transport and structural stability of the plant133,134. 
Water flows into the roots because the water potential is typically larger in the soil than inside the 
plants135. Situations of reverse flow from roots to soil may also occur and are typically referred to as 
“hydraulic redistribution”136,137. There is still a debate as to whether the phenomenon is a part of 
typical plant life process or confined to specific conditions, however it is generally believed that it is 
of considerably smaller magnitude than water uptake138. Water moves from the soil to the inner part 
of fine roots overcoming a barrier called Casparian strip mostly composed of suberin for isolating the 
plant interior, preventing for instance the entrance of pathogens. Afterwards, water movement 
continues across cell cytoplasm (sympalstic pathway) or through cell walls (apoplastic pathway) and 
reach the xylem and therefore the vascular network, where it can flow to the main stem139,140,141.  
Given a certain plant demand, water uptake is a function of the rhizosphere water potential 
distribution, axial and radial root conductivities, and the three-dimensional architecture of the root 
system142,143,144. The axial and especially the radial conductivities to water flow are not constant, but 
vary with water potential and can be partially chemically controlled by the plant through 
aquaporins145,146, even though the exact mechanisms underlying this control are still uncertain. 
Nutrient uptake can be passive and follows water uptake or can be enhanced through osmotic 
gradients at the root interface or by the synthesis of various specialized transporters that are 
dynamically integrated into the cell membrane147,148, 149. 

The variability in soil water potential, axial and radial conductivities, and three-dimensional root 
architecture (Fig. 3) is preserved in a number of plant-scale models that generally have a specific 
emphasis on root processes,150,151,152,153,154,155,156,157. The most common approach in ecohydrological 
models and ESMs is to consider only root depth (zero-dimensional model), in combination with 
some empirical function of water content or water potential limiting water uptake or transpiration in 
conditions considered to be “water stress”157,158,159. Several models started considering also the 
vertical distribution of root biomass (one-dimension160,161), and others include a bulk soil-to-root 
conductance162,163, which is a function of the amount of roots expressed through some index such as 
root-length-index or root-area-index164. A hybrid approach has been recently developed that 
preserves three-dimensional information and hydraulic conductivities in a simplified form143, and 
may represent an important way forward in representing hydraulic relations (and constraints) in 
describing the process of plant water uptake.  However, an important limitation in studies of root 
functioning and uptake capacity is in extreme challenge of instrumenting and monitoring roots in 
field conditions, which has likely prevented the development of a larger number of models or 
conceptualization of intermediate complexity.    

Plant vascular transport  

It is currently accepted by the scientific community that water movement in the xylem is governed 
by the cohesion-tension theory60,165,166, while the flow of water in the phloem follows the Münch 
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hypothesis167,168,169. According to the cohesion-tension theory, water molecules are transported in 
the plant in a metastable state generated by surface tension at the air–water interfaces in the 
leaves, the tension is transmitted throughout the entire water column in the plants and molecules 
remains cohesive among themselves and adherent to the walls because of the small size of conduits 
and cells. Under extreme negative potentials or external perturbations, water transport can be 
interrupted by formation of air bubbles (the process of cavitation) and thus the plant vascular 
transport becomes impaired166.  

The water flow in the xylem in the vertical, upward direction (Jxyl) in a conduit of length (ΔL) can be 
expressed through a “flux-gradient” relation as the product of the xylem conductivity (Kxyl) and the 
gradient of water potential (ΔΨxyl) minus the gravitational potential (ρgΔz):  

( )
L

Zg
TKJ xyl

xylxylxyl ∆

∆−∆Ψ
Ψ=

ρ
,                                                                 (2) 

where the xylem conductivity Kxyl is a plant/tissue specific parameter, which varies with temperature 
(T), because temperature affects the water viscosity, and water potential itself. The dependence of 
Kxyl on the water potential is typically described with a sigmoidal shape and it is particularly 
important because it defines the resistance to cavitation, i.e., the formation of air bubbles 
(embolism) in the xylem. Cavitation implies a reduction of the conductive capacity of the xylem 
conduits170,171,172,173, typically indicated as Percentage Loss of Conductivity (PLC) (Fig. 4). The xylem 
vulnerability curve (PLC versus Ψxy) can be described by the knowledge of the water potential at 50 
% loss of conductivity (Ψxyl,50) and of another characteristic value (e.g.,  Ψxyl,12),  typically correlated 
to Ψxyl,50 

174,175. The term Jxyl is referred to as sapflow and can be measured directly in the plants with 
various methods176.  

Similarly, following the Münch hypothesis of a turgor-pressure driven flow, the water flux in phloem 
in the vertical downward direction (Jphl) in a conduit of length (ΔL) is driven by the gradient of turgor 
(ΔPphl) plus the gravitational potential (ρgΔz) times the phloem conductivity (Kphl), which depends on 
temperature and on the concentration of osmotic solutes in the phloem (Cphl) because sucrose 
concentration affects the fluid viscosity177 (Fig. 4): 

( )
L

ZgP
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=
ρ

,                                                               (3) 

The turgor (P) is defined as the sum of osmotic pressure (Π), directly related to the concentration of  
osmotic solutes through the van’t Hoff relation or other empirical functions178,179 and water 
potential180,181: 

Ψ+Π=P                                                                                                                     (4)  

Conversely to sapflow, phloem flow is particularly challenging to measure due to the size of the 
phloem tissue and to the disturbances induced by the measurement itself. It has been only 
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measured in laboratory experiments65,182, although promising techniques for field measurements are 
emerging183.  

In order for the water transport to occur, there should be a difference larger than the gravitational 
potential in the water potential between roots and leaves, which is typically the case during daytime 
in the growing season. Water is not only exchanged vertically in the phloem and xylem but it can 
move also radially between phloem and xylem and between storage reserves (mostly composed by 
living parenchyma cells residing near xylem conduits) and the xylem. These exchanges make xylem 
and phloem hydraulically coupled184,185 and confer to the plant a given capacitance in absorbing 
fluctuations between the water demand of the leaves (transpiration) and the water uptake from the 
roots186,187,188,189,190. Capacitance is typically more significant in stems of larger trees191 and it is due to 
a combination of elastic shrinkage and swelling of phloem, living bark and xylem tissue, and due to 
the release of water from “stiff” storage in the parenchyma cells near the xylem. Elastic shrinkage 
and swelling of the tree is the main mechanism to release stored water in young trees, but it 
becomes marginal in older trees where larger “stiff volumes” of stored water are the main 
contributors to tree capacitance192,193. In both young and old trees, the elastic behaviour of xylem 
and phloem is large enough to be clearly measured with high-resolution dendrometers183,194,195, that 
can therefore provide important information on plant hydraulic behaviour196,197,198. Time-scales 
through which capacitance can buffer the difference between root water uptake and transpiration 
demand are confined to less than an hour for small young trees and in the order of several hours, or 
even days during droughts, for large old trees190,199. 

Only few models have been currently presented to describe plant vascular transport in detail, since 
the prevalent option has been to lump the entire plant system in a single conductance or resistance 
term200 or to ignore plant hydraulics completely, and use the root zone soil water potential to 
directly simulate the controls at the leaf level (the case of ecohydrological models and ESMs, but 
see125). Important exceptions are the Sperry model140 and the TREES model201,202, which use a series 
of resistances from the soil to the leaves and xylem vulnerability curves to describe plant hydraulic 
behaviour; the FETCH model203, the XWF model204,205,206, and the model presented by Chuang et al. 
2006207, which described water flow through the plants with a porous media analogy using the one-
dimensional Richards equation for the water potential along the hydraulic path. Attempts to include 
numerical descriptions of phloem transport, tissue growth, and diameter variations have been even 
more rare, although important examples are available with different degrees of 
complexity177,208,209,210,211,212,213,214, as follow up of first pioneering attempts215. 

Plant physiology during a progressive drought 

When the soil water potential near the roots decreases (or VPD substantially increases), a plant may 
be unable to fully satisfy the transpiration demand and thus progressively enters into a phase of 
water stress. This is characterized by a drop of water potential throughout the various plant 
compartments, accompanied by a reduction of turgor in living tissues, since the plant is only partially 
able to compensate for lower water potentials through osmotic adjustments216,217,218. The first 
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process to be affected by the low water potentials is growth (Fig. 5). Cell growth is mostly the result 
of cell division, enlargement, and cell wall synthesis219,220. Cell enlargement is a function of turgor 
pressure181,221,222,223. A small reduction of water potential can decrease significantly or stop the 
growth well before photosynthesis or stomatal conductance are affected224,225,226. As the growth 
stops, respiration associated with the growth also ceases227,228. Growth impairment has been often 
neglected by ecohydrological literature and models but, in fact, it represents the first consequence 
of water stress onset.  

If water potential continues dropping, plants need to preserve sufficiently high water potentials to 
avoid catastrophic levels of cavitation and thus start reducing the stomatal conductance (see Section 
“Stomatal Controls”). A reduction of stomatal conductance typically leads to a decrease in gas 
exchanges, e.g., photosynthesis and transpiration. These are the controls, which have been typically 
placed at the foundation of ecohydrology18 and embedded in ESMs16.  The decrease in turgor and 
photosynthesis further modifies the plant metabolism and carbon allocation strategies229,230. The 
decrease in transpiration alters the leaf energy budget, with lower latent heat and higher sensible 
heat fluxes and eventually higher emitted longwave radiation because, given constant forcing, leaf 
temperature tends to increase with lower stomatal conductance. A similar response in the energy 
budget is observed also at canopy or larger spatial scales231.  

If the drought persists further, plant vascular transport is also affected because the leaf and xylem 
conductivities decrease at water potentials low enough to allow the formation of emboli and thus 
cavitation in the xylem conduits (Section “Plant Vascular Transport”, Fig. 5). At relatively low water 
potentials, leaves lose turgor and the photosynthetic machine starts to be structurally 
damaged218,232,233.  At this stage, roots can also become completely disconnected from soil, a process 
typically unaccounted for in models (but see202). Maintenance respiration has also been found to 
decrease as the drought progresses228,234. This is probably due to a slow-down of metabolic activities, 
although specific mechanisms are yet not fully understood. It is indeed not rare that plants start to 
shed leaves when exposed to a long-lasting severe drought235,236. For some plants, such as drought-
tolerant deciduous trees, this is actually a routinely adopted strategy237,238,239.  

The decrease or even cessation of photosynthesis poses a challenge for the plant that is called to 
rely only on non-structural carbohydrate reserves (NSC) for its maintenance. Permanent hydraulic 
failure of vascular transport and carbon starvation due to exhaustion or impossibility to access NSC, 
or a combination of these mechanisms have been hypothesized as reasons for plant mortality240,241. 
Recent evidence supports an earlier occurrence of hydraulic failure and a consequent blockage of 
NSC transport234,242. Regardless of the exact mechanisms, a severe and extended drought 
unavoidably leads to plant mortality, a phenomenon occurring in many ecosystems worldwide, even 
in those that are not typically associated with droughts243,244,245. This is particularly relevant since 
drought stress conditions can be potentially exacerbated by higher temperatures and VPD in the 
future246,247,248. Given the fact that the exact mechanisms that lead to plant mortality are still 
unknown, its modelling is a daunting task249,250 and represents an important challenge for improving 
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models of water-vegetation interactions. Widespread plant mortality can in fact lead to a 
considerable shift in species composition and/or vegetation cover fraction, with potentially long-
lasting consequences for surface energy exchanges and the water cycle, even though recent 
observations suggest that observed changes may be smaller than expectations in several 
ecosystems35,36,251.   

Plot to catchment scale 

Historically, vegetation was included in land-surface and hydrological models because it affects 
transpiration through surface roughness, albedo, and canopy resistance rc = rs/LAI, where rs=1/gs is 
the reciprocal of stomatal conductance. Through rc vegetation modifies water and energy exchanges 
at the land-surface because it may offer a larger resistance between soil and atmosphere with 
respect to bare ground in well-water conditions, and a lower-resistance in dry conditions accessing 
through roots relatively deep water storages. The well-known Penman-Monteith equation11,252 

accounts for these vegetation properties and it has been widely used in hydrological models. In its 
basic form it provides a static representation of vegetation functioning in space and time, which has 
been recognized to be a severe limitation in numerous contexts (e.g.160,253) but still provides a 
reasonable approximation for many other studies254. Consequently, models that solve explicitly and 
simultaneously hydrological and vegetation dynamics (Box 2) have been presented in the last fifteen 
years (Table 1).  In literature, the definition of “ecohydrological model” has been used in very 
different contexts, and in this article we refer to ecohydrological models as those models that evolve 
in time and eventually in space some of the key vegetation states and concurrently solve the water 
budget. In the simplest case, they only dynamically simulate canopy resistance or LAI, while in the 
most complex case, a series of carbon pools and vegetation attributes (e.g., plant height, or root 
density) are prognostically simulated. Note that with the above definition we do not include steady-
state models and analytical derivations (e.g., 52,57).  Rather than describing each ecohydrological 
model separately, a non-exhaustive list of models is presented in Table 1. In the following, we 
summarize processes that these models represent. Ecohydrological models typically solve water, 
energy, carbon, and, quite rarely, nutrient cycles at the land surface (Fig. 6).   

Water budget  

In terms of water budget, models use precipitation as input that can be partitioned to rainfall and 
snowfall. Liquid precipitation can fall directly on the ground or be intercepted by the canopy, where 
it can subsequently evaporate or drip. Depending on the intensity of water flux reaching the ground 
and on soil water content (or, more appropriately, water potential) near the surface, water can 
either infiltrate into the soil, or run off from the surface. Solid precipitation can fall directly to the 
ground or become intercepted by vegetation where it can sublimate or subsequently fall to the 
ground. Snow accumulates on the ground in the form of snowpack, where it melts or sublimates. 
Water in the soil undergoes vertical and horizontal redistribution following gravitational and 
capillarity gradients, typically modelled with the Richards equation255,256,257. Depending on the 
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vertical profile of soil water potential and plant demand, water is evaporated from the surface as 
ground evaporation, or taken up by plants and transpired. Since water storage in the plants is 
typically ignored, root uptake and transpiration are exactly the same flux in most of the models. 
Water that percolates to deeper layers or into fractured bedrocks remains mostly inaccessible for 
plants (but see258) and typically contributes to aquifer recharge first, and streamflow at a later stage. 
In models that do not have an explicit representation of the spatial dimension, this water is 
subtracted from the water budget as “deep leakage” or “recharge”. In models with an explicit spatial 
representation, after reaching the stream network as surface or sub-surface flow, water is routed 
through channel network downstream to a specified outlet.     

Energy budget  

Latent heat flux is the energy equivalent of the sum of all water vapour fluxes (transpiration and 
evaporation), therefore it makes the water and energy cycles tightly coupled. Models that solve 
explicitly the energy budget compute the latent heat flux and its partition into the different 
components (evaporation and transpiration) concurrently with the water budget 
(e.g.,160,161,259,260,261,262). Latent heat flux (λE) is typically solved assuming conservation of energy in a 
given domain:  

dt
dSAAGEHR Hnpn =−−−−− λλ                                                             (5) 

where Rn is the net radiation, H is the sensible heat flux, G is the ground heat flux, λp is the specific 
energy consumed in the process of photosynthesis (An), AH is the advected energy to the domain 
either from lateral or vertical fluxes and dS/dt is the change in the energy stored into the system. 
Most of the models assume negligible storage capacity of energy, i.e., dS/dt=0, and also neglect the 
last two terms of the left hand side of eq. (5). Even with this assumption, the problem remains 
difficult to solve because all of the energy fluxes depend on one or, generally, more prognostic 
surface temperatures (e.g., soil, and sunlit and shaded canopy temperatures). Models that do solve 
the energy budget face the problem of solving one or a system of non-linear equations embedded in 
eq. (5), to derive the unknown surface temperature(s). This operation is typically quite 
computationally demanding. Therefore, several ecohydrological models still use simplified solutions 
of the energy budget such as the Penman-Monteith or Priestly-Taylor equations (e.g.,263,264,265,266).  

Carbon budget  

The carbon cycle is linked to the water and energy cycles, because carbon assimilated through 
photosynthesis uses the same pathway between outer atmosphere and leaf interior as transpired 
water (see Section “Stomatal controls”) and because changes in vegetation properties (e.g., plant 
height and LAI) modify boundary conditions for energy and water exchanges (Fig. 6). For instance, 
change in LAI modifies interception capacity, energy absorption and emission, as well as roughness; 
a change in photosynthetic rate, An (Eq. 1) may change stomatal conductance and therefore 
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transpiration. The computation of carbon assimilation can be carried out with various degrees of 
complexity. Some models use a biochemical model of photosynthesis, in which An and leaf internal 
CO2 concentration (ci) are computed as prognostic variables in a non-linear equation (e.g.,160,161, 

259,261,267), others have simpler approaches exploiting the Water Use Efficiency (WUE; i.e., the ratio 
between net carbon assimilation and transpiration268) or Light Use Efficiency (LUE; i.e., the efficiency 
through which radiation absorbed by vegetation is converted into carbon269) concepts that link 
empirically carbon assimilation to the transpired water or intercepted light (e.g.,262, 266, 270, 271, 272). In 
some ecohydrological models, vegetation dynamics are essentially reduced to the simulation of 
carbon assimilation only (e.g.,267,273). In others, the assimilated carbon is used to grow plants and to 
evolve a given number of carbon pools. Carbon pools are the way models accounts for the size and 
dynamics of different plant compartments274. The number of carbon pools varies from model to 
model but a typical set is composed at least of a foliage pool, a fine-root pool, a sapwood or stem 
pool, and, more recently, a carbon reserve pool (e.g.,161,265). Carbon reserves have been ignored in 
early ecohydrological and ESMs with rare exceptions (e.g.,275) but it is currently recognized that plant 
dynamics cannot be simulated meaningfully without accounting for carbon reserves276,277,278. Models 
that use carbon pools can also simulate the dynamics of the biophysical structure of vegetation, e.g., 
LAI, vegetation height, root biomass.  

Soil biogeochemistry  

Water, energy and carbon fluxes are additionally connected through soil biogeochemistry and 
nutrient dynamics (Fig. 6). Soil biogeochemistry is typically simulated accounting for a given number 
of carbon and nitrogen pools279. Other nutrients, such as phosphorous, sulphur, or potassium are not 
typically included in ecohydrological models and rarely so in ESMs (see section “Terrestrial Biosphere 
Models”). The number of pools varies with model complexity, but a typical approach is to explicitly 
represent the carbon and nitrogen contents in plant litter material and soil organic matter (SOM), 
partitioned into various subcomponents, as well as inorganic nutrients in mineral pools, which are 
directly available for plant uptake (e.g.,280,281,282,283,284). In more recent model formulations, the SOM 
pool is partitioned among the substrate (available SOM) and the microbial biomass (bacteria, 
mycorrhiza) that feeds on the substrate285, while soil fauna is typically neglected. In some models, 
extracellular enzymes catalyzing the decomposition reactions are also explicitly represented286,287,288. 
Exchanges between the different pools are typically simulated as the first-order kinetics processes, 
that account for temperature and soil moisture effects, or as higher order kinetics of the type 
described by the Michaelis-Menten equation279,289,290. A fraction of carbon is lost in the 
decomposition process as CO2 through heterotrophic respiration. This is controlled by the capacity of 
the soil microbial biomass to assimilate carbon, defined as Carbon Use Efficiency (CUE). The 
production of mineral nutrients (e.g., NO3

-, NH4
+) is mostly connected to the dynamics of the carbon 

pools and to the stoichiometry (e.g., carbon-nitrogen ratio) of litter and SOM291,292.  Part of nutrients 
can be lost through deep leakage, erosion, or in the case of nitrogen through denitrification and 
volatilization, the remaining can be taken up by roots. Plant nutrient uptakes represent an essential 
component of the vegetation functioning. Nutrient uptake depends on availability of mineral 
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nutrients, root density, mycorrhiza symbiosis, plant requirements, but exact mechanisms are not 
fully understood and their simulation is typically quite simplified284,285,293,294. The link with the carbon 
cycle is evident since soil biogeochemistry regulates the amount of heterotrophically respired CO2, 
and controls the nutrients accessible to the plants. Nutrient availability affects plant development 
because of stoichiometric constraints in building plant tissues295 and because leaf nitrogen is known 
to affect photosynthetic capacity296,297,298,299. The linkage with plant development offers an important 
feedback on water and energy exchanges because plant structure (e.g., LAI, vegetation height) 
modifies boundary conditions at the land surface300. 

Spatial representation of processes 

The description of how models deal with the water, energy, carbon, and nutrient cycles is weakly 
related to the spatial dimension of the domain of simulation. In other words, the discussed 
processes can be used for a domain of 5x5 m2 as well as 100x100 km2, changing only the climate 
forcing and boundary conditions but largely preserving the same model structure. Although, the 
process importance and heterogeneity clearly changes with the spatial scale, the conceptualization 
remains the same and similar approaches have been used at very different scales. A main issue with 
increasing spatial scale is the difficulty of prescribing appropriate boundary conditions and 
parameter values with a consequent problem related to the “fallacy of average”, i.e., the false 
assumption that the mean of a nonlinear function of several variables equals the function of the 
means of these variables301,302. Regardless of the scale, a spatial domain has a well-defined 
topography that needs to be accounted for because it affects climatic inputs such as shortwave and 
longwave radiation303,304,305,306 and rainfall307, and because lateral exchanges of water, and nutrients 
may become significant. Lateral exchanges of energy are believed to be less important but they are 
essentially unstudied. Distributed ecohydrological models are typically designed to account for 
lateral exchanges of water307,308 and sometime nutrients309,310, even when process description is 
simplified in a comparison to mechanistic solutions266. The spatial re-distribution of these resources 
in the simulated domain allows for an emergence of topographically controlled patterns in 
vegetation dynamics (e.g., different species composition in southern and northern exposed 
hillslopes, higher plant density near the stream network, etc.) that can eventually feedback to water 
and energy exchanges.     

Another important aspect of the spatial dimension is represented by competition, establishment and 
mortality of vegetation. There are few ecohydrological models that aim to reproduce this specific 
behavior, and they are especially developed to study vegetation patterns in semi-arid environments 
311,266,312. These models typically compromise in the rigorousness of process description in terms of 
water, energy and carbon dynamics but they explicitly introduce ways, mostly based on stochastic 
approaches, to simulate seed dispersal, plant establishment and mortality and their interaction with 
resource availability (water, radiation), which are absent in more complex models. At an even 
simpler level, models have been proposed to describe self-organized (or self-emergent) vegetation 
patterns in semi-arid environments using systems of partial differential equations, borrowed from 
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dynamic systems theory (e.g., 313). While these studies are quite distant from the representation of 
the physical processes, they are important to put forward hypotheses on the controls of vegetation 
spatial organization and regular patterns observed in semi-arid ecosystems314,315,316,317,318,319,320. 

Global scale 

Terrestrial biosphere models 

The request for quantifications of global carbon and water cycles and plant biogeography, especially 
in the context of understanding consequences of climate change was conducive to the development 
of models able to simulate vegetation dynamics (Box 2) at the global scale13,321,322,323,324,325. These 
models are indicated with various names: Dynamic Global Vegetation Models (DGVMs), Terrestrial 
Biosphere Models, Terrestrial Ecosystem Models, and more recently, as vegetation components of 
Earth System Models (e.g.,14,326,327,328,329,330). Here, the term terrestrial biosphere models is used to 
refer to this family of models13. Typically, terrestrial biosphere models simulate water, energy, 
carbon, and nutrient cycles using an approach similar to the ecohydrological models described 
earlier. As a matter of fact, in most cases formulations of carbon dynamics and soil biogeochemistry 
have been first developed for these models (e.g.,15,331,332) and subsequently adopted into 
ecohydrological models. A detailed description of terrestrial biosphere models can be found in 
recent reviews by Prentice et al. 2007333, Levis 2010334, Quillet et al. 2010335,  Medlyn et al 2011336, 
Fisher et al. 201413 and a list of popular models is presented in Table 2 along with a summary of the 
specifications of each model. The simulated biophysical and biochemical processes are to a large 
extent similar to the processes described in Section “Plot to catchment scale”. We rather emphasize 
the main differences in comparison to ecohydrological models, related to (i) spatiotemporal scale of 
application, (ii) model initialization and boundary conditions, and (iii) biogeography and forest 
demography. We acknowledge that there is a tendency toward convergence in process description 
between certain ecohydrological and terrestrial biosphere models and in the future the separation 
may become semantic or mostly a function of the type and scale of application.  

A major distinction between ecohydrological and terrestrial biosphere models relies on the different 
spatiotemporal scales of their applications, and thus the generality that the latter are meant to 
achieve. Terrestrial biosphere models are not tailored to any particular place or catchment and have 
to simulate vegetation occurring in the entire Earth surface. In addition, terrestrial biosphere models 
typically address research questions for longer time scales, when compared to the time horizons of 
ecohydrological studies, even though exceptions exists and some ecohydrological models have been 
also developed for long-term analyses263,309. This implies that their structure needs to be flexible 
enough to include various processes and parameterizations and to simulate vegetation response 
across a large range of climatic conditions and time scales. However, structural and parameterization 
issues may emerge due to simplified assumptions introduced for the sake of generality and 
flexibility, as pinpointed recently by Pappas et al. 2013337. Furthermore, because the spatial 
representation in terrestrial biosphere models is in the order of several km2, they cannot account 
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explicitly for topography. Each computational element may receive a different climate forcing, but, 
in essence, terrestrial biosphere models are one-dimensional since they do not exchange laterally 
mass and nutrient fluxes and the effect of local topography in controlling meteorological inputs is 
not accounted for. 

The large spatiotemporal scales of the typical applications carried out with terrestrial biosphere 
models, requests a different philosophy for assigning the initial conditions (state variables) for the 
numerical simulations. While for ecohydrological models a initialization period of few years is 
typically able to bring the examined ecosystem to a representative state (since the vegetation 
component is often assumed to be in a mature state), longer spin-up periods are required for the 
initialization of terrestrial biosphere models that simulate short- and long-term soil biogeochemical 
processes (e.g., soil organic matter and nutrient dynamics). All terrestrial biosphere models account 
for soil carbon dynamics, many of them for nitrogen (e.g.,283,284,338) and a minor fraction for 
phosphorous cycle339,340,341. It is worth underlying that, although often unrealistic, the assumption of 
vegetation in equilibrium with the observed environmental conditions (climate, nutrient deposition, 
weathering rates) is commonly and unavoidably applied for the spin-up of terrestrial biosphere 
models (e.g.,302). In addition, contrary to the confined spatial extent (i.e., plot and catchment scales) 
and to the relatively short time-scales (i.e., less than 30 years) of the ecohydrological applications, 
the applications of terrestrial biosphere models address research questions at the regional or global 
scales with time horizons of several decades or centuries. Therefore, land use and vegetation cover 
are often not pre-assigned, as typically done in ecohydrological applications, but are prognostic 
variables computed by the model. For the same reasons, processes such as forest demography, 
natural or anthropogenic disturbances, e.g., fire, windthrow, plant diseases, insect attacks, forest 
management, and plant competition needs to be represented. Feedbacks on vegetation dynamics 
due to nutrient cycles are also much more relevant at those temporal scales than are for 
ecohydrological applications, at least in forests342.  Forest demography in terrestrial biosphere 
models is similar or identical to the one developed for forest-gap models in forestry research343,58. 
Forest demography can be handled evolving in time an average tree individual344,345,346, or by 
simulating cohorts of individuals with different age classes and size in the stand (e.g.,58,302,347,348,349). 
This allows, for instance, an explicit representation of early and late successional species and more 
generally of heterogeneous forests with gaps, uneven stand height and density350,351. Disturbances 
are typically very difficult to simulate mechanistically, even though recently a general framework has 
been presented352, and are mostly simulated removing a certain amount of biomass in a given 
domain with a given probability of disturbance occurrence. Plant competition is often simulated 
implicitly assigning “bioclimatic limits” of existence (temperature, soil moisture, or light thresholds 
for establishment) to specific species or plant functional types, or removing plants that are 
underperforming from a carbon balance perspective (e.g.,344,353). Mortality is far from being 
mechanistically simulated354 and is typically related to plant negative carbon balances or prescribed 
with given constant probabilities or as a function of plant age or size355,356. This background mortality 
is typically summed with the probability of disturbance occurrence.   
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Vegetation feedbacks to the climate system 

There are several examples of successful applications of terrestrial biosphere models, which 
elucidate feedbacks between vegetation dynamics and climate or hydrological cycle at the global 
and regional scales. One example is represented by the predictions of the fate of the Amazon forest. 
Early findings suggested potential dieback of the Amazon rainforest in response to projected 
droughts, with huge implications for the future of Earth’s climate357. While these extreme 
projections have been moderated using more refined models, the response of the Amazon forest to 
a changing climate remains very uncertain (e.g.,358,359,360,361,362). There is a large community effort 
dedicated to better understand the effect of drought on the Amazon forest (e.g., 363,364,365,366) 
because current observations and future predictions are suggesting a potential lengthening of the 
dry intervals and an increase of drought risk367,368. At local scales, Amazon deforestation has been 
demonstrated to affect cloud formation and convective precipitation, because it changes the 
partition of net radiation into sensible and latent heat, thus affecting boundary layer development. 
This has the possibility to increase or decrease convective precipitation downwind of the cleared 
patches as a function of the deforestation extent369,370,371.  

Another significant example is represented by the observed tree and shrub encroachment at high 
latitudes. The prognostic nature of vegetation cover in terrestrial biosphere models allows them to 
simulate shrub encroachment and tree line shifts following, for example, Earth warming. While the 
exact causes of tree and shrub encroachment are still uncertain372,373, shrub presence in previously 
non-vegetated or poorly vegetated areas of the Arctic has the capacity to modify the hydrology and 
the energy exchanges between the land and the atmosphere. If shrubs grow taller than typical 
winter snowpack height, the albedo of the surface is substantially decreased, and at the same time 
the longwave radiation regime is modified374. These changes in vegetation have a positive feedback 
on local and global warming with the potential to further push shrub encroachment or northern tree 
line expansion375.   

A final example of important interactions between plants and the water cycle is related to the 
consequences of increasing atmospheric CO2 concentration. Elevated CO2 concentration has a well-
known direct physiological effect at the leaf level, increasing photosynthesis and reducing stomatal 
conductance376,377. The increased plant productivity associated with elevated CO2 is typically 
indicated as CO2 fertilization effect (e.g.,378). The integration of this effect from leaf to the global 
scale is still debated379,380 but it has been postulated to have contributed to increase runoff381,382 and 
be largely responsible for the terrestrial carbon sink with direct feedbacks on Earth climate23,383,384. 
While the magnitude of CO2 fertilization at the ecosystem scale and the persistence of the carbon 
sink in time are still open research areas362,385,386,387, it represents one additional example that robust 
long-term projections of future water cycle cannot be made without accounting for vegetation 
physiology. 

Process up-scaling 
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Forcing and boundary conditions 

The models described in the previous sections (plant hydraulic, ecohydrological, and terrestrial 
biosphere models) are designed to address scientific quesons at different spatiotemporal scales. 
Plant hydraulic models are typically forced with very detailed meteorological inputs and boundary 
conditions (e.g., soil type, tree height and diameter, root depth, plant hydraulic traits, etc.) but they 
are used to simulate a single tree or a specific forest stand and for a relative short period of time (a 
growing season, few years). It would be in fact unrealistic to simulate each individual tree at the 
continental scale. At larger spatiotemporal scales, different model types are typically applied. 
Ecohydrological models are normally employed from the plot to the catchment scale, while 
terrestrial biosphere models are used from the plot to the global scale. As described previously, 
terrestrial biosphere models cannot account for fine-scale heterogeneities (e.g., topography, 
climate) because the spatial resolution at which they usually operate is in the order of several km2.  
This limitation has been shown to be more relevant than previously thought because the mean 
response obtained with meteorological forcing and boundary conditions mediated over a large area 
can be different from the mean of the responses obtained with a detailed treatment of input and 
boundary conditions302. In other words, the non-linear dynamics inherent to hydrological and 
vegetation processes play a considerable role. In an analogy, the temporal resolution of the model is 
also very important388,389 because coarse temporal resolutions do not allow solving non-linear effects 
produced by short-term variability in the forcing (e.g., shortwave radiation). In this regard, however, 
differences among models are less marked, most of the ecohydrological and terrestrial biosphere 
models are using an hourly or half-hourly time-step for the forcing, at least to solve hydrological and 
energy dynamics, with few models still using daily or longer scales (e.g.,348). Plant growth, soil 
biogeochemistry and forest demography processes have typically slower dynamics that can be 
simulated at the daily time scale or even annually for processes such as forest demography.  

Vegetation heterogeneity 

A very important “boundary condition” in any model that deals with vegetation is how the 
vegetation itself is parameterized. Historically, the existing diversity in species and plant traits (e.g., 
390) has been summarized using a given number (~8-25) of Plant Functional Types (PFTs), that aimed 
to distinguish climatic zone (e.g., temperate, boreal, tropical), phenology (evergreen, deciduous), 
and leaf morphology (e.g., needleleaves, broadleaves) of the plant391. This approach has been 
utilized in both ecohydrological and terrestrial biosphere models because it allowed a synthesis of 
important differences in plant properties as well as phenological behaviour without entering in the 
details of exact species or intra-species variability. Recently, the PFT approach has been widely 
criticized and new approaches based on the definition of plant traits and their distributions are 
becoming progressively popular (e.g.,33,392,393,394,395). These approaches rely on the knowledge of 
observed distributions of plant properties, “traits”, which correspond or can be related to model 
parameters, such as, maximum photosynthetic capacity, leaf nitrogen content, specific leaf area, 
root depth and turnover rates, leaf dimension, etc. Beyond the distribution of the values of a given 
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plant trait, there are several ecological studies that show a certain degree of coordination between 
many of these traits396,397,398. An illustrative example is the “leaf economics spectrum” that suggest 
that leaf traits co-vary in a continuum from leaves with a high photosynthetic capacity, nitrogen 
content, and specific leaf area index and short lifespan typical of fast growing species to the opposite 
combination typical of slow growing species399,396. While cross-correlations have been mostly studied 
for leaf traits, there is emerging evidence that this holds true for many plant traits400 and such 
information can be transferred to the model parameters. Observed trait distributions and cross-
correlation can be used to create “proxy species”, which do not correspond exactly to an observed 
species but are deemed as realistic within the range of observed natural variation. Models can then 
use a large number of these “proxy species” to investigate the importance of variability in plant 
traits in carbon and water dynamics in a given region, or directly use observed distributions of plant 
traits as input. Note that the latter should be typically weighted for the occurrence of a given species 
in a specific place or region. Despite the huge amount of biodiversity, forest biomass and 
productivity are in fact mostly controlled by a limited number of dominant species401. A great 
advantage of the probabilistic approximation of plant trait diversity, based on multivariate 
distributions of whole-plant trait spectra, rather than on few PFTs or species, is that it allows for a 
probabilistic assessment of ecosystem response and thus provides a framework for quantifying 
uncertainties related to vegetation spatiotemporal heterogeneity33,393.         

Data for model parameterization and confirmation 

Any model, regardless of the scale, needs climate forcings as well as data that can be used for 
confirmation of model results. Meteorological forcing requirements are similar in most of the 
models and include air temperature, precipitation, relative humidity, wind speed, atmospheric 
pressure, CO2 concentration, and shortwave and longwave radiation. Boundary conditions consist of 
soil properties, such as soil depth, soil texture or soil hydraulic properties (e.g.,402,403), and vegetation 
properties represented by functional and morphological plant traits (see Section “Vegetation 
heterogeneity”). In the case of distributed simulations, land-cover, topographic and geologic 
information is also required. Modelling of soil biogeochemistry and nutrient cycle theoretically 
needs additional data about initial values of nutrient content, nutrient deposition and primary 
minerals weathering together with a number of parameters that characterize kinetics and turnover 
rates of microbial biomass and organic substrate in the soil (e.g.,288,404,405).    

There are multiple measurements that can potentially be used in models and that are carried out 
directly at the plant scale in one or multiple individuals. These are  leaf and stem water potential, 
sapflow, stem diameter changes, leaf turgor, leaf temperature, gas exchange measurements at leaf, 
root and stem level (Table 3). Additionally, plant hydraulic traits such as stem capacitance and 
vulnerability curves or biochemical traits such as the ones related to photosynthesis are necessary 
for accurate parameterization of stomata and plant hydraulic models (e.g.,249). When combined 
together these measurements do provide a rather complete characterization of plant behaviour, 
with a notable exception represented by short term carbon allocation dynamics (phloem transport, 
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tissue growth and respiration), which are currently very difficult or impossible to measure in the field 
and mostly limited to leaf growth and point measurements of non-structural carbohydrates 
repeated few times during a season406.     

Moving from the plant to the plot/stand scale, measurements are not typically carried out anymore 
on the individual plants but express an integrated quantity over a given area. This type of 
measurements includes: (i) energy and mass exchange between the land surface and the 
atmosphere obtained with flux-tower monitoring systems that employ the eddy covariance 
technique407,408,409,410,411 (ii) soil water content and temperature, and soil respiration at different 
locations. Measurements of soil water content provide a direct quantification of one of the key 
variable in the water-vegetation interaction but are difficult to upscale from the sensor level to stand 
scale due to considerable spatial heterogeneities412,413,414,415. Flux-tower measurements are instead 
an up-scaled quantity but have problems of continuity and interpretation416,417. Despite well-
recognized issues418,419, flux-tower observations have represented and still represent the major 
source for validation of ecohydrological and terrestrial biosphere models, since they provide values 
for variables such as latent and sensible heat, net radiation and mass fluxes of water vapour and 
carbon. Lysimeters can be also used to measure directly leaching of water and nutrients and the 
water content variation in soil monoliths, and, therefore, evapotranspiration420,421. This 
measurement is probably the most precise and continuous estimate of evapotranspiration fluxes but 
it is very expensive to set-up and maintain. Moving from fluxes to stocks, forest inventories 
represent an important source of information to characterize standing and dead biomass, and plant 
demography (age, size, and species).  When inventories are repeated systematically in time, they 
also provide information on plant turnover rates, mortality and growth (e.g.,422,423) and they can be 
used for model testing (e.g.,351,302). Recently, tree ring dendrochronology has been presented as a 
possibility to test simulations of carbon accumulation as well as the effect of infrequent 
disturbances424.  Despite the numerous problems, existing in the scaling from single trees to areal 
estimates, it represents a potential additional source for model validation. 

An alternative way to test models is the recourse to observations carried out during ecological 
manipulation experiments, e.g., rainfall exclusion and addition, warming, CO2 enrichment (FACE), 
girdling, and nutrient additions. Such experiments can be used to test whether models can 
reproduce the effect of treatment at least in terms of observed sensitivity (e.g.,365,425,426,427,428). When 
models are able to do so without changing their parameterization, this represents an important 
validation of their predictive skills for conditions different from the current climate. Manipulation 
experiments have been mostly focused in measuring vegetation productivity, especially in grassland, 
but other metrics can be also monitored and used for model validation, especially if new 
experiments will be designed with this additional scope in mind428,429,430. In fact, despite their 
potential importance, manipulation experiments have been seldom used for model testing so far.  

Moving to larger spatial scales, direct observations become more challenging and remote sensing as 
LIDAR and hyperspectral cameras have been recently employed. Observational devices can be 
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placed over land or aircraft platforms or on satellites431,432. Remote sensing observations can be 
carried out with optic or radar sensors and are mostly used to measure vegetation reflectivity 
indices, carbon stocks, and soil moisture. Carbon stocks are typically observed with radar sensors 
and at the regional scale (e.g.,433,434).  Optic observations in multiple spectral bands are typically 
mapping the entire Earth and they are used to derive vegetation indices as the Enhanced Vegetation 
Index (EVI), the Normalized Difference Vegetation Index (NDVI), or chlorophyll fluorescence435,436. 
Signals in multiple bands can be also processed and converted into variables such as LAI, carbon 
assimilation437,438 or nutrient contents of the leaves439, although the reliability of these estimates is 
still uncertain (e.g.,440,441). A few remote sensing products are also available for near surface soil 
water content (e.g.,442), as well as promising results in this direction are expected from campaigns as 
Soil Moisture Active Passive (SMAP)443. Finally, anomalies of atmospheric CO2 concentration are an 
important source of information to estimate the net carbon uptake or release over very large areas 
and at the seasonal and annual time-scale384,444, and they may become even more so in the future445.   

Conclusion 

The examined literature suggests that approaches to simulate the intertwined dynamics of water, 
energy, carbon, and nutrients cycles are becoming widely available and that a number of models of 
different complexity has been presented to address problems at various scales. While the 
combination of hydrology and ecology can be considered a reality, additional efforts need to be 
devoted to integrate solutions developed for different scales.  

The issue of scales is not merely an operational one related to finding better parameterizations but 
requires innovative approaches to preserve key physical and ecological mechanisms operating 
locally as well as heterogeneities into larger-scale applications. We do not mean that the entire 
complexity of plant-hydraulic or detailed biogeochemistry models should be retained into 
ecohydrological or terrestrial biosphere models but there is a wide margin to better use insights 
gained at local scales into watershed, regional and global applications (see125). For instance, models 
simulating mechanistically plant hydraulic and carbon dynamics are still rare and confined to 
specialized studies202,208,209,214,, but they have the potential to improve considerably representation 
of fundamental aspects such as plant growth, response to elevated CO2, response to severe droughts 
or pathogen attacks,  and ultimately plant mortality. These are subjects where we still have gaps in 
process understating and where a well-structured combination of modelling and observations is 
likely to provide insights well beyond model improvements, potentially increasing fundamental 
knowledge of plant-water interactions. Modelling plant mortality has been regarded as one of the 
great scientific challenge446 and surely it is, but we should not forget that current models still 
struggle to simulate correctly the response to water limitations447and have limited flexibility to 
accommodate diverging response across species or within a landscape33,302. 

Most of the processes underlying plant-water interactions are highly non-linear, this implies that 
averaging significant heterogeneities in space and time may lead to considerable biases. While the 
importance of solving ecohydrological processes at the sub-daily temporal scales is progressively 
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recognized388,389,448 and implemented in most of the models, the relevance of being spatially explicit 
has been less emphasized in literature302. Few studies presented process-based simulations 
accounting explicitly for topographic attributes and lateral water and mass exchanges300,307,308,449. 
Applications at regional or continental scale of ecohydrological models or the introduction of 
topography in terrestrial biosphere models will represent possible solutions. These solutions bring 
along operational issues related to computational resources and accurate model parameterizations. 
Large spatial and long temporal scales pose great challenges for model initialization and validation, 
since current available data are typically inadequate when compared to the diversity of model 
outputs. A better integration of data from multiple platforms and scales and especially of remote 
sensing estimates is thus essential for improving distributed and/or continental scale models. A 
more rigorous treatment of uncertainty with stochastic analyses and probabilistic predictions should 
also represent an important avenue for the future, since many model parameters (e.g., plant and 
microbial traits) are unlikely to be known with a high accuracy everywhere and vary, not only in 
space but also in time33. Studies and modelling of plant-water interactions have seen great 
advancements in the past years but current shortcomings and the challenges pose by environmental 
changes and preservation of water resources and ecosystem services are suggesting that exciting 
times are still ahead. 

Box 1: Plant physiology: definitions  

Definitions of plant physiological terms are provided to guide readers. Xylem refers to non-living 
vascular conduits of plants that transport water from the roots to the leaves (Fig. 4). Phloem refers 
to vascular conduits that transport sugars produced by photosynthesis to other tissues in the plant 
(Fig. 4). Water potential is the potential energy of water per unit volume relative to pure water in 
reference conditions. Water potential quantifies the tendency of water to move from one area to 
another due to osmosis, mechanical pressure, or matrix effects such as capillary action. Cavitation is 
the processes that leads to formation and growth of vapour bubbles in a liquid, in the case of plants 
it occurs within the xylem. Non-structural carbohydrates (NSC) are the free, low molecular weight 
sugars (glucose, fructose and sucrose) plus starch, readily available for transport and plant 
metabolism. Abscisic acid (ABA) is a plant hormone involved in many plant processes, including 
stomatal closure, bud dormancy, leaf abscission. Aquaporins are integral membrane proteins that 
form pores in the membrane of biological cells and allow for the selective passage of water. 
Cytoplasm is the portion of the cell that is enclosed within the cell membrane and is composed by 
organelles and a gel-like substance. Suberin is a waterproofing waxy substance present in the cell 
walls of certain plant tissue. 

 

Box 2: Vegetation dynamics 

The term “vegetation dynamics” when referred to models may have different meanings according to 
the context where it is used. In a large fraction of terrestrial biosphere model literature, vegetation 
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dynamics is used for referring to models where the vegetation type (e.g., PFT or species) is 
prognostic in space and time. In other words, vegetation dynamics are related to processes such 
plant establishment and mortality, forest demography, disturbances that may modify the amount 
and type of vegetation occurrence. In ecohydrological model literature, vegetation dynamics 
typically refer to model that simulate prognostically vegetation attributes such as leaf area index, 
root density, carbon allocation or more generally a number of carbon pools. Finally, in some context 
vegetation  dynamics may simply refer to a model that is simulating the temporal evolution of 
processes connected to vegetation but not directly linked to the plant structure such as 
photosynthesis, respiration or stomatal conductance. For sake of generality, in the article we use the 
broadest definition of vegetation dynamics that includes both fast and slow processes through which 
models simulate temporal evolution of plant properties. 

 

Notes 

-- 
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Figure captions 

Fig. 1 Plant-water interactions are occurring over a broad range of spatial scales from (a) leaf interior 
(≈ μm) to (b) individual plant (≈ m), to (c) catchments (≈ km) up to (d) the entire Earth. Map of 
evapotranspiration on the Rietholzbach catchment25 and the annual global estimate of 
evapotranspiration from the MOD16 product450 are shown. (e)The increasing attention that is paid 
by the scientific community to ecohydrology is reflected in the number of published articles and the 
citations they received during the last 16 years (Source: ISI Web of knowledge, August 2015). The 
average increasing rate of publication in scientific literature is also shown as benchmark451. The 
MODIS map is reproduced by permission of Elsevier450, the leaf section is reproduced by permission 
of John Wiley and Sons71. 

Fig. 2 A leaf is mostly composed of mesophyll and epidermal cells. The mesophyll is subdivided in 
palisade and spongy mesophyll. The epidermis secretes a waxy substance called the cuticle to 
separate leaf interior from the external atmosphere. Among the epidermal cells, there are pairs of 
guard cells. Each pair of guard cells forms a pore called stoma. Water and CO2 enter and exit the leaf 
mostly through the stomata. The vascular network of the plant is composed of xylem (blue) that 
transports water to the leaf cells and of phloem (red), which transports sugars from the leaf to the 
rest of the plant.  Water that get off the xylem is evaporated in the leaf interior (dashed lines). The 
term Ψx,v  Ψm, Ψe, Ψg, Ψi, and Ψa are the water potential in the xylem of leaf vein, mesophyll cell, 
epidermal cell, guard cell, leaf interior, and atmosphere, respectively. Stomatal aperture responds 
positively to guard cell turgor pressure (Pg) and negatively to epidermal cell turgor pressure (Pe) 
(hydromechanical feedback). The conductance of the stomatal aperture (gs) decreases with water 
potential in the leaf due to a combination of hydraulic and chemical factors.     

Fig. 3 Representation of plant- and patch-scale root systems suitable for explicit 3-D hydraulic 
models of plant water and nutrient uptake. (a) Spatial distribution of tree stems and their root 
systems based on measurements at the University of Michigan Biological Station414: the central dot 
is tress stem (diameter ≥ 10 cm), the solid line shows the maximum lateral root extent, while the 
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dashed line delineates distance corresponding to 95% of vertically and radially integrated root 
length. (b) Plant-scale properties of root distribution are controlled by using explicit root 
architecture obtained with the RootBox software452.  Roots of different order (color-coded) as well 
as overlapped areas where competition for soil water and nutrients occurs are shown for three 
exemplary trees. (c) Patch-scale property of root distribution with depth is inferred from in situ 
observations of the bulk biomass density414 converted to the length density from variations of root 
diameters and specific density.  For each depth, the median density, 25-75%, and 10-90% ranges of 
the obtained distribution are shown. 

Fig. 4 Global view of long-distance water and carbohydrate transport pathways in a vascular plant. 
The xylem mediates the net transfer of water from the soil to the atmosphere down a gradient in 
water potential, ∇Ψ. The phloem carries a flow of sugars and other metabolites down the plant from 
the leaves to the tissues. Optical micrographs show cross sections of a leaf, stem, and root with the 
approximate location of the xylem (blue) and phloem (orange). Typical curves for changes in stem 
relative water content (RWC) and xylem cavitation expressed as Percentage Loss of Conductivity 
(PLC) as a function of water potential are shown along with the increase in fluid viscosity as a 
function of sucrose osmotic concentration. The figure is copied and adapted from66. Permission will 
be acquired for the final manuscript version.  

Fig. 5.  Effects on plant physiology caused by a decrease in water potential and turgor. The length of 
the horizontal lines represent the range of stress levels within which a process becomes first 
affected. Two different levels of minimum water potential Ψ are given: -2 and -12 MPa, these are 
indicative and correspond to a value characteristic for drought intolerant plants/crops and one for 
drought-adapted plants in deserts.  Dashed lines signify an incipient or vanishing effect. The figure is 
inspired to Hsiao et al. 1976216 and Porporato et al. 200118.  

Fig. 6  Ecohydrological and  terrestrial biosphere models have components and parameterizations to 
simulate the (i) surface energy exchanges; (ii) the water cycle,  (iii) the carbon cycle and (iv) soil 
biogeochemistry and nutrient cycles. Many models do not include all the components presented in 
the figure.  

Tables 

Table 1.  A non-exhaustive list of ecohydrological models. The presence or absence of specific 
processes is indicated with a yes (Y) or no (N) and with additional specifications.  

 

MODEL  Key Reference  
Water 
Budget  

Energy 
Budget  

Carbon 
Pools   

Nutrie
nts   

Photosynthesi
s and stomatal  

Spatial 
Represe
ntation 

Water 
Routin
g  

Plant 
spatial 
dynam
ics 

T&C 
Tethys-
Chloris  

Fatichi et al 
2012; 2014, 
161,25  

Y (Richards  
-Multilayer) 

Y (1 
prognostic 
temp.) 

Y (7 
Pools) N 

Y (Biochemical  
+ Leuning)   Y (Grid) Y N 
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tRIBS-
VEGGIE 

Ivanov et al 
2008, 160   

Y (Richards  
-Multilayer) 

Y (2 
prognostic 
temp.) 

Y (4 
pools) N 

Y (Biochemical 
+ Leuning)   Y (TIN) Y N 

MLCan 
Drewry et al 
2010, 261  

Y(Richards  
-Multilayer) 

Y 
(Multilayer 
temp.) N N 

Y (Biochemical 
+ Ball-Berry)   N N 

N 

RHESSys 

Tague and 
Band 2004, 
Tague et al 
2013 , 263, 449   

Y (Two 
layers) 

N( 
Penman-
Monteith) 

Y (3 
pools) Y Y( Empirical) 

Y (Semi-
distribute
d) Y 

N 

CATHY/N
oahMP 

Niu et al 
2014, 273 

Y(Richards  
-Multilayer) 

Y (2 
prognostic 
temp.) N N N Y (Grid) Y 

N 

PAWS+CL
M 

Shen et al 
2013, 300  

Y (Richards  
-Multilayer) 

Y (3 
prognostic 
temp.) 

Y( 4 
Pools) Y 

Y (Biochemical  
+ Leuning)   Y (Grid) Y  

N 

Geotop-dv 
Della Chiesa 
et al 2014, 262 

Y (Richards  
-Multilayer) 

Y (1 
prognostic 
temp.) 

Y( 3 
Pools) N Y( Empirical) Y (Grid) Y 

N  

CATGraSS 
Zhou et al 
2013,266  Y- Bucket 

N( 
Penman-
Monteith) 

Y (3 
pools) N Y( Empirical) Y (Grid) N 

Y 

---- 

Van Wijk and 
Rodriguez-
Iturbe 2002, 
311 Y (Bucket) N N N N Y N 

Y 

VELMA 
Abdelnour et 
al 2011, 37 

Y (Four 
layers) 

N(Empiric
al) Y Y N Y Y 

N 

CANOAK 

Baldocchi and 
Wilson 2001, 
453   

Y(Multilayer
) 

Y 
(Multilayer 
temp.) N N 

Y (Biochemical 
+ Ball-Berry)   N N 

N 

--- 
Nouvellon et 
al 2000, 454 

Y (Three 
layers) 

N( 
Penman-
Monteith) 

Y( 3 
Pools) N Y (Empirical) N N 

N 

VDM 
Montaldo et al 
2005, 264  Y (Bucket) 

N( 
Penman-
Monteith) 

Y (3 
Pools) N Y (Empirical) N N 

N 

Topog-
IRM 

Vertessy et al 
1996, 455  

Y (Richards  
-Multilayer) 

N( 
Penman-
Monteith) 

Y ( 3 
pools) N 

Y (Empirical + 
Leuning) 

Y ( Flow-
net) Y  

N 

--- 
Cervarolo et 
al 2010, 271  

Y (Richards  
-Multilayer) 

Y (1 
prognostic 
temp.) 

Y ( 3 
pools) N 

Y 
(Empirical+Jarvi
s) Y (Grid) Y 

N 

CABALA 
Battaglia et al 
2004, 456 Y (Bucket) 

N( 
Penman-
Monteith 

Y ( 6 
pools) Y 

Y (Biochemical 
+ Ball-Berry)   N N 

N 

CenW 3.1 
Kirschbaum 
et al 2007, 265  

Y 
(Multilayer) 

N( 
Penman-
Monteith 

Y (10 
pools) Y 

Y (Biochemical 
+ Ball-Berry)   N N 

N 

CASTANE
A 

Dufrene et al 
2005, 457 

Y (Three 
layers) 

Y (2 
prognostic 
temp.) 

Y (5 
pools) N 

Y (Biochemical 
+ Ball-Berry)   N N 

N 

MuSICA 
Ogée et al 
2002, 259  

Y (Two 
layers) 

Y (1 
prognostic 
temp.) N N 

Y (Biochemical 
+ Leuning) N N 

N 

WEB-DHM 
Wang et al 
2009, 288  

Y (Richards  
-Multilayer) Y N N 

Y (Biochemical 
+ Ball-Berry)   Y (Grid) N 

N 

BEPS-
TerrainLab 

Govind et al 
2009, 458 

Y (Two 
layers 

N( 
Penman-
Monteith) 

Y( 4 
Pools) Y 

Y (Biochemical 
+ Empirical) Y Y 

N 
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Table 2. A non-exhaustive list of terrestrial biosphere models. The presence or absence of specific 
processes is indicated with a yes (Y) or no (N).  

MODEL  
Key 
Reference  

Energy 
Fluxes 

Water 
Fluxes  

Carbon 
model  

Nitrogen 
Model  

Plant 
Establ./Mortality/Dis
turbances 

Carbon 
reserves 

Root 
exudatio
n 

Mych
orrizal  

CN-
CLASS 

Arain et al 
2006, 338 Y Y Y Y N Y N N 

JULES-
TRIFFID 

Clark et al 
2011, 459 Y Y Y N Y N N N 

Noah-MP 
Niu et al 
2011, 460   Y Y Y N N N N N 

LPJ 
Sitch et al 
2003, 344 N Y Y N Y N N N 

ORCHIDE
E 

Krinner et al 
2005, 345  Y Y Y N Y Y N N 

CLM-
DGVM 

Levis et al 
2004, 461  Y Y Y N Y N N N 

CLM4CN 
Lawrence et 
al 2011, 462  Y Y Y Y N N N N 

IBIS 
Kucharick et 
al 2000, 463 Y Y Y Y Y N N N 

ISAM 
Yang et al 
2009, 464 Y Y Y Y N N N N 

DLEM 
Tian et al 
2010, 465  Y Y Y Y Y N N N 

Biome-
BGC 

Thornton et 
al 2002, 466  Y Y Y Y Y N N N 

ED2 
Medvigy et al 
2009, 349  Y Y Y Y Y Y N N 

Ecosys 
Grant et al 
2009, 467  Y Y Y Y N Y N Y 

MOSES-
TRIFFID 

Cox 2001, 
468 Y Y Y N Y N N N 

JSBACH 
Goll et al 
2012, 340  Y Y Y Y N Y Y N 

LPJ-DyN 

Xu-Ri and 
Prentice 
2008, 283 N Y Y Y Y N N N 

O-CN 

Zaehle and 
Friend 2010, 
284 Y Y Y Y Y Y N N 

Hybrid3.0  
Friend et al 
1997, 275  Y Y Y Y Y Y N N 

ANAFORE 
Deckmyn et 
al 2008, 163 Y Y Y Y Y Y N N 

SEIB-
DGVM 

Sato et al 
2007, 469   N Y Y N Y Y N N 

Sheffield-
DGVM 

Woodward 
and Lomas 
2004, 470 N Y Y Y Y N N N 

LPJ-
GUESS 

Smith et al 
2001, 348 N Y Y N Y N N N 

aDGVM2 
Scheiter et al 
2013, 471   N Y Y N Y N N N 

FoBAAR 
Keenan et al 
2012, 472  N N Y N N Y N N 
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CASA 
Carvalhais et 
al 2008, 473 N Y Y Y N N N N 

JeDi-
DGVM 

Pavlick et al 
2013, 353 N Y Y N Y Y N N 

 

Table 3. List of variables that can be potentially observed at different scales.  

Scale Variable Instrument/Product 

Plant  Sapflow Sap flow meter  
Plant  Leaf Water Potential Pressure chamber  
Plant  Stem Water Potential  Psychrometer 
Plant/Stand  Tree/Branch Diameter  Forest Inventory  
Leaf  Photosynthesis Stomatal conductance  Gas analyzers  
Leaf/Stand Leaf/Canopy temperature  IR Thermometers, Thermocouple, 

Thermal cameras 
Leaf Turgor Turgor probes or estimated from water 

potential and osmolyte concentration 
Plant Plant Respiration  Gas analyzers 
Plant Stem water content  Coring, Moisture probe 
Stand  Evapotranspiration  Lysimeter, Flux-tower  
Point/Stand   Soil Respiration Gas analyzers 
Plant/Stand/Global Leaf Area Index Direct sampling, Optical sensors, 

Remote Sensing 
Plant NSC dynamics (leaves and branches 

and fine roots) 
Sampling and laboratory analysis  

Point/Stand  Soil water potential  (tensiometers) and 
volumetric water content  

Soil moisture probe and tensiometer, 
Remote sensing  

Point/Stand  Soil temperature  Thermometers 
Stand Energy fluxes (LE, H) Flux towers 
Stand Carbon fluxes (NEE) Flux towers  
Stand/Regional Aboveground carbon stocks  Forest Inventories, Remote Sensing  
Stand/Regional Tree Height  Forest Inventories, Remote Sensing  
Regional/Global  Vegetation reflectivity Indices (NDVI, 

EVI,  chlorophyll fluorescence) 
Remote Sensing  

Regional/Global  Surface temperature  Remote Sensing, IR Thermometers 
Regional/Global  CO2 anomalies  Remote Sensing, Stations 
Regional/Global Albedo  Remote Sensing  
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