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Essentials:  

• Variants at ABO, von Willebrand Factor (VWF) and 2q12 contribute to the variation in 

plasma in VWF. 

• We performed a genome-wide association study of plasma VWF propeptide in 3,238 

individuals.   

• ABO, VWF and 2q12 loci had weak or no association or linkage with plasma VWFpp 

levels. 

• VWF associated variants at ABO, VWF and 2q12 loci primarily affect VWF clearance 

rates. 

 

 

 

Abstract : Background: Previous studies identified common variants at the ABO and 

VWF loci and unknown variants in a chromosome 2q12 linkage interval that contributed 

to the variation of plasma von Willebrand factor levels (VWF). While the association with 

ABO haplotypes can be explained by differential VWF clearance, little is known about the 

mechanisms underlying the association with VWF SNPs or with variants in the 

chromosome 2 linkage interval. VWF propeptide (VWFpp) and mature VWF are 

synthesized from the VWF gene and secreted at the same rate but have different plasma 

half-lives. Therefore, comparison of VWFpp and VWF association signals can be used to 

assess if the variants are primarily affecting synthesis/secretion or clearance. Methods: 

We measured plasma VWFpp levels and performed genome-wide linkage and 
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association studies in 3,238 young and healthy individuals for whom VWF levels have 

been analyzed previously. Results and conclusions: Common variants in an intergenic 

region on 7q11 were associated with VWFpp. We demonstrate ABO serotype specific 

SNPs were associated with VWFpp levels in the same direction as VWF but with a much 

lower effect size. Neither the association at VWF nor the linkage on chromosome 2 

previously reported for VWF was observed for VWFpp. Taken together, these results 

suggest that the major genetic factors affecting plasma VWF levels: variants at ABO, 

VWF and a locus on chromosome 2, operate primarily through their effects on VWF 

clearance.  

 

 

 

Keywords : von Willebrand factor, von Willebrand disease, venous thromboembolism, 

genome-wide association study, genetic linkage analysis. 

 

 

Introduction : 

 

Plasma von Willebrand factor (VWF) levels vary approximately five fold among healthy 

individuals and are highly heritable.[1-5] Individuals with VWF levels at the extremes of 

the normal distribution are at risk for common disorders of hemostasis: low levels cause 

the common bleeding disorder Type I von Willebrand disease (VWD); and high levels are 

associated with an increased risk for both venous and arterial thrombosis.[6, 7] 

Therefore, identification of the genetic factors affecting VWF levels may lead to improved, 

personalized care for patients with VWD, arterial thrombosis and venous thromboembolic 

disease.[8] 

Previous genome-wide association studies (GWAS) demonstrated that common 

variants at ABO, VWF and other loci explained ~12% of the variance in plasma VWF 

levels.[9]  More recently, we reported genome-wide linkage and association analyses of 

plasma VWF levels in a cohort of young healthy individuals,[3] confirming the association 

between ABO A1 and B alleles with elevated VWF levels relative to the O and A2 alleles.  
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At VWF, haplotypes containing common variants near the factor VIII binding (D’ domain) 

and propeptide coding regions (D1 and D2 domains) were also significantly associated 

with VWF levels.[3, 10] Using the sibling structure in our cohorts we preformed linkage 

analysis and identified an interval on chromosome (Chr) 2q12 explaining ~19% of the 

variation in VWF levels.[3] Although the effect may not be direct, [11] the major allelic 

variants at ABO influence VWF levels through altered VWF clearance[12-14], while basic 

mechanisms underlying the effect of the variants in VWF and in 2q12 remain unknown.   

A specialized post-translational modification system facilitates the storage and 

secretion of VWF multimers.[15] The VWF propeptide (VWFpp) is cleaved from pro-VWF 

dimers but remains non-covalently bound to the developing VWF multimers until both are 

secreted into flowing blood. VWFpp is rapidly cleared from circulation with a half-life of 2-

3 hours, whereas multimeric VWF has a longer half-life of 8-12 hours.[16] Since 

alterations in VWF synthesis or secretion would be expected to affect VWF and VWFpp 

levels similarly, relative differences in the steady state levels of these two proteins in 

plasma should reflect differences in their clearance rates. For this reason, elevation in the 

ratio of VWFpp to VWF has been used to differentiate the subset of individuals with von 

Willebrand disease due to rapid clearance of VWF from those with reduced synthesis or 

secretion.[17, 18]  

To identify genetic variants affecting plasma VWFpp concentrations and to 

determine if SNPs previously associated with VWF variation operate primarily through 

altered synthesis/secretion or clearance mechanisms, we measured VWFpp levels in 

plasma samples from the Genes and Blood Clotting Study (GABC) and the Trinity 

Student Study (TSS) where VWF levels had already been measured and their 

association results reported.[3] Using an initial measure of VWFpp in the GABC cohort 

we identified a strong association with a non-synonymous SNP in the VWFpp coding 

portion of VWF.  However, this association was not present when a different set of 

monoclonal antibodies were used to determine VWFpp concentrations, suggesting an 

altered epitope due to this SNP has generated the apparent association. We therefore 

only used VWFpp assay results without interference from this altered epitope in 

association and linkage studies, and identified significant associations with VWFpp and 

variants at ABO and a new locus on chromosome 7.  Comparison of these results with 
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our previously reported VWF studies[3] suggest that variants at VWF and the Chr 2 

linkage interval modify VWF concentrations mainly through clearance mechanisms.  

 

Materials and Methods  

Genes and Blood Clotting Study  (GABC)  

1,189 healthy siblings between the ages of 14 and 35 years were recruited from the 

students and staff at the University of Michigan, Ann Arbor between 6/2006 and 

1/2009.[3, 19] Subjects who reported that they were pregnant or had a known bleeding 

disorder or chronic illness requiring regular medical care were excluded.  All subjects 

gave informed consent prior to their participation.[20]  

 

The Trinity Student Study  (TSS) 

Healthy Irish individuals aged 18-28 years, attending Trinity College of the University of 

Dublin, were recruited between 2003-2004 for genetic analysis of nutrition and diet 

related traits.  A total of 2,490 participants completed questionnaires and donated blood 

samples. Ethical approval from the Dublin Federated Hospitals Research Ethics 

Committee was obtained and reviewed by the Office of Human Subjects Research at the 

United States National Institute of Health.  Participants provided written informed consent 

prior to recruitment.  

 

Plasma VWFpp  Levels   

VWFpp levels were measured in the GABC and TSS cohorts with AlphaLISA (Perkin-

Elmer, Waltham, MA).[3] To create VWFpp specific AlphaLISA assays, monoclonal 

antibodies (mAbs) were produced in the Blood Center of Wisconsin Hybridoma Core Lab 

(Milwaukee, WI) by immunizing mice with purified recombinant human. mAbs were 

purified from ascites and epitope mapping was performed using standard enzyme-linked 

immunoabsorbent assays (ELISA) with truncated fragments of recombinant VWFpp as 

targets (Figure S1 ). For TSS plasma samples, which were collected using EDTA as an 

anticoagulant, 0.8mM CaCl2 was added to the assay buffer to correct for signal loss 

associated with the presence of EDTA (Figure S 2). 
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VWFpp levels were calculated assuming a 1:1 ratio of VWF to VWFpp in laboratory 

control plasma from pooled donors (FACT, George King Bio-medical, Overland Park, 

KS). Each sample was independently assayed at least 4 times. The mean sample 

coefficient of variation was 1.0% (GABC, anti-D2), 1.1% (GABC, anti-D1) and 2.8% (TSS, 

anti-D1). After quality control, 3,381 subjects (1,110 GABC, 2,271 TSS) had VWFpp 

levels available for heritability analysis and 3,238 for association and linkage testing.   

 

Phenotype Data Processing  

The raw VWFpp distribution was normalized by log transformation and adjusted for the 

effects of age, gender and population genetic structure.  We evaluated the correlation 

between each of the first 10 principal component (PC) scores and the age- and gender-

corrected VWFpp levels for GABC and TSS separately, and used the Pearson’s 

correlation coefficients and p-values to determine which PCs have a significant impact (p 

< 0.05) on the phenotype. After analyzing the Pearson’s correlation coefficients, p-values 

and GC factors, we selected the principal component(s) that were highly correlated with 

the two traits and resulted in the lowest GC factors. For use in GWAS and linkage 

studies, log transformed VWFpp levels were adjusted for age, gender and the selected 

principal component(s): PC2 and PC7 for GABC, and PC4 for TSS. 

 

Genotyping , Imputation and Quality Control   

GABC:  Details of the genotyping and data-cleaning process have been previously 

published.[3, 20], 21[ ] The final cleaned dataset contained 763,195 SNPs and 1,152 

subjects representing 489 sibships. Imputation was carried out by the GENEVA 

Consortium Data Coordinating Center using BEAGLE v3.3.1 [22] on a set of 767,243 

genotyped SNPs. The final dataset included ~ 7.50 million SNPs. We then removed 

SNPs with low imputation quality (R-squared <0.3) and low allele frequency (MAF <2%), 

resulting in ~ 5.95 million SNPs. 

TSS:  After extensive cleaning, the final dataset contained 757,577 SNPs.  

For imputation, we first pre-phased the cleaned dataset using SHAPEIT2 v2.r778[23], 

and used IMPUTE2 v2.3.0[24] and the 1000 Genomes Phase I release v3 integrated 

haplotypes (produced using SHAPEIT2 in December 2013) for imputation. This 
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generated 10,520,121 imputed SNPs. After removing the SNPs with low imputation 

quality (R-squared<0.3), low allele frequency (MAF<2%), low call rate (<95%) and failing 

the test of Hardy-Weinberg Equilibrium (P < 1.0 x 10-6

The TSS and GABC imputed datasets had ~ 4.51 million SNPs in common; and this set 

was used for the meta-analyses. The genome-wide significance level was set at P = 5.0 x 

10

), the final dataset contained ~7.37 

million SNPs in 2,304 individuals.  

-8

 

 based on a conservative Bonferroni correction for ~1 million independent tests. 

Genetic Analyses  

Population Substructure 

Due to the presence of sibships of varying size, GABC samples were analyzed using a 

two-step approach[25] as detailed previously.[3, 19]  

Association analyses 

For the GABC cohort, we performed single-SNP association analysis of the transformed 

and adjusted VWFpp antigen levels using the imputed set of ~ 5.95 million SNPs.  To 

account for the inferred relatedness and subtle population stratification, we applied a 

mixed linear model implemented in EMMAX[26].  For the TSS cohort, we performed 

single-SNP association tests on the set of ~7.37 million imputed SNPs using 

PLINK (v1.07) 27[ ], assuming an additive mode of allelic effect. For both cohorts, we 

calculated the genomic control factor[28] to assess the degree of residual stratification.  

Meta-analysis 

We performed a meta-analysis of GABC and TSS association results using a sample-

size-weighted approach on the common set of ~ 4.51 million imputed SNPs using 

METAL[29]. The genomic control factor was near 1 for both analyses: 0.972 and 1.013 

for GABC (EMMAX) and TSS (PLINK), respectively, and the association statistics were 

corrected to reach a genomic control factor of 1.000 by METAL before being used in the 

meta-analysis. Regional plots of the significant findings were produced using 

LocusZoom.[30] 

Detection of an antibody-specific SNP association with VWFpp 

VWFpp levels were initially determined by using a pair of monoclonal anti-VWFpp D2 

domain antibodies (Figure S1 ).  In the European subset (n=934) of GABC, a single SNP, 
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rs1800378(T), with a minor allele frequency of 33% in our cohort, was associated with 

VWFpp (P = 1.15 x 10-12

31

, β = 0.051 IU/dL per allele in an additive model) (Figure S3A-C). 

This SNP encodes a histidine to arginine substitution at position 484 in the D2 domain of 

VWFpp, and is predicted by PolyPhen-2[ ] to be a benign variant. It was not significantly 

associated with plasma VWF levels (P = 0.52). We repeated the VWFpp measurement 

using a second pair of anti-VWFpp D1 domain antibodies (Figure S1 ). Although the log 

transformed VWFpp levels measured with the anti-D2 domain antibodies were highly 

correlated with those with the anti-D1 domain antibodies (Spearman's ρ = 0.97, P < 

0.0001), VWFpp levels measured with the anti-D1 domain antibodies did not produce a 

significant signal at rs1800378 (P = 0.061, Figure S 3D-E), suggesting that VWFpp 

bearing this coding change has an altered affinity to the anti-D2 domain antibody pair. 

We used VWFpp levels determined by the anti-D1 domain in subsequent association and 

linkage analyses. 

Linkage Analysis 

Linkage analysis was carried out using MERLIN-REGRESS[32] on the European sibling 

subset of GABC and sibling subset of TSS (n=138).  We employed a clustering algorithm, 

and a permutation-based locus-counting approach to calculate empiric P values for the 

top linkage signals as previously described.[3] Starting with the MERLIN-REGRESS 

output, the subsequent analysis was carried out using custom scripts in R.[33] 

Heritability Analysis 

For the combined sibling subset of TSS and 1,139 GABC individuals (557 sibships), we 

used two pedigree-based methods for estimating heritability, intraclass correlation and 

MERLIN-REGRESS (v1.1.2) as previously described.[3, 19, 32] 

Variance-Explained by Association and Linkage Regions 

The Genome-wide Complex Trait Analysis (GCTA) package[34] was used to estimate the 

proportion of variance in VWFpp levels explained by the entire genome, the top 

associated SNPs, or intervals representing individual genes or loci as previously 

described.[3, 19]  

Haplotype-based Association Analysis 
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PLINK[27] was used to carry out haplotype association using the one degree-of-freedom 

haplotype-specific test. ABO serotypes (A1, A2, O, B) were tagged by the three SNPs: 

rs687289, rs8176704 and rs8176749 as reported by Barbalic et al.[35] 

 

Results : 

VWFpp levels are highly heritab le  

Details of the demographic characteristics of the TSS and GABC cohorts are shown in 

Table 1 . There were differences in the distribution of unadjusted VWFpp (Figure S4A) 

between the GABC and TSS cohorts (K-S test, P = 0.0001) with a median VWFpp of 

100.0 IU/dL in GABC and 86.1 IU/dL in TSS (Table 1). These differences may have been 

due to sample collection in acid citrate dextrose for GABC versus in EDTA for TSS that 

were not adequately corrected by additions of CaCl2

3

 to the assay buffer (see Methods). 

However, when the VWFpp values were log transformed, mean centered within each 

cohort, adjusted for age, sex and the population structure, this removed the distribution 

differences between GABC and TSS (Figure S4B). Based on interclass correlation 

among the siblings in the GABC and TSS cohorts, the narrow-sense heritability of 

VWFpp was 77.6%, consistent with the value of 80.4% obtained with MERLIN 

REGRESS. These heritability estimates are similar to those we reported for VWF, 64.5% 

and 66.3%, using interclass correlation and MERLIN REGRESS, respectively.[ ] There 

was a significant positive correlation between the adjusted VWFpp and VWF, with 

Spearman's rank correlations (ρ) of 0.52 for the GABC cohort (P <0.0001) and 0.53 (P 

<0.0001) for the TSS cohort, respectively (Figure S5A-B). 

 

 

 

Common variants at ABO and 7q11 are associated with VWFpp levels   

VWFpp association results for the GABC and TSS cohorts (Figure S3D and Figure S6A, 

respectively ) were combined in meta-analysis using a common set of ~ 4.51 million 

genotyped and imputed SNPs.  Two regions with significant associations were identified 

(Table 2). First, eight SNPs on Chr 9q34 at the ABO locus demonstrated significant 

associations (Figure 1A-B, D) with the top SNP, rs8176746 (P = 1.1 x 10-13), encoding a 
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L266M substitution in ABO and tagging the common ABO B allele. All SNPs at the ABO 

locus (N=28) explained 7.40% of the variation in the adjusted VWFpp levels compared to 

19.6% of the variation in the adjusted VWF levels (Table 3 ).   Second, seven associated 

SNPs were identified on Chr 7q11.22 in an intergenic region, top SNP: rs56835261 (P = 

1.6 x 10-8) (Figure 1C ). Taken together, the 15 significant SNPs at these two loci 

explained 3.50% of the variation in the adjusted VWFpp levels (Table 3).  A 

heterogeneity analysis of these top SNPs showed no significant difference across the two 

cohorts (all with I2 = 0 %, P > 0.05). When a conditional analysis using the top meta-

analysis SNP, rs8176746, was performed, no new signal arose at the ABO locus or 

elsewhere, and the signal at Chr 7q11, rs56835261, was reduced to just below the 

threshold for significance (P = 5.5 x 10-8

 

). 

ABO haplotypes are associated with VWFpp levels , but less strongly than with 

VWF.  

Twenty-eight SNPs at the ABO locus explained 7.40% of the variance of VWFpp 

compared to 19.6% of the variance of VWF (Table 3).[3] A1, B, O and A2 tagging 

haplotypes had the same direction of effect in both VWFpp and VWF associations, but 

the effect sizes were weaker in VWFpp than VWF (Table 4). The difference in effect size 

of the ABO haplotype on VWF compared to VWFpp is evident when the adjusted VWF 

and VWFpp levels are plotted according to ABO haplotypes predicted by three ABO 

SNPs[35] (Figure 2) .  There were significant differences in the VWF levels between the 

homozygous low group (A2/O, O/O, A2/A2) and the homozygous high group (B/B, A1/A1, 

B/A1) (t-test P = 4.4 x 10-55) as well as the homozygous high group and the heterozygous 

high/low group (A2/B, B/O, A1/O, A1/A2) (t-test P = 2.8 x 10-10) (Figure 2 A). For VWFpp 

levels, significant differences existed between the homozygous low group and the 

homozygous high group (t-test P = 5.0 x 10-6), and the heterozygous high/low group and 

the homozygous low group (t-test P = 5.6 x 10-9

 

), but not between the homozygous high 

group and the heterozygous high/low group (t-test P = 0.14) (Figure 2B).  

No significant linkage signal at 2q12 for  VWFpp  

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

Using the sibling subset of GABC and linkage disequilibrium-based 36,658 SNP clusters 

(see Supplementary Methods ), we performed linkage studies to identify additional 

genetic factors affecting VWFpp levels. Unlike VWF, which has a significant linkage 

signal at Chr 2q12 and 9q34 (containing ABO)[3] (Figure 3A ), VWFpp has no significant 

signal in the 2q12 VWF linkage interval, nor at any loci elsewhere (Figure 3B). 

 

Comparison s of association results of  VWF and VWFpp suggest differential 

clearance mechanisms for ABO, VWF, Chr 7 regions  

If a DNA variant affects the clearance process of either VWF or VWFpp, we expect it to 

show different association signals for VWF and VWFpp. Conversely, if a variant affects 

the shared synthesis or secretion processes of VWF and VWFpp, it is expected to 

generate a similar association effect size and direction for both VWF and VWFpp.  

Consistent with this expectation, rs687289 and rs8176746, tagging the O and B alleles of 

ABO respectively, had a strong association with VWF and much weaker association with 

VWFpp, suggesting that although these ABO SNPs were associated with both VWF 

traits, the difference in the magnitude of their effects is best explained by an unequal 

SNP effect on the rate of clearance from the circulation.  This result agrees with the well-

described ABO blood group association with VWF clearance but is a new finding for 

VWFpp (Table 5, Figure S7A-B).  

The top SNP at the VWF locus was rs1063856, which encodes a non-synonymous 

variant (T789P) in the D’ domain of VWF. However, in the VWFpp analysis, no VWF 

SNPs reached genome-wide significance. rs1063856 had the same effect directions for 

both VWF and VWFpp but the effect size was greater with VWF (Table 5, Figure S7C), 

again consistent with a variant primarily affecting a VWF clearance mechanism. 

In the meta-analysis, seven SNPs in the intergenic regions of Chr 7 were associated with 

VWFpp. These SNPs were not significant in previous VWF GWAS studies [3, 9] and had 

a lower effect size with VWF suggesting the presence of a variant affecting clearance of 

VWFpp but not VWF (Figure S7D).  

 

Discussion : 
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This study reports the first heritability, linkage and genome-wide association analyses of 

VWFpp levels, with comparisons to previously published linkage and association studies 

of plasma VWF measured in the same cohorts.   We found that both plasma VWF and 

VWFpp concentrations are highly heritable quantitative traits.  

In our initial analysis of the VWFpp concentrations measured with a pair of anti-D2 

domain antibodies, we detected a significant association for a non-synonymous SNP in 

the D2 domain of VWF. However, we determined that this result was likely an artifact due 

to an amino-acid substitution affecting antibody binding, not a genuine association with 

VWFpp levels.  Similar apparent associations with non-synonymous SNPs in cis have 

been identified for several plasma proteins in the hemostatic system.[3, 36-38] In 

addition, according to the NHGRI GWAS catalog[39] (accessed on 12/16/2015), of the 

150 reported GWAS of quantitative protein traits relying on antibody-based assays, 62 

(40%) yielded significant associations with SNPs residing at the locus encoding the 

protein under investigation.  While these SNPs may tag variants altering the level of the 

corresponding protein, our findings with rs1800378 and VWFpp suggest that a subset of 

these signals may be false positives generated by altered antibody binding affinities to 

the variant protein. This finding is similar to a report of a common VWF SNP causing 

altered VWF:RCo activity but not changing VWF levels.[40] These observations also 

resemble the caveats reported for gene expression QTL analysis where some cis-eQTLs 

may be due to variants in cDNA directly affecting hybridization to microarray probes.[41, 

42] The implication for the genomics community is that extra caution is warranted in the 

interpretation of cis-QTLs for antibody-based protein traits.  We suggest that non-

synonymous SNP associations should be replicated using alternative antibody reagents. 

Many genome-wide association studies have found significant associations with 

variants in intergenic regions that presumably regulate gene expression. This study 

identified an association between VWFpp and fourteen SNPs in an intergenic region on 

chromosome 7 that were ~725 Kb upstream from the nearest coding sequence of 

AUTS2. None of these SNPs affect gene expression according to an eQTL database[43] 

(accessed on 01/07/2016). For nine of these SNPs, “minimal binding evidence” was 

found by RegulomeDB[44] based on DNase-Seq and transcription factor binding motif 

hits (accessed on 01/25/2016); and twelve of these SNPs had an effect on at least one 
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regulatory motif according to HaploReg[45] (version 4.1, accessed on 01/25/2016).There 

was no significant association of these SNPs with VWF levels which suggests that they 

may regulate the expression of a factor that affects the clearance of VWFpp from 

circulation independent of VWF.  Since these SNPs were detected in the meta-analysis 

alone, further replication in an independent cohort is necessary for confirmation.     

ABO blood group is an established modifier of plasma VWF levels.  As other 

groups have reported,[46, 47] we found a significant difference in the VWF levels 

between high group homozygotes and high/low group heterozygotes suggesting an ABO 

allelic dose effect altering steady-state levels of plasma VWF as opposed to a clean 

dominant affect of A1 and B type antigens where we would expect no differences 

between homozygous high group and high/low group heterozygotes. Previous studies 

have failed to detect an association between ABO blood groups and VWFpp levels.[12, 

48-50] Given the sample size of 3,238 individuals, our finding of a significant association 

was likely due to an increased power compared to earlier studies, which had smaller 

sample sizes ranging from 47 to 948 individuals. There are 4 potential N-linked 

glycosylation sites on VWFpp but no occupancy of ABO blood group antigens on these 

sites has been reported.[49] However, Groeneveld et al.[11] recently reported a study of 

VWF clearance suggesting the genotype of the individual is the primary determinant of 

ABO associated VWF clearance not the ABO glycoslylation pattern on VWF itself.  If this 

finding applies to VWFpp as well, then the glycosylation pattern on VWFpp would be 

irrelevant.  Nevertheless, the effect of the major ABO haplotypes on VWF and VWFpp 

was in the same direction, suggesting a shared mechanism of action but functional 

studies will be required to clarify how ABO antigens alter VWFpp clearance.  

For the VWF SNPs, the difference in effect size between VWF and VWFpp and 

the absence of significant association with VWFpp levels suggest that the VWF variants 

operate through an altered clearance pathway(s). Investigators have cloned and 

functionally characterized many VWF mutations causing VWD,[51] but common VWF 

variants causing variation in VWF concentrations in healthy individuals have not yet been 

identified or well characterized. Previous studies by our group and others have 

documented an association of VWF levels with common variants at the VWF locus.[3, 9, 

10] The top VWF SNP in our meta-analysis, rs1063856(C), encodes a missense variant 
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in the D’ domain of VWF and could be a functional variant driving the association.  Our 

study suggests that the VWF haplotype tagged by this SNP expresses a form of VWF 

with a prolonged plasma half-life compared to the VWF produced by the reference allele, 

and that the effect of this haplotype on VWFpp clearance is much weaker.  The precise 

mechanism for the altered clearance of this VWF variant remains unknown.   

Linkage analysis of VWFpp did not detect a QTL at Chr 2q12, which was 

previously identified as a QTL for VWF levels. The linkage interval contains many 

potential candidate genes; and our results suggest that genes potentially affecting protein 

clearance, such as sialotransferases (ST3GAL5) or lectin receptors (LMAN2L) are more 

attractive candidates than genes likely to affect synthesis or secretion pathways such as 

SNARE complex (VAMP5, VAMP8) or golgi-associated proteins (TGOLN2).  

Our study used the comparative analysis of VWF and VWFpp to distinguish 

genetic variants affecting VWF or VWFpp clearance from those affecting synthesis and 

secretion.  However, as a novel strategy to interpret differential association of two related 

proteins, our analyses had several limitations.  First, by necessity, the measurement of 

VWFpp was performed with a different pair of antibodies than those employed in the 

VWF assay.  This allows for differences in assay performance that may have led to false 

negative associations of VWFpp and therefore suggest differential clearance mechanism.  

However, this scenario is not very likely, as the heritability of the VWFpp was very similar 

to VWF, and both traits were measured in the same cohorts. Secondly, variants that were 

associated with both clearance and synthesis/secretion rates of VWFpp may have been 

undetectable in our analysis, for example, a variant associated with both decreased 

secretion rates and decreased clearance rates.  Although our results strongly suggest a 

clearance mechanism for the major common modifiers of VWF, functional studies will be 

required for confirmation.   

Taken together, the results of our VWFpp analyses provide new insights into the 

mechanism of action for common variants (at ABO and VWF) and potentially rare 

variants (at Chr 2 linage region) altering plasma VWF concentrations, and demonstrate a 

newly discovered association signal for VWFpp at Chr 7.  This study is expected to 

facilitate the identification of functional variants controlling VWF variation and improve our 

understanding of the molecular mechanisms in individuals with bleeding disorders due to 
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low VWF levels, or in individuals at risk for venous thromboembolic disease due to 

elevated VWF levels.[52]  
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Table 1 Characteristics of study partic ipants . 

 

 

Cohort  *GABC TSS 

Subject counts, n 1,152 2,304 

Age, years (Q1,Q3) 21 (19, 23) 22 (21,24) 

Female, n (%) 721 (63) 1352 (59) 

Sibship Size (n sibships) 
1 (13); 2 (366); 3 (94); 

4 (22); 5 (5); 6 (2) 

2(66); 3(2) 

median VWF, IU/dL 

(Q1,Q3) 

100.2 (77.5, 130.7) 99.8 (79.6, 128.1) 

median VWFpp, IU/dL 

(Q1,Q3) 

100.0 (82.2,122.1) 86.1 (71.8, 104.6) 

 

* Data from previous VWF analysis[3], except for VWFpp concentration. 
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Table 2. Top 22 imputed meta-analysis SNPs for VWFpp . Genome-wide significant (p-

value < 5.0E-8) SNPs in GABC (EMMAX) + TSS (Plink) meta-analysis and individual 

cohorts, sorted by genomic location, with respect to their relationship to the nearest gene. 

 

* In the combined set of 934 individuals in the GABC and 2,304 individuals in the TSS cohort 

†Coordinates are in NCBI36/hg18 

 

 

  

*Meta-Analysis  
 

GABC 
  

TSS 
  

SNP Chr Position† 
SNP 

Allele 
P-Value 

Closest 

Gene 

Allele 

Freq. 

Beta 

(SE) 
P-Value 

Allele 

Freq. 

Beta 

(SE) 
P-Value 

rs10251762 7 68335032 T 2.9E-08 AUTS2 0.078 
0.034 

(0.011) 
2.9E-03 0.065 

0.034 

(0.0072) 
2.4E-06 

rs12531236 7 68336435 T 4.2E-08 AUTS2 0.081 
0.034 

(0.010) 
1.6E-03 0.062 

0.031 

(0.0068) 
6.3E-06 

rs10246260 7 68338971 A 2.9E-08 AUTS2 0.078 
0.034 

(0.011) 
2.9E-03 0.065 

0.034 

(0.0072) 
2.4E-06 

rs55800567 7 68340079 A 2.0E-08 AUTS2 0.079 
0.035 

(0.011) 
2.0E-03 0.060 

0.034 

(0.0072) 
2.4E-06 

rs10252976 7 68343237 T 3.7E-08 AUTS2 0.92 
-0.033 

(0.011) 
3.9E-03 0.93 

-0.034 

(0.0072) 
2.4E-06 

rs11977562 7 68349402 A 4.3E-08 AUTS2 0.92 
-0.033 

(0.011) 
3.9E-03 0.94 

-0.034 

(0.0072) 
2.8E-06 

rs56835261 7 68356258 A 1.6E-08 AUTS2 0.92 
-0.035 

(0.011) 
2.1E-03 0.93 

-0.034 

(0.0072) 
1.9E-06 

rs8176749 9 136131188 A 1.1E-13 ABO 0.070 
0.052 

(0.012) 
2.0E-05 0.073 

0.040 

(0.0066) 
8.5E-10 

rs8176746 9 136131322 A 1.0E-13 ABO 0.070 
0.052 

(0.012) 
2.0E-05 0.073 

0.040 

(0.0066) 
8.3E-10 

rs8176743 9 136131415 A 1.2E-13 ABO 0.070 
0.052 

(0.012) 
2.0E-05 0.073 

0.040 

(0.0065) 
9.5E-10 

rs8176741 9 136131461 T 1.4E-13 ABO 0.070 
0.052 

(0.012) 
2.0E-05 0.073 

0.040 

(0.0066) 
1.1E-09 

rs8176725 9 136132617 T 1.9E-09 ABO 0.093 
0.042 

(0.010) 
5.7E-05 0.099 

0.026 

(0.0057) 
4.5E-06 

rs8176722 9 136132754 T 2.4E-09 ABO 0.093 
0.042 

(0.010) 
7.0E-05 0.099 

0.026 

(0.0057) 
4.8E-06 

rs687289 9 136137106 T 6.4E-10 ABO 0.36 
0.023 

(0.0065) 
2.7E-04 0.25 

0.020 

(0.0039) 
4.7E-07 

rs657152 9 136139265 T 1.7E-08 ABO 0.38 
0.023 

(0.0062) 
1.7E-04 0.28 

0.016 

(0.0038) 
1.5E-05 A
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Chr: Chromosome 

Beta values based on log transformed, adjusted VWFpp values. 

SE: Standard error 

 

 

 

 

Table 3. Variance of adjusted VWFpp levels  

calculated by GCTA and explained by  

combined GABC and TSS cohorts  with  

imputed SNPs (n= 3,238) 

 

Region  VWF VWFpp  

Genome- wide (All SNPs)  62.6 56.2 

All Significant SNPs*  21.1 3.50 

ABO †(28 SNPs) 19.6 7.40 

VWF †(415 SNPs) 2.87 1.90 

 

* Results from meta-analysis, VWFpp (22 SNPs), VWF (129 SNPS) 

†All SNPs tested in the gene region  

 

 

Table 4. ABO haplotype association results for VWF  and VWFpp 

 

   VWF VWFpp 

Allele  Haplotype* 

Allele  

Freq. Beta P  value  Beta P value  

O GGC 0.72 -0.100 4.1E-136 -0.019 5.5E-9 

A1 AGC 0.16 0.110 1.6E-100 0.010 1.1E-2 

B AGT 0.072 0.110 1.4E-47 0.043 1.2E-13 

A2 AAC 0.053 -0.017 0.045 -0.005 4.2E-2 

*Haplotypes based on rs687289, rs8176704 and rs8176749. 

 

Table 5.  Comparison of effect size and direction of top meta -analysis  

SNPs for VWF and VWFpp  
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SNPs were selected for further analysis if they were the top SNPs defining a locus in the meta-analysis for 

VWF[3] or VWFpp levels.  

*Results from previous VWF analysis[3] 

† This SNP tags the common O allele of ABO 

‡ This SNP tags the common B allele of ABO 

§ This SNP encodes a non-synonymous VWF variant T789P in D’ domain 

 

 

 

 

Figure Legends  

 

Figure 1 . VWFpp Meta-analysis results.  (A) Genome-wide plot of -log10(P) for ~4.51 

million SNPs. The dotted line marks the 1.10 x 10-8 threshold of genome-wide 

significance. (B) Regional plot for the associated region on Chr 9q34. (C) Regional plot 

for the associated region on Chr 7q11.22. (D) Quantile-quantile plot of observed vs. 

expected -log10(P) for VWF meta-analysis. The observed -log10(P)  > 7.96 

 

are shown in 

red.  

Figure 2 . Distributions of log transformed and covariate adjusted VWF and VWFpp 

levels in the combined GABC and TSS cohorts (N=3,2 38) grouped by SNP derived 

ABO haplotype groups.  P-values show the comparisons between the homozygous high 

(BB, A1A1, BA1), heterozygous high/low (A2B, BO, A1O, A1A2) and homozygous low 

groups (A2O, OO, A2A2) (with “high” and “low” defined by their adjusted VWF levels). 

   VWF  VWFpp  

SNP (Minor A llele ) Chr  Locus  Beta*  P value * Beta  P value  

rs687289(A)† 9 ABO 0.096 7.7E-138 0.019 1.3E-9 

rs8176746(T)‡ 9 ABO 0.11 1.2E-49 0.044 1.6E-13 

rs1063856(C)§ 12 VWF 0.031 6.7E-17 0.014 7.7E-6 

rs56835261(A) 7 Intergenic 0.015 3.5E-2 0.035 8.5E-9 
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Figure  3. Linkage analysis results in TSS and GABC sibs (n = 1,065).  Genome-wide 

LOD scores plotted for 36,658 “clusters”, defined in MERLIN to model independent 

regions of linkage.    (A) Manhattan plot VWF linkage results from previously published 

analysis [3], (B) Manhattan plot of VWFpp linkage results. 
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