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SIGNIFICANCE AND IMPACT OF THE STUDY 24 

In the hospital environment, Acinetobacter baumannii is one of the most persistent and difficult 25 

to control opportunistic pathogens. The persistence of A. baumannii is due, in part, to its ability 26 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

http://dx.doi.org/10.1111/lam.12627�
http://dx.doi.org/10.1111/lam.12627�
http://dx.doi.org/10.1111/lam.12627�
mailto:cxi@umich.edu�


This article is protected by copyright. All rights reserved 

to colonize surfaces and form biofilms. This study demonstrates that A. baumannii can form 27 

biofilms on a variety of different surfaces and develops substantial biofilms on polycarbonate- a 28 

thermoplastic material that is often used in the construction of medical devices. The findings 29 

highlight the need to further study the in vitro compatibility of medical materials that could be 30 

colonized by A. baumannii and allow it to persist in hospital settings.  31 

 32 

ABSTRACT 33 

The human opportunistic pathogen, Acinetobacter baumannii, has the propensity to form 34 

biofilms and frequently causes medical device-related infections in hospitals.  However, the 35 

physio-chemical properties of medical surfaces, in addition to bacterial surface properties, will 36 

affect colonization and biofilm development.  The objective of this study was to compare the 37 

ability of A. baumannii to form biofilms on six different materials common to the hospital 38 

environment:  glass, porcelain, stainless steel, rubber, polycarbonate plastic and polypropylene 39 

plastic.  Biofilms were developed on material coupons in a CDC biofilm reactor.  Biofilms were 40 

visualized and quantified using fluorescent staining and imaged using confocal laser scanning 41 

microscopy (CLSM) and by direct viable cell counts. Image analysis of CLSM stacks indicated 42 

that the mean biomass values for biofilms grown on glass, rubber, porcelain, polypropylene, 43 

stainless steel and polycarbonate were 0.04, 0.26, 0.62, 1.00, 2.08 and 2.70 µm3/µm2

 50 

 44 

respectively.  Polycarbonate developed statistically more biofilm mass than glass, rubber, 45 

porcelain and polypropylene. Viable cell counts data were in agreement with the CLSM-derived 46 

data. In conclusion, polycarbonate was the most accommodating surface for A. baumannii 47 

ATCC17978 to form biofilms while glass was least favorable.  Alternatives to polycarbonate for 48 

use in medical and dental devices may need to be considered. 49 

Key words:  Biofilms, Acinetobacter baumannii, medical device, infection control, environment, 51 

environmental surfaces 52 

INTRODUCTION 53 

A. baumannii can disseminate and persist in hospital environments, causing nosocomial 54 

outbreaks and serious disease in the critically ill (Towner 2009; Chen et al. 2015; Weber et al. 55 

2015).  Many of the infections caused by A. baumannii (ranging from urinary tract infections to 56 

ventilator-associated pneumonia) are associated with indwelling devices (Manchanda et al. 2010; 57 
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Patel et al. 2014) due to the formation of biofilm on these surfaces.  Biofilms of A. baumannii 58 

are found on the surfaces of many types of medical devices including urinary catheters, central 59 

lines, surgical drains, ventilation equipment, dental water lines, and cleaning equipment as well 60 

as on a variety of other surfaces in the hospital environment (Donlan and Costerton, 2002; Cohen 61 

et al. 2014; Patel et al. 2014).   62 

 63 

Biofilms are a dynamic, heterogeneous community of microorganisms within a complex matrix 64 

of extrapolymeric substance that have integrated metabolic activities and produce sessile 65 

phenotypes markedly different from their planktonic counterparts (Sutherland 2001; Stoodley et 66 

al. 2002); (Hall-Stoodley and Stoodley 2005).  A critical step for biofilm formation is for the 67 

pathogen to adhere to a surface.  Cell-surface associated structures on the surface of A. 68 

baumannii can enhance attachment via pili, encoded by the csuA/BABCDE chaperone-usher 69 

pilus assembly operon (Tomaras et al. 2003), and there is evidence to suggest that the blaPER-1 70 

Lee et al. 2008gene also enhances substrate adhesion ( ).  In terms of surface chemistry, the 71 

physio-chemical properties of inanimate surfaces also play a key role in cell adhesion and 72 

biofilm development.  Electrostatic forces, Lifshitz-van der Waals forces, and 73 

hydrophobic/hydrophilic forces positively or negatively influence microbial adhesion to a 74 

surface (Bos et al. 1999).  Increased surface roughness can increase the hydrophobicity of the 75 

surface by effecting the surface contact angle (Patankar 2004).  For example, Staphylococcus 76 

epidermidis has greater adhesion to hydrophobic surfaces compared to hydrophilic surfaces 77 

(Cerca et al. 2005).   78 

 79 

A variety of material types are used in medical equipment and in the hospital setting.  80 

Polycarbonate, a durable, low-cost plastic that can undergo autoclave sterilization is found in a 81 

variety of medical devices including urinary catheters, gastrointestinal tubes, and 82 

cardiopulmonary bypass circuits, blood oxygenators and flood filters used in the bypass circuit 83 

(Duty et al. 2013).  Mesh prosthetics are often composed of polypropylene (Byrd et al. 2011) 84 

and porcelain is commonly used in many implants and dental crowns (Schroder et al. 2011; Ren 85 

and Zhang 2014).  Stainless steel makes up the majority of surgical equipment and rubber has a 86 

number of uses, particularly rubber seals, such as that used in disposable plastic syringes 87 

(Hamilton 1987).  Cells of A. baumannii can persist on most of these inanimate surfaces (Wendt 88 

et al. 1997) but studies comparing A. baumannii biofilms across various surface types is lacking.  89 
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A. baumannii biofilms have been demonstrated on a limited number of substrata such as glass 90 

(Vidal et al. 1996) and plastic surfaces (Tomaras et al. 2003).  Thus, the aim of this study was to 91 

compare the ability of A. baumannii to form biofilm on six different material types:  glass, 92 

porcelain, stainless steel, rubber, polycarbonate plastic and polypropylene plastic.  93 

Understanding the propensity for biofilm formation on various surfaces provides critical 94 

information to different parties for selecting low biofilm materials, which is essential for 95 

minimizing the risk of biofilm-associated infections. 96 

 97 

RESULTS AND DISCUSSION 98 

Biofilm formation by A. baumannii ATCC17978 varies across substrata 99 

The material substratum is an essential factor that contributes to the ability of a pathogen to 100 

adhere to and form biofilm on a surface (Brandao et al. 2015; Fernandez-Delgado et al. 2015);.  101 

Aside from cellular properties and pathogen adhesion mechanisms, variations in surface 102 

roughness, hydrophobicity and chemical structure can impede or promote a pathogens ability to 103 

attach and populate on that surface.  To evaluate if variations between these surface types 104 

influenced the development of biofilms, the biofilms of A. baumannii ATCC 17978 were 105 

developed on disc coupons of glass, rubber, porcelain, polypropylene, stainless steel and 106 

polycarbonate in a CDC reactor for 4 days and the mean biomass values for biofilms grown on 107 

each surface type was determined using fluorescent staining and imaging by confocal laser 108 

scanning microscope (Figure 1).  We did not anticipate that the rubber surface would absorb the 109 

stain, which made it difficult to distinguish the biomass from the background.  Therefore, the 110 

biomass and live/dead ratio data obtained for rubber using microscopy is presented for reference 111 

only and the viable cell count data (which does not rely on microscopy) should be relied upon to 112 

estimate the biofilm biomass on rubber.  We report that A. baumannii ATCC17978 can readily 113 

form biofilms on polycarbonate.  Polycarbonate, a hydrophobic type of plastic, developed 114 

statistically more biofilm mass than glass, rubber, porcelain and polypropylene.  We confirmed 115 

these biomass results by estimating the mean CFU cm-2 for the biofilms grown on each of the 116 

surfaces using a serial dilution method that is independent of CLSM.  The mean viable cells on 117 

each surface type is presented in Figure 2 and corroborate the mean biomass values determined 118 

using the confocal microscope.  The biofilms growing on polycarbonate had a statistically 119 

significantly higher CFU cm-2 compared to all other surface types.  Our finding of high biofilm 120 
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formation on polycarbonate is consistent with the finding of Brandao et al. who demonstrated 121 

that polycarbonate composite orthodontic brackets sustained the highest level of bacterial 122 

adhesion in the buccal cavity compared to metal and ceramic brackets (Brandao et al. 2015).   123 

 124 

In contrast to polycarbonate, A. baumannii cells did not adhere to glass. On glass, which is a 125 

hydrophilic surface, A. baumannii weakly formed small, flat aggregates of biofilm.  We found no 126 

statistically significant difference in biofilm mass on glass compared to porcelain and 127 

polypropylene, although higher biofilm mass was formed on these surfaces, which could also be 128 

visually seen (Figure 3).  This is consistent with several other studies showing that biofilm 129 

formation by A. baumannii was less favorable on glass compared to plastic such as polystyrene, 130 

polypropylene and Teflon plastics (Tomaras et al. 2003; McQueary and Actis 2011) as well as 131 

polycarbonate (Pour et al. 2011).  Surface roughness (Ra) measurements for glass, stainless steel 132 

and polycarbonate (only) were available from the supplier (BioSurface Technologies Corp., 133 

Bozeman, MT), which were 0.425, 20.20 and 50.95 µin, respectively.  Recall that the mean 134 

biomass for these three surfaces was 0.043, 2.08 and 2.70 respectively.  The increasing surface 135 

roughness and mean biomass, from glass to polycarbonate, suggests a positive trend between 136 

increased biofilm formation and rougher surfaces, although not statistically significant (Pearson 137 

correlation p value = 0.27).    138 

 139 

We performed biofilm imaging using the CLSM for each material type and select images are 140 

shown in Figure 4.  Differences in the formation of biofilm can be visually seen.  Biofilms grown 141 

on polypropylene and porcelain displayed a flat architecture.  Polycarbonate best supported 142 

biofilm growth followed by stainless steel, as evidenced by the formation of mushroom 143 

structures on these two surfaces (Figure 4).  Stainless steel had statistically significantly more 144 

biofilm mass compared to porcelain and glass.  We used a brushed stainless steel, which has a 145 

striated surface structure.  While the high surface energy of stainless results in a more 146 

hydrophilic surface (Fernandez-Delgado et al. 2015), the roughness of the surface increases 147 

surface hydrophobicity (Patankar 2004), which may contribute to the increased adhesiveness of 148 

cells.  The surface groves also increase the surface area and enhance microbial colonization.  149 

This may also account for the high live/dead ratio seen for stainless steel (Figure 3) as cells 150 

adhere within the grooves, forming a strong base onto which live cells attach and subsist (Figure 151 

4). A qualitative comparison of microscan images with studies by Nan et al. who compared the 152 
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biofilms of Staphylococcus aureus on stainless steel with copper treated stainless steel (Nan et 153 

al. 2015) and by Fernandez-Delgado et al. who evaluated the biofilms of P. mirabilis on stainless 154 

steel (Fernandez-Delgado et al. 2015) reveals similarity in biofilm development with regard to 155 

this metal.   156 

 157 

Study limitations 158 

We evaluated the biofilm forming ability of a single, clonal species of A. baumannii, which 159 

makes it difficult to generalize our results to other microorganisms.  Additional studies using 160 

diverse species are needed.  Different strains/isolates may have different abilities to form 161 

biofilms on the materials we tested and this will be the subject of future studies to determine if 162 

our conclusions can be generalized to other A. baumannii strains/isolates.  In addition, biofilms 163 

are known to exist as mixed species in nature and mixtures of colonizing species will influence 164 

bacterial attachment and the formation of biofilms (McEldowney and Fletcher 1987).  Therefore, 165 

the level of biofilm we observed may be over or underestimated from what might occur in the 166 

natural environment. In addition to these considerations, this study focused on growing biofilms 167 

under dynamic (versus static) conditions.  Dynamic conditions result in less biofilm formation 168 

when compared to static conditions (Tomaras et al. 2003).  Therefore, our measures of biofilm 169 

mass do not represent biofilm that would form in the open environment lacking shearing stress.  170 

Of note, the hydrophobicity parameters of each substratum were not determined prior to use in 171 

this study, so we cannot definitively correlate differences in biofilm development on the basis of 172 

surface hydrophobicity.  173 

 174 

Summary 175 

We have demonstrated that there are differences in biofilm formation by A. baumannii 176 

ATCC17978 across different substrata.  Specifically, we found that the formation of biofilm by 177 

A. baumannii ATCC17978 readily developed on polycarbonate followed by stainless steel.  178 

Glass was least favorable for biofilm formation.  The differences in biofilm formation across 179 

different material types may be due to variations in surface roughness and porosity, ionic charge, 180 

and hydrophobicity and the extent to which the material surface influences attachment and 181 

biofilm formation warrant further investigation.  Understanding these differences at the 182 

molecular level will deepen our understanding of how microorganisms are able to colonize and 183 

persist on medical devices, which is important for the development of new materials that will 184 
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inhibit microbial attachment and reduce biofilm related infections.  In this regard, research on 185 

polycarbonate alternatives or on how polycarbonate used in the manufacture of invasive devices 186 

could be treated/modified to inhibit microbial attachment and biofilm formation is warranted. 187 

 188 

 189 

MATERIALS AND METHODS 190 

Bacterial strain and culture conditions:  Acinetobacter baumannii ATCC 17978 (American 191 

Type Culture Collection, Manassas, VA) was used for all biofilm tests.  A single colony on 192 

Mueller

 196 

 Hinton II (MHII) agar plate was sub-cultured into MHII broth (Becton, Dickinson and 193 

Co., Sparks, MD) and incubated for 15-18h at 37ºC, which was then used to create the inoculum 194 

for the biofilm development.  195 

Preparation of material coupons:  All material coupons were round discs of one cm in 197 

diameter and approximately 3 mm thick.  The following non-porous material coupons were used 198 

to grow A. baumannii biofilms: medical grade stainless steel (RD128-304), AHW BUNA-N 199 

Rubber (RD128-BUNA), porcelain (RD128-PL), polycarbonate plastic (RD128-PC), 200 

polypropylene plastic (RD128-PP) and borosilicate glass (RD128-GL) (all material coupons 201 

from BioSurface Technologies, MO).  Before use, all material coupons were washed with soap 202 

and water, followed by a 70% ethanol bath, and then autoclaved for sterilization. 203 

 204 

Biofilm development: A CDC biofilm reactor (Biosurface Technologies, Bozeman, MT) was 205 

used for the biofilm growth.  The CDC biofilm reactor and its coupon holders were autoclaved 206 

before use.  Material coupons (3 of each material type) were mounted on the coupon holders and 207 

the reactor was supplemented with 10% LB medium by a peristaltic pump with a continuous 208 

flow rate of 100 mL per h.  Overnight cultures of A. baumannii ATCC 17978 (grown under 209 

shaking conditions at 37°C) were diluted by 1:100 for an initial concentration of approximately 210 

4x108 CFU and inoculated into the glass vessel of the CDC reactor aseptically for a final 211 

concentration of approximately 1x106 CFU/mL.  The liquid growth medium was circulated 212 

through the vessel and a magnetic stir bar rotated by a magnetic stir plate generated a shear force.  213 

The CDC biofilm reactor was placed on bench and biofilms were grown at room temperature to 214 

mimic a natural environment.  After four days of growth, the coupons were aseptically removed 215 
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for biofilm imaging and viable bacteria plate counting.  Three duplicate CDC biofilm chamber 216 

experiments were performed.  217 

 218 

Bacterial count determination:  Biofilms on the coupons were recovered by homogenizing the 219 

coupon in 3 mL of 1× phosphate buffered saline (PBS, 10 mM, pH7.2) solution for 1 min using 220 

Omni-Tip™ disposable probes (OMNI International, Kennesaw, GA).  Samples were serially 221 

diluted, 50 µl of each dilution were plated onto an MHII agar plate and incubated overnight at 222 

37oC for colony enumeration and the mean colony forming units (CFU) per cm2

 224 

 was calculated. 223 

Microscope Analysis: Coupons were used for fluorescent staining and imaging by confocal 225 

laser scanning microscope (CLSM). Coupon with adhered biofilm was stained with LIVE/DEAD 226 

BacLight Bacterial Viability kit (L7012, Invitrogen, Carlsbad, CA) according to manufacturer’s 227 

instructions. Fluorescent images were acquired with an inverted CLSM (Olympus 1X71, Center 228 

Valley, PA) equipped with a Fluorescence Illumination System (X-Cite 120, EXFO) and filters 229 

for SYTO-9 (excitation = 488 nm/emission  = 520 nm) and propidium iodide (excitation = 535 230 

nm/emission = 617 nm).  Images were obtained using an oil immersion 60× objective lens and 231 

for each location, images were scanned at 1µm intervals.  After acquiring images, a 3-D image 232 

was re-constructed by using IMARIS 7.3.1 software.  Five different surface areas of each 233 

material coupon were randomly chosen for imaging in order to better represent biofilms. Biofilm 234 

biomass was calculated based on microscopic images using Comstat 2 (Heydorn et al. 2000; 235 

Vorregaard 2008).  The surface of the rubber absorbed the live/dead stain making it difficult to 236 

differentiate the biomass from the background.  Therefore, data on the biomass and live/dead 237 

ratio obtained for rubber using microscopy was presented for reference only and the viable cell 238 

count data (which does not rely on microscopy) is reliable to determine biofilm biomass 239 

developed on the rubber. 240 

 241 

Statistical Analysis:  Statistical analyses were performed using GraphPad Prism 6 for Windows 242 

(Version 6.01, Graph Pad Software, Inc., La Jolla, CA).  Statistical significance was assessed 243 

using one-way ANOVA with multiple comparisons using t-test and a significance level of ≤ 244 

0.05. 245 
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