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Abstract 
The goals of phase II clinical trials are to gain important information about the 

performance of novel treatments and decide whether to conduct a larger phase III trial. This can 

be complicated in cases when the phase II trial objective is to identify a novel treatment having 

several factors. Such multi-factor treatment scenarios can be explored using fixed sample size 

trials. However, the alternative design could be response adaptive randomization (RAR) with 

interim analyses, and additionally, longitudinal modeling whereby more data could be used in 

the estimation process. This combined approach allows a quicker and more responsive 

adaptation to early estimates of later endpoints.  Such alternative clinical trial designs are 

potentially more powerful, faster, and smaller than fixed randomized designs. Such designs are 

particularly challenging, however, since phase II trials tend to be smaller than subsequent 

confirmatory phase III trials. The phase II trial may need to explore a large number of treatment 

variations to ensure that the efficacy of optimal clinical conditions is not overlooked.  Adaptive 

trial designs need to be carefully evaluated to understand how they will perform and to take full 

advantage of their potential benefits. This manuscript discusses a Bayesian RAR design with a 

longitudinal model that uses a multi-factor approach for predicting phase III study success via 

the phase II data. The approach is based on an actual clinical trial design for the Hyperbaric 

Oxygen Brain Injury Treatment (HOBIT) trial.  Specific details of the thought process and the 

models informing the trial design are provided.   

Key words: Bayesian adaptive design; multiple factors; phase II clinical trial 
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Introduction  

This manuscript describes a phase II clinical trial adaptive design for selecting the 

combination of hyperbaric oxygen (HBO2) treatment dose parameters (pressure, frequency, and 

intervening normobaric hyperoxia [NBH]) that provides the greatest improvement in the rate of 

good neurological outcome versus standard care for subjects with severe traumatic brain injury 

(TBI).   A second goal of this phase II trial is to determine if there is any factor combination of 

HBO2 treatment that has at least a 50% probability of demonstrating improvement in the rate of 

good neurological outcome versus a control (i.e. standard care) in a subsequent phase III 

confirmatory trial, assuming to be 500 in the control and 500 in the novel arm.  

Despite numerous clinical trials for treatment of TBI, subjects with TBI have high 

mortality and poor outcomes ([1]).  Preclinical and clinical investigations indicate that HBO2 is 

physiologically active in reducing brain injury and improving outcomes in severe TBI ([2]).  

There are peer-reviewed published animal studies from well-established research laboratories 

which indicate that HBO2 potentially improves outcome from TBI by multiple mechanisms ([3]).  

By markedly increasing oxygen (O2) delivery to the traumatized brain, HBO2 can improve 

cellular energy metabolism, attenuate cell signaling and cytosolic ischemic cascades, and reduce 

subsequent necrotic and programmed cell death.  Many clinical investigations in HBO2 have 

steadily corroborated that HBO2 in comparison with standard care significantly improves 

markers of oxidative metabolism in relatively uninjured brain as well as pericontusional tissue, 

reduces intracranial hypertension, demonstrates improvements in markers of cerebral toxicity 

and improves clinical outcome.  However, important information, optimizing the HBO2 
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treatment factor combination in terms of pressure, frequency, and whether NBH delivered 

following the HBO2 treatment, is required prior to a definitive clinical efficacy study.  

Preclinical investigations working with TBI models have used pressures varying from 1.5 to 3.0 

atmospheres absolute (ATA).  Clinical investigators have used pressures varying from 1.5 to 2.5 

ATA.  However, the lungs in severe TBI subjects have frequently been compromised by direct 

lung injury and/or acquired ventilator pneumonia and are susceptible to O2 toxicity.  Working 

within these constraints, it is essential to determine the most effective HBO2 dose schedule 

without producing O2 toxicity and clinical complications.  This proposed clinical trial is 

designed to answer these questions and to provide important information for a confirmatory 

efficacy phase III trial.   

The primary endpoint is the severity adjusted Glasgow Outcome Scale - Extended (GOS-

E, binary response) at 6 months after the patient has enrolled in this study.   Moreover, GOS-E at 

30 days could be used for predicting 6-month GOS-E, allowing for accelerated learning of the 

primary endpoint through the longitudinal modeling. The combination of the three HBO2 

treatment factors with different levels - pressure (1.5, 2.0 and 2.5 ATA), dose frequency (once a 

day [QD] and twice daily [BID]), and NBH (with and without) - will be studied.  Not all possible 

combinations are used because of potential O2 toxicity, and the trial will explore the efficacy of 

nine different active arms in comparison to the control arm. If there is at least one experimental 

arm with sufficient probability of being better than control at phase II, the combination of that 

active arm will be selected for the future phase III trial to confirm the HBO2 efficacy.  Another 
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design constraint is the sample size is about 200 enrolled subjects from approximately 15 clinical 

centers. The sample size is relatively small due to budget constraints.  

Given these constraints, this multi-factor treatment design is challenging: there are three 

dimensions to study, the sample size is small, and the tool that provides the endpoint (GOS-E) is 

subject to variability from the heterogeneity of the disease. In addition, the added variability 

from posterior predictive distributions used for forecasting phase III success contributes noise. 

Therefore it would be quite attractive to garner model efficiencies to improve later 

prediction. This manuscript, using a detailed phase II clinical trial design as example, illustrates a 

Bayesian adaptive design is useful, which has been tailored for the case of multiple factors for 

predicting phase III success using the phase II data. Bayesian predictive probabilities are useful 

to drive learning, which in itself is not necessarily novel for a phase II trial, but has been under-

utilized. A potential model’s efficiency can be improved with a main effects factor model based 

on the strong assumption that there are no interactions. We also use the main effects model in 

this design for getting information from the other arms. This could have other applications, as 

studying related treatments is common and could be done more efficiently if such treatments are 

not assumed to be independent.  Every subject will still help in learning about all three factors 

and predicting phase III success. However, it is believed there is a possibility of interactions 

within the treatment factors, so it is decided to use a pairwise independent model for the primary 

analysis. This can be considered a hybrid design of both a pairwise independent and main effects 

models.  The approach based on an actual emergency medicine clinical trial design is called the 

Hyperbaric Oxygen Brain Injury Treatment (HOBIT) trial.       
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1. Design Choice 

Possible choices for the design are fixed sample size trials or response adaptive 

randomization (RAR) with interim analyses for possible success and/or futility.  Other options 

include RAR with longitudinal (RAR+L) modeling because it can increase efficiency of the trial, 

particularly when the short term endpoint is relatively predictive of the long term endpoint and 

some relationship (linear, quadratic, etc.) between the two is approximately correct ([4]; [5]; [6]; 

[7]).  

RAR may provide clinical trial designs that are more powerful, faster, and smaller than 

fixed randomized designs. However, phase II trials tend to have a smaller sample size than their 

subsequent confirmatory phase III trials and may require exploration of numerous treatment 

options to identify the combination of treatment parameters most likely to improve clinical 

outcome.  Therefore, trial designs need to be carefully studied in order to take full advantage of 

the RAR approach ([8]; [9]). For example, a multi-factor treatment clinical trial quickly reduces 

to a sparse amount of human subjects per treatment combination. In other words, efficiency is 

achieved by considering the information of adjacent dose cells as informative rather than 

independent. The RAR in dose finding strategy provides a useful approach for optimal clinical 

trial design in the case of a single factor with multiple doses ([10]); there is also literature on the 

two-factor clinical trial design ([11]; [12]; [13]; [14]), however, there is little literature on trial 

design and sample size computations using multi-factor (e.g. three-factor) designs having RAR.   

The trial will utilize RAR to favor the better performing experimental arms and possibly 

early stopping for success or futility.  RAR implies using a predefined algorithm for changing the 
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treatment allocation during the trial based on efficacy data, while leaving the clinical 

investigators blinded. In some situations RAR allows for substantially smaller sample sizes and 

provides better conclusions by favoring arms that are performing better, and slowing enrollment 

to the arms that are performing relatively poorly ([15]).  Although unlikely in the phase II multi-

treatment space, early termination of the study can allow more rapid development of a promising 

treatment, or, more commonly, efficient identification and rejection of less or not effective 

treatments that  are unlikely to be beneficial if pursued further.   

2. Methods 

This section presents the details for the phase II HOBIT trial.  The goal of this phase II 

trial is to identify the best HBO2 treatment for subjects with severe TBI, which would optimally 

combine three HOBIT treatment factors with  different levels:  pressure (1.5, 2.0 and 2.5 ATA), 

dose frequency (BID and QD), and NBH (with and without). Furthermore, this manuscript also 

tries to predict the phase III success based on the phase II data.  

2.1 Treatment Arms 

There are ten treatment arms in the trial: 

Arm (a) Pressure (ATA) Frequency NBH 
1  0 0 Without 
2 2.0 QD Without 
3 2.5 QD Without 
4 1.5 QD With 
5 2.0 QD With 
6 2.5 QD With 
7 1.5 BID Without 
8 2.0 BID Without 
9 2.5 BID Without 
10 1.5 BID With 
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We label the control arm as a = 1, and the experimental arms as a = 2, 3, 4, 5, 6, 7, 8, 9, 

and 10, respectively. 

2.2 Primary Endpoint 

The primary endpoint is the GOS-E assessed at 6 months after the subject is enrolled in 

the clinical trial.  The GOS-E is a binary response variable with the value of success or failure. 

We label it as Y6. Additionally, the GOS-E is available one month after enrollment which will be 

used to inform a longitudinal model to predict the 6 month outcome response. Similarly, we label 

it as it as Y1. 

2.3 Primary Analyses 

In the first analysis we define the maximally effective treatment (amax) as the treatment 

with the greatest effect.  For each experimental arm, we calculate the posterior probability of 

being superior to control, Pr(θa-θ1>0), where θa is the six-month GOS-E response rate for 

experimental arm a, and θ1 is that for control arm.  As clinical data are analyzed by the pairwise 

independent model, the phase II trial will be stopped if one of the three following cases occurs: 

1. Early Success: At each interim analysis, the trial may stop accrual for expected success if 

Pr(θa-θ1>0)>0.975 for amax. There must be at least 150 total subjects enrolled before the 

trial may stop for success. If a success stopping rule is met, then a final analysis will be 

conducted after all currently enrolled subjects have been followed to their final endpoint.  

2. Early Futility: At each interim analysis, the trial may stop accrual for early futility if 

Pr(θa-θ1>0)<0.55 for amax, therefore all arms would meet this inequality for futility. 
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3. Final Success: At the final analysis, the trial will be considered a success if Pr(θa-

θ1>0)>0.94 for any a,, this inequality would need to occur only for one arm. Otherwise 

the Phase II trial will fail.  

We now explain the second analysis which is using this phase II data for the prediction of 

Phase III success. A prediction of Phase III success is if the maximally effective treatment has a 

greater than 50% probability of HBO2 treatment demonstrating improvement versus control in a 

subsequent confirmatory trial with size 500 in the control and 500 in the novel treatment.  A 

prediction of Phase III success is only calculated if Pr(θa-θ1>0)>0.94 for the arm amax. Note that 

this calculation is made using the main effects model rather than the independent model above. 

This should increase efficiency in this prediction.  

2.4 Analysis Population 

The Intent-to-treat population (ITT) will be used to analyze the data. The ITT population 

will include all randomized subjects, and they will be assigned to different arms based on the 

randomization information regardless of the treatment received.  

2.5 Adaptive Design 

 The purpose of this phase II adaptive clinical trial design is to explore the efficacy of 

different active arms in comparison to the control arm.  The trial will not compare the active 

arms with each other. The trial will utilize RAR to favor the better performing experimental arms.  

If the efficacy within at least one experimental arm is promising enough, it will advance to a 

phase III trial and be compared for superiority to the control arm (Figure 1). The trial will use 
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both a pairwise independent and main effects multiple factor models to analyze the data based on 

the study objective, more detailed information will be described in section 2.7.       

2.6 Randomization Introduction 

1) Burn-in Phase: An initial burn-in period of 50 subjects is used in which these subjects are 

enrolled in a fixed randomization to the each arm.  A ratio of 1:1:1:1:1:1:1:1:1:1 will be 

used for the burn-in period. 

2) Adaptive Randomization Phase: After the initial burn-in period, adaptive randomization 

will be utilized.  A vector of probabilities, q=(q2, q3, q4, q5, q6, q7, q8, q9, q10), is created 

for randomizing to the experimental arms.  A constant proportion of 20% of subjects will 

be enrolled to the control arm through the rest of phase II.  Interim analysis will be 

executed quarterly to adjust the randomization probabilities based on the current interim 

analysis results.  The probabilities will be proportionally set to each experimental arm 

based on arm with amax . More information and details is described in Section 2.7.5.  

This article is protected by copyright. All rights reserved.



13 
 
 

 

Figure 1: Study Design. 
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2.7 Statistical Modeling 

This section describes the statistical modeling used in the adaptive design and the 

primary analysis.  The modeling is Bayesian in nature.  

Two models- a pairwise independent response model and a main effects response model- 

are utilized in this study.  All of the trial adaptations are driven by the pairwise independent 

model and we also identify the maximally effective experimental arm with this model.  The main 

effects model will be used to predict phase III success, and this model assumes no interactions 

among the different level combinations of HOBIT treatment factors and will likely improve 

efficient prediction.  

2.7.1 Pairwise Independent Response Model for Six-Month GOS-E Response 

The primary outcome is six-month GOS-E response, and we label it for some subject i as 

Yi,6.  We model the six-month primary outcomes as Bernoulli distributed. The model is 

[Yi,6]~Bernoulli(θai), where ai=1,2,3,…,10 is the arm for subject i. 

We label the probability of the six-month GOS-E response for arm a as θa.  It is expected 

GOS-E response for control arm and novel arms have the following prior distributions:  

logit(θ1)~N(-.41,.752), for the control arm; logit(θa)~N(0,1.752),  for the experimental arms 

where a=2,3,4,…,10. According to the previous clinical trials with the same endpoint, the control 

arm’s prior on the response scale (θ1) has a median of 0.40. If simulated data is fitted to a Beta 

distribution, the control arm’s prior is equivalent to eight patients i.e. α0+β0≈8, where α0 and β0 

are Beta parameters.  The novel arm’s prior median on the response scale is higher than that of 
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the control arm at 0.50 but is much more vague since it is equivalent to only two patients (similar 

to a uniform distribution, α0+β0≈2).   

2.7.2 Main Effects Model for Six-Month GOS-E Response used for Phase III Prediction 

The main effects model is [Yi,6]~Bernoulli(Pi), for subject i. We construct a main effects 

model for the GOS-E response rate that is a function of pressure, NBH, and duration.  The logit 

transformation of Pi is modeled with a linear equation. By assuming no interaction among the 

main factors, this model has a lower number of parameters and is designed to increase 

confidence to predict phase III success. However, if there is an interaction, there would be less 

uncertainty in the predicted value but there would be bias. This scenario is explored later in trial 

simulations. The structure is  

𝑙𝑜𝑔𝑖𝑡(Pi) = 𝑋𝑖1𝜇+𝑋𝑖2𝛼1.5𝐴𝑇𝐴+𝑋𝑖3𝛼2.0𝐴𝑇𝐴+𝑋𝑖4𝛼2.5𝐴𝑇𝐴+𝑋𝑖5𝛾𝑁𝐵𝐻+𝑋𝑖6𝛽𝐵𝐼𝐷 

The Xs are 0 or 1 depending on the treatment factor combination assigned to subject i. µ 

represents the effect of control. The α’s represent the additional effect of pressure relative to 

control.  The γ’s and β’s represent the additional effect of NBH and BID, respectively.  The main 

effects model relates to the control and experimental arms in the following way: 

1. control               𝜇 

2.  2.0 ATA, without NBH, QD  𝜇 + 𝛼2.0𝐴𝑇𝐴               

3.  2.5 ATA, without  NBH, QD  𝜇 + 𝛼2.5𝐴𝑇𝐴               

4.  1.5 ATA, with NBH, QD  𝜇 + 𝛼1.5𝐴𝑇𝐴+𝛾𝑁𝐵𝐻 

5. 2.0 ATA, with NBH, QD  𝜇 + 𝛼2.0𝐴𝑇𝐴+𝛾𝑁𝐵𝐻 

6. 2.5 ATA, with NBH, QD  𝜇 + 𝛼2.5𝐴𝑇𝐴+𝛾𝑁𝐵𝐻 
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7. 1.5 ATA, no NBH, BID  𝜇 + 𝛼1.5𝐴𝑇𝐴                + 𝛽𝐵𝐼𝐷 

8. 2.0 ATA, no NBH, BID  𝜇 + 𝛼2.0𝐴𝑇𝐴                + 𝛽𝐵𝐼𝐷 

9. 2.5 ATA, no NBH, BID  𝜇 + 𝛼2.5𝐴𝑇𝐴                + 𝛽𝐵𝐼𝐷 

10. 1.5 ATA ,with NBH, BID        𝜇 + 𝛼1.5𝐴𝑇𝐴+𝛾𝑁𝐵𝐻   + 𝛽𝐵𝐼𝐷     

The priors for GOS-E response for control arm and novel arm have the following prior 

distributions: logit(𝜇)~N(-.41,.752), the control arm, and logit(all other parameters)~N(0,102). 

The intuition regarding the control arm’s prior is the same as the control’s prior in the 

independent model. The prior for the additional parameters’ is essentially flat (i.e. uniform on the 

real line).   

2.7.3 Longitudinal Model 

 In addition to the final six-month endpoint, subjects will have a scheduled visit at 1 

month. At any interim analysis, there may be subjects in each of the following categories: 

subjects who have completed all the visits with known final endpoint; subjects who are still in 

the visit process without final endpoint value; and subjects without data at all.        

 Let Yi,6 be the final endpoint value for subject i and let Yi,1 be the 1-month response.  We 

construct a longitudinal model to allow the unobserved 6-month endpoint to be imputed from the 

partial data. The Beta Binomial longitudinal model updates two Beta distributions: 

1. The posterior probability that a subject who is a responder at 1-month will be a responder 

at the 6 month endpoint:  

Pr(Yi,6=1| Yi,1 =1) ~ Beta(α1, β1), 

where 
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α1=20+|Yi,6=1,Yi,1 =1|, and 

β1=5+|Yi,6=0,Yi,1=1|. 

2. The posterior probability that a subject who is a failure at 1-month will be a responder at 

the 6 month endpoint: 

Pr(Yi,6 =1|Yi,1=0)~ Beta(α2, β2), 

 where 

α2=5+|Yi,6 =1,Yi,1=0|, and 

β2 =20+|Yi,6 =0, Yi,1 =0|. 

 In the notation above, |Yi,6=1, Yi,1=1| indicates a count of the number of subjects whose 6 

month endpoint was observed to be a response and whose intermediate outcome at 1-month was 

also a response. The other formulas with absolute values have similar correspondence. We fit a 

set of models pooling data across all arms. Note that our priors are fairly diffuse, and each has a 

prior sample size equivalent to 25 subjects. This prior was informed from previous TBI studies.    

2.7.4 Bayesian Quantities 

The following Bayesian quantities used in this adaptive design are calculated at each 

interim analysis.  From the joint posterior distribution the posterior probability that each arm, 

a=2,3,4,…,10 is the maximally effective arm, , is calculated.  The arm with the largest  

is called the most likely maximum effective novel treatment. The posterior mean and variance for 

each GOS-E response rate is also calculated.  We label V(θa) as the posterior variance of the 

parameter θa.  For GOS-E response rate the posterior probability that experimental arm is 

superior (larger response rate) to the control arm is calculated: Pr(θa > θ1|data), where 
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a=2,3,4,…,10. Each of these Bayesian quantities are calculated using the data of all subjects who 

have already completed the trials or are still in visit process for each interim analysis.     

2.7.5 Adaptive Randomization Details 

The specification of the vector of probabilities for RAR is described in this section.  The 

randomization vector is created by selection based on the posterior distribution of the GOS-E 

response for each arm.   

The purpose of the adaptive randomization is to allocate subjects to the arms most likely 

to be maximum effective. In addition, the adaptive randomization could improve learning which 

is the maximum effective arm is in comparison with the control arm.   

A component, labelled as Va, is constructed for each arm.  Set V1=1, assuring 1/5 

probability for control arm throughout the trial. The component for arms a=2,3,4,…,10 is 

max4a aV P=  for a=2,3,4,…,10. The randomization vector, q, is set as qa=Va/5  for a=1,2,3,4…,10. 

2.7.6 Phase III Predictions 

This adaptive design phase II clinical trial provides valuable information to predict the 

success probability of a phase III clinical trial which aims to confirm the efficacy and safety of 

optimal combination of HBO2 treatment factors for severe TBI in comparison with the standard  

care.  The primary endpoint of the phase III trial will be the same as the one in phase II, i.e. 

sliding dichotomized GOS-E at 6 months, which will be primarily analyzed by a chi-square test 

in the phase III study. The sample size for phase III is 500 in the control and 500 in the novel 

arms, totally n=1000, based on α=.05 and 2-tailed.   
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Taking the maximally effective arm from phase II trial simulations, we calculate the 

posterior predictive probability there is a >50% probability of hyperbaric treatment 

demonstrating improvement in the rate of good neurological outcome versus standard treatment 

in a subsequent phase III confirmatory trial. This is calculated by the main effects model for the 

experimental arm that shows the maximum efficacy. To accomplish this the posterior predictive 

distribution for future responses of control and novel arms, we label 𝑦1𝑃and  𝑦𝑎𝑃, for arm 

a=2,3,…,10, respectively, and they could be calculated via the following formula:   

p(𝑦1𝑃,𝑦𝑎𝑃 |𝐲)=∫ �
500
𝑦1𝑃

� 𝑃1
𝑦1𝑃(1 − 𝑃1)500−𝑦1𝑃 �500

𝑦𝑎𝑃
�𝑃𝑎

𝑦𝑎𝑃(1 − 𝑃𝑎)500−𝑦𝑎𝑃𝑝(𝛉|𝐲)𝑑𝛉 , 

where y is the observed data from the phase II trial and θ is a vector of parameters from the main 

effects model. This distribution is calculated using simulation. Suppose that a’ is the best HBO2 

experimental arm identified in phase II,  then the appropriate predictive chi-square test statistic is 

𝛸𝑎′2𝑃 which is calculated by 𝑦1𝑃 and 𝑦𝑎′𝑃  . To achieve a > 50% success probability of phase III, two 

conditions must be satisfied: (1) the main effects model indicates a > 94% probability that 

treatment of arm a’ is better than that in control arm; (2) there is a  > 50% probability that 

𝛸𝑎′2𝑃 >3.841.        

2.8 A Comparison of Pairwise Independent and Main Effects Models 

 For the purposes of comparing the two models in a closed form situation, the primary 

endpoint should be considered as a continuous response.  Using a flat prior for regression 

parameters and known variance, the posterior standard errors of the model parameters 

representing the parameter estimation could be easily calculated. Consider the burn-in period, it 
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can be easily shown, for example, that the posterior standard error of the pairwise independent 

model is 𝜎�1
5

+ 1
5
= 0.6325σ when ATA is 2.0.  The standard error within main effects model is 

0.5578σ, thus the main effects standard error is 88% of the one of the pairwise independent 

model, indicating the potential increase in efficiency of the phase III use of the main effects 

model. More explicated information will be provided in the illustration of Table 5 in the results 

section. Obviously, this reduction comes with added bias in case that an interaction does exist.  

2.9 Software and Computations 

 Computations were performed using three types of software: Fixed 

and Adaptive Clinical Trial Simulator (FACTS) ([16]), R ([17]), and Windows Bayesian 

inference Using Gibbs Sampling (WinBUGS) ([18]). General functions of these software are 

specified in Table 1. The pairwise comparisons model with the longitudinal modeling and RAR 

was performed in FACTS. The main effects model was performed using simulation in 

R2WinBUGS with custom coding.   

 First, FACTS is a software used to rapidly design, compare, and simulate both fixed and 

adaptive trial studies.  It is built on compiled low-level languages, such as Fortran and C++, thus 

it runs quite fast. Moreover, FACTS is flexible and easy to use since it could be accessed through 

an interactive graphical user interface.  However, currently, FACTS does not have the capability 

to implement a main effects model.  We decided to use FACTS to simulate the pairwise 

independent model taking advantage of its flexibility and speed, then use the data output to call a 

program that was written specifically for phase III predictions in R2WinBUGS. The posterior 

This article is protected by copyright. All rights reserved.



21 
 
 

 

simulated draws in FACTS were 1,000 burn-in and then 2,500 draws for inference.  In 

WinBUGS the burn-in was 1,000 and 1,000 draws for inference.  

Table 1: Software we applied.Software Function 
 

 
 
 

Simulate data and accrual 
pattern. 
 
Fit model for response and 
longitudinal modeling. 
 
Calculate all Bayesian 
quantities.  
 
Perform response adaptive 
randomization and allocate  
virtual patients to appropriate 
arms. 
 
Tally all trial operating 
characteristics of phase II. 
 

 

Pull data from FACTS into R. 
 
Call WinBUGS program. 
 
Tally all trial operating 
characteristics of phase III 
prediction. 
 
 

 

Fit main effects model and 
predict the posterior 
probability of phase III 
success.  

2.9.1. Simulations 
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In FACTSTM there is an option for defining dichotomous longitudinal response profiles 

that allows us to specify the overall transition probabilities between responder (‘1’) and non-

responder (‘0’). The transition probabilities method for generating longitudinal responses 

simulates the response observed at each visit by using the probability that a subjects becomes or 

remains a ‘1’ from one visit to the next – and all subjects start with a response of 0. 

We specify for each visit,  

• the probability of a subject whose response was a ‘0’ at the previous visit having a 

response of ‘1’ at this visit  

• the probability of a subject whose response was a ‘1’ at the previous visit having a 

response of ‘1’ at this visit  

However these probabilities give a particular probability a subject has a response of ‘1’ at 

the final visit, so they need to be modified for each arm in each dose response profile to give the 

desired final probability of response. This is done by numerically determining for each final 

response rate to simulate, a single value which when added to all the specified transition 

probabilities in the log-odds space yield the desired probability of final response. 

With two visits (1-month and 6-months) and first visit probability of 0->1 of 0.5 then at the 

second visit probabilities of 0->1 of .2 and of 1->1 of 0.8, the probability of a final response is 

0.5 (Table 2).    

Table 2: Longitudinal data profile with initial transition probabilities. 
Visit Month Prob 1->1 Prob 0->1 

1 1 - 0.5 
2 6 0.8 0.2 
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If a response profile calls for the probability of a final response to be simulated with a 

probability of 0.7, a fixed offset in log-odds is found which when applied to all the transition 

probabilities results in the desired final probability of a response. Replicating this by hand yields 

an offset of 0.68, which results in the adjustment in Table 3. All scenarios are adjusted in this 

fashion.  

Table 3: Longitudinal data profile after adjustment. 
Visit Month Prob 1->1 Prob 0->1 

1 1 - 0.664 
2 6 0.888 0.330 

 

GOS-E responses at six-months of all the treatment arms within different case scenarios 

are presented in Table 4.  The first case is referred to as the null hypothesis as each of the arms 

has identical GOS-E responses. All the novel arms have no improvement in terms of GOS-E 

response in comparison with the control arm. The remaining case scenarios explore the different 

GOS-E responses for the experimental arms including one case where harm is exhibited.  The 

final case investigates the interactions of medium effect of pressure associated with NBH and 

frequency, which aims to comprehend the possible robustness of the main effects model. 

Table 4: The adaptive clinical trial design evaluation via six Case Scenarios.   
 

Case Scenario 

 
1.0 

Control 

 
1.5      

NBH 
 

 
2.0,      

NBH 
 

 
2.5,      

NBH 
 

 
1.5, 
BID 

 
2.0, 
BID 

 
2.5, 
BID 

 
1.5, 

NBH, 
BID 

 
2.0 

 
 

 
2.5 

 
 

1. Null hypothesis 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

2. Small treatment effect  0.4 0.45 0.5 0.43 0.45 0.5 0.43 0.48 0.48 0.4 

3. Medium treatment effect 0.4 0.5 0.55 0.48 0.5 0.5 0.48 0.55 0.5 0.43 

4. Large treatment effect  0.4 0.57 0.7 0.52 0.57 0.7 0.52 0.65 0.63 0.45 
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5. Harmful treatment effect 0.4 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 

6. Medium Interaction 0.4 0.4 0.55 0.4 0.55 0.40 0.55 0.4 0.4 0.4 

 
 
3. Results 

In this section we summarize the results of several simulation cases as well as one 

additional null scenario case to control type I error of the design. For each case, 1,000 trials are 

simulated.  We present the results as a function of GOS-E response for each arm at six-month.   

For all simulations in this section, we assume an accrual rate of 1.75 subjects per week. 

No drop outs are assumed.   

The study is considered a success if a target duration arm is identified and phase III is 

recommended to be carried out. In the simulations, if a trial enters a possible success stage, the 

trial is stopped in the simulation.   

We performed six sets of trial simulations based on the various cases of response to 

calculate the trial operating characteristics, i.e. power, futility probability, sample size, duration, 

and subject allocation, which are presented in Table 5. The first four cases range from no effect 

(null), to large treatment effect. All these four cases have no interaction between factors. We 

could clearly see an increase in power (starting with a 20% type I error rate) but a decrease in 

futility rates as the effect increases. Because the null trial has a higher chance to stop for futility, 

the balance switches in a higher probability to stop for success as the benefit moves to large. 

Both the sample size and duration increase from null hypothesis to medium treatment effect, then 

go down in large treatment effect. The percentage of patients placed in the best pressure (2.0 

ATA) arms generally increases as treatment effect increases.  The probability of phase III 
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success is uniformly larger than the power for phase II because of the added efficiency of the 

main effects model. The fifth case has explored characteristics, including the futility with a high 

rate, of the harmful treatment effect.  Additionally, the medium interaction case has similar 

operating characteristics to the medium treatment effect case without interaction except that its 

probability (>50%) of phase III success prediction is lower than the phase II power.  Of note, the 

estimated sample size of fixed trials which is 325 and would give similar power is substantially 

larger. 

Table 5: Simulated trial operating characteristics. 

Case Power 
phase II 

Futility 
Prob. 

Size 
(n) 

Duration 
(wks) 

%Patient  
allocated to 2.0 
ATA pressure 

arms 

Probability 
(>50%)of phase 

III success* 

1. Null hypothesis 0.20 0.34 176 118 33% 0.20 
2. Small treatment effect 0.48 0.13 186 129 38% 0.51 
3. Medium treatment effect 0.65 0.06 187 131 36% 0.71 
4. Large treatment effect  0.96 0.01 174 125 45% 0.98 
5. Harmful treatment effect 0.09 0.57 158 102 33% 0.08 
6. Medium Interaction 0.63 0.09 185 106 33% 0.57 

*New calculation based on main effects model (S=1000).  

 Figure 2 illustrates the patient allocation comparison of RAR+L and fixed one based on a 

single simulation’s MCMC results. More subjects are placed on control for the RAR+L. There 

are also more subjects placed on the better experimental arms, and the top two are the third and 

sixth arms.  Further the incremental improvement in the efficiency is shown by the decrease in 

the posterior standard deviation from pairwise independent model to a main effects model, 

illustrating the increase in prediction ability by the latter model. The standard deviation (Figure 3) 
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for the main effects model was on average 79% of the pairwise independent model, which is 

very similar to the approximate approach discussed in section 2.9.  

Figure 2: Allocation of subjects across arms for one simulated medium effect case for RAR+L 
versus the fixed designs. Probability arm a=2,3,4,,…,10 is better than control. 
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Figure 3: Posterior mean and posterior standard deviation of GOS-E from subjects across 
treatment arms for one simulated medium effect case for pairwise independent and main effects 
models. 
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futility) so that all designs have the same Type I error of 20% and futility rate is 34% in the case 

of ‘null hypothesis’ (see Table 5).  This allows for a fair comparison across designs. First, both 

RAR and RAR+L have a 6% and 9% power increases over the fixed design, respectively.  The 

relative reduction of sample size in the RAR and RAR+L are 24 and 26, and the relative 

reduction of trial duration in the adaptive designs of RAR and RAR+L are14 and 15 weeks, 

respectively.  

Table 6: Simulated trial operating characteristics for different designs using large effect. 
Design Power phase II Futility Prob. Size (n) Duration (wks) 

1. Fixed 0.88 0.00 200 140 
2. RAR 0.94 0.02 176 126 
3. RAR+L 0.96 0.01 174 125 

 
4. Discussion 

This manuscript presents a phase II clinical trial design that applies both pairwise 

independent and main effects models to explore whether one treatment for severe TBI is good 

enough to carry out a further phase III trial as well as to predict the probability of future success. 

This approach can identify the optimal treatment factor combinations in terms of pressure, 

duration, and addition of NBH to HBO2 for severe TBI.  The pairwise independent model 

“drives” the RAR with longitudinal modeling and main effects model uses the data in such a trial 

for the phase III study prediction.   

The main effects model is applied to the specific HBO2 treatment provided by the trial’s 

goal of choosing an arm and predicting this arm’s phase III success probability. Moreover, the 

utilization of this approach will be identical in any clinical trial in which investigators are 
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interested in adding efficiency of the prediction through the suppression of the interaction terms 

in the main effects. Also, this type of modeling is not limited to a binary endpoint, for example, 

external reviewers of our full clinical trial research plan wanted biological ties to the trial rather 

than solely based on clinical endpoint provided by the GOS-E.  Therefore as a secondary 

outcome, it was proposed to measure intracranial pressure (ICP) and model this as a continuous 

biological response.  A main effects model was also used here but rather than a binary response a 

normal distribution response was used. We used the expected sample sizes for power 

calculations for the secondary endpoints.  

The investigation in this manuscript is distinct from the dose finding models where 

investigators might be interested in similar optimization but of a single continuous factor, and 

those types of trials regarding dose finding have been investigated in RAR with longitudinal 

modeling and have provided nice innovations to the clinical trials toolbox.  However, 

investigators may commonly face the issue of multiple factor selection, the approach explored in 

this manuscript would be a good reference for them to identify the novel treatment.   

The model that we propose assumes that there is no interaction between the multiple 

factors in the step that predicts phase III success.  We use this assumption because the sample 

size of the phase II trial is relatively small and that the GOS-E endpoint is a noisy binary variable 

(e.g. relative to a continuous endpoint).  Therefore it would benefit to try to find efficiencies 

through the statistical model. This main effects model “collapses” these factors together so that 

each level of pressure is providing information in three cells of the model.  Of note, we do not 

investigate each experimental arm of treatment factors that the 3x2x2 factorial model could 
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provide, which with control arm would be 13 arms. Although it would be more efficient to keep 

all of the factor combinations in the design from a statistical viewpoint, the trade-off of clinical 

trials between risk-benefit while providing a wide enough net to grab potentially important novel 

treatments must be balanced. Thus, three factor combinations with too high oxygen dose were 

eliminated based on medical considerations. A second note is that while the phase III 

calculations suppress the interaction, the phase II portion uses the pairwise independent means 

model which actually allows for interactions of the multiple factors.  
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