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Abbreviations: 

CRP  C Reactive Protein 

FFA  Free Fatty Acids 

FGF19  Fibroblast Growth Factor 19 

FGF21  Fibroblast Growth Factor 21 

FXR  Farnesoid X Receptor 

iNKT  invariant Natural Killer T cells 

MAIT  Mucosal Associated Invariant T cells 

RYGB  Roux-en-Y gastric bypass 

SAT  Subcutaneous Adipose Tissue 

TG  Triglycerides 

VAT  Visceral Adipose Tissue 

VSG  Vertical Sleeve Gastrectomy 

 

Abstract 

Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of 
surgeries produce significant weight loss but also they improve insulin sensitivity and whole 
body metabolic function. The aim of this review is to explore how altered physiology of adipose 
tissue may contribute to the potent metabolic effects of some of these procedures.  This includes 
specific effects on various fat depots, the function of individual adipocytes, and the interaction 
between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, 
bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment 
favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and 
catecholamines is improved, adipokine secretion is altered, and local adipose inflammation as 
well as systemic inflammatory markers decrease. Some of these changes have been shown to be 
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weight loss independent and novel hypothesis for these effects includes include changes in bile 
acid metabolism, gut microbiota, and central regulation of metabolism. In conclusion bariatric 
surgery is capable of improving aspects of adipose tissue function and do so in some cases in 
ways that are not entirely explained by the potent effect of surgery.   

Introduction 

Bariatric surgery is widely acknowledged as the most effective treatment for obesity, and 
intensive efforts over the past few years have not only added to our understanding of the 
mechanisms by which surgery improves metabolism and resolves type 2 diabetes in some 
patients but have also shifted our understanding of how metabolism is regulated. Mechanical 
explanations for the success of surgery such as restriction of stomach volume and intestinal 
malabsorption have given way to physiological explanations that emphasize alterations in gut 
signals to other organs1, 2. A key question is the degree to which these signals have direct or 
indirect impacts on adipose tissue metabolic function.  A growing body of evidence links adipose 
tissue dysfunction to key aspects of the metabolic dysregulation that accompanies excess body 
weight.  For this reason, our aim with the current review is to provide an overview of how 
adipose tissue responds to bariatric surgery and whether there are weight loss independent 
mechanisms involved in these responses.  

Bariatric surgery procedures 

The two dominant bariatric operations used in the clinic are Roux-en-Y gastric bypass (RYGB) 
and sleeve gastrectomy3 (Figure 1). The Roux-en-Y gastric bypass leaves the patient with a small 
stomach pouch under the esophagus and the gut anatomy is re-arranged such that nutrients are 
diverted from the upper to the middle part of the small intestine. RYGB not only induces 
significant weight loss but improves insulin resistance with remission of type 2 diabetes in many 
cases. Vertical sleeve gastrectomy (VSG) is an anatomically simpler operation, involving 
removing approximately 80% of the stomach along the greater curvature, leaving small intestinal 
anatomy unaltered. These procedures were formerly believed to be effective solely due to 
malabsorptive and restrictive properties, however, this paradigm has changed over the past 
decade as growing evidence supports that alterations in gut anatomy has profound effects on 
physiology including alterations in gut hormone secretion important for regulating feeding and 
metabolism. From the restrictive/malabsorptive point of view VSG would be expected to be 
inferior to RYGB since it involves a larger gastric reservoir and no intestinal bypass. 
Remarkably and counterintuitively however, the efficacy of VSG is not far from RYGB4.  

Adipose depot type and adipocyte size 
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The most obvious effect of bariatric surgery is loss of up to half of total adipose tissue mass 
within the first year after surgery along with improvements in systemic metabolism5. These 
metabolic improvements associated with bariatric surgery do not correlate directly with 
reduction of adipose mass per se, but also relate to the extent different adipose tissue anatomic 
depots are affected. White adipose tissue may be divided into two broad categories: visceral 
adipose tissue (VAT) located in the peritoneal cavity, and subcutaneous adipose tissue (SAT), 
located under the skin. These two depots may be functionally subdivided even further: VAT 
includes omental (attached to the stomach), retroperitoneal (surrounding the kidneys), and 
mesenteric (attached to the intestines) subdepots, while SAT can be subdivided into deep and 
superficial as well as truncal and extremity compartments, each of which displays different 
functional characteristics6. 

Excess VAT is an independent risk factor for type 2 diabetes and cardiovascular disease and is 
more strongly correlated to these disease states than SAT7-9. Adipose tissue depots manifest 
different physiologic profiles, with VAT demonstrating increased lipoytic capacity, 
inflammation, vascularization, and secretion of specific adipokines. In addition, VAT drains its 
venous effluent directly to the liver via the portal venous system, thus exerting a disproportionate 
effect on hepatic and systemic metabolism10. Despite the epidemiologic association of VAT with 
metabolic disease, studies of omental fat removal in humans, generally performed in 
combination with a bariatric procedure, have yielded conflicting results. Most of these studies 
demonstrate no change in metabolic disease relative to non-omentectomy controls, although one 
study reported greater weight loss11, 11-16and another found that omentectomy amplified the 
reduction in expression of inflammatory markers in skeletal muscle associated with RYGB14. As 
omental fat only constitutes a minority of VAT, with mesenteric and retroperitoneal subdepots 
comprising a substantial proportion of total VAT mass, such findings emphasize the ability of 
distinct depots to not only store fat but also to impact metabolism.  

Most studies of depot-specific fat mass find pronounced reductions in both VAT and SAT within 
the first few months after surgery 5, 17-19.  That said, magnetic resonance imaging of patients 
before and up to two years after bariatric surgery demonstrated that the vast majority of total fat 
mass is lost from SAT20.  However, studies with longer post-operative follow-up demonstrate 
further declines in VAT but not SAT, suggesting that late weight loss may disproportionately 
involve VAT 5, 20-22. The particular significance of VAT was underscored in a study by Faria et 
al.19 where metabolic parameters between subjects with persisting metabolic syndrome 1 year 
post RYGB were compared with patients that underwent type 2 diabetes remission and found 
that VAT mass was significantly decreased even though BMI and SAT area were similar. 
Finally, Toro-Ramos et al.20 found that intramuscular adipose was highly reduced after surgery 
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as well, suggesting that loss of mass from non-canonical adipose tissue depots may also 
contribute to the metabolic effects of bariatric surgery23. These data highlight the fact that 
surgically induced weight loss involves different anatomic adipose tissue depots to different 
degrees, and suggests that the beneficial effects of bariatric surgery result not only from overall 
loss of fat mass but also a metabolically beneficial redistribution among different anatomic 
depots.  

Reduction in adipocyte hypertrophy is a dominant feature of fat mass loss. Adipocyte size 
dramatically influences intracellular metabolic function. Larger adipocytes are associated with 
type 2 diabetes and metabolic disease in multiple studies24-26. A proposed putative mechanism 
for the link between adipocyte hypertrophy and metabolic dysfunction involves induction of 
cellular hypoxia as adipocyte hypertrophy beyond the diffusion distance of oxygen, leading to 
inflammation and insulin resistance27. Hypertrophy is also associated with a reduced capacity of 
adipose tissue to store energy in the form of triglycerides (TGs) in the fed state and to release 
free fatty acids (FFA) during fasting10.  

While the correlation between adipocyte hypertrophy and metabolic disease in the obese 
population is strong, this relationship is complex and context-dependent, which needs to be taken 
into account when interpreting adipocyte size changes after weight loss. Lean humans with 
smaller adipocytes have greater metabolic deterioration in response to overfeeding, suggesting 
that in the lean state, larger adipocytes are beneficial and a measure of nutrient buffering 
capacity28. In obese patients, however, a hypertrophic threshold may be reached beyond which 
adipocyte buffering capacity is exceeded29, leading to ectopic lipid deposition in peripheral 
tissues. Consistent with this concept extreme adipocyte hypertrophy in the obese state correlates 
positively with the degree of obesity and metabolic disease in humans and mice.  

Studies investigating adipocyte size after  bariatric surgery find that adipocytes become smaller 
30, 31 ultimately approaching diameters similar to lean controls30, yet, total adipocyte number 
remains unchanged 32. These data are primarily restricted to SAT, since access to VAT samples 
in humans is limited after surgery. In line with these observations, Anderson et al.32 reported that 
improvements in whole body insulin sensitivity 2 years after RYGB correlated strongly with a 
larger reduction in adipocyte size. Cotillard et al.29 found significantly smaller adipocytes in 
subjects where type 2 diabetes risk was reverted 6 months post RYGB as compared to those 
patients where diabetes risk did not improve.  

There are very few studies looking into adipocyte size in animal models. It has been shown that 
the mesenteric WAT33 and the eWAT34 contain smaller adipocytes after RYGB and VSG.  One 
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report observed that the weight loss induced by ileal interposition (a procedure where a portion 
of the ileum is moved to the jejunum) in diabetic rats was the result of decreases in mean 
adipocyte size in SAT as well as VAT35. However, in another type of operation, the 
biliopancreatic diversion, SAT adipocytes shrink more than the cells found in the VAT36. More 
clinical and pre-clinical research is needed to fully understand the intracellular changes in 
adipocytes after surgery. However, it is clear that overall bariatric surgery reduces both the size 
of the individual depots and adipocytes, and decreases the ratio of VAT to SAT. These changes 
are well known for their beneficial impact upon metabolic health and support a contributory role 
for improved adipose metabolic function after bariatric surgery. 

Regulation of lipolysis 

The physiologically most important function of adipose tissue is to act as an energy buffer. 
During positive energy balance, adipose tissue stores excess energy in a safe and accessible 
manner that allows for appropriate energy release primarily via lipolysis in times of negative 
energy balance. This balance between storage and release of lipids is regulated by a complex 
interplay of neuro-humoral regulation for which insulin and plasma catecholamines play an 
integral role. A multitude of other factors regulate these processes as well, yet we will focus on 
1) basal lipolysis, 2) insulin inhibition of lipolysis, and 3) catecholamine stimulation of lipolysis. 

Basal lipolysis. Basal unstimulated lipolysis in isolated adipocytes has been shown to increase 
with obesity and seems to relate to the adipocytes being hypertrophic and thus dysfunctional37-39. 
The information of ex vivo basal lipolysis with weight loss induced by reduced caloric intake is 
sparse with a few reports of no changes37, 40-42 and a single study showing a 50% reduction43. To 
the best of our knowledge there are no studies reporting basal lipolysis rates in isolated 
adipocytes after bariatric surgery. A more clinically relevant measure of basal lipolysis is the 
outflow of FFA into the circulation during fasting. Yet, in the interpretation of data it has to be 
considered that systemic FFA levels not only are affected by lipolysis but also by clearance by 
muscle and liver. In general it is found that FFA levels increase systemically in the first few 
months after surgery after which they decrease44-46. In studies where the follow ups are 
performed at 6 months after surgery, the most common finding is decreased levels of FFA when 
compared to pre-surgery levels12, 21, 47, 48 but not as compared to the levels found in lean control 
subjects46. A handful of studies report no significant changes after surgery49-51.  

Regulation by insulin. Even though insulin receptor stimulation of adipocytes promotes 
lipogenesis and uptake of fatty acids in addition to inhibiting lipolysis, this latter metabolic effect 
is by far the most important. The absence of insulin during fasting can relieve lipolytic inhibition 
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to such an extent that it may cause intermittent fasting induced hepatic steatosis52-54 and insulin 
resistance in this system manifests itself as a lack of ability to properly control the flow of FFAs 
in the transfer between fed and fasted states. The ability of the adipose tissue to respond to 
insulin can be measured by including plasma FFA in the hyperinsulinemic euglycemic clamp 
procedure, which has the distinct advantage of tightly controlling insulin levels. When compared 
to basal fasting levels of FFA as described above, the clamp studies report that insulin’s ability to 
suppress FFA outflow is impaired with obesity45, 55. Shortly after surgery FFA levels are 
increased compared to obese pre-surgery levels both in the absence and presence of insulin 
clamping45, 56, whereas insulin inhibition of lipolysis is fully comparable to lean control levels a 
few years after surgery55. Interestingly this effect described by Curry et al.55 seemed to depend 
on a higher dose of insulin. 

In addition to evaluating the systemic effect of insulin upon adipose tissue by measuring FFA in 
the blood, insulin resistance within distinct adipose depots can also be investigated by 
quantification of downstream insulin receptor signaling. These types of studies are generally 
more widespread in animal models of bariatric surgery than in the clinic. Yet, studies that have 
investigated this in SAT biopsies after RYGB in humans and have found increased activation of 
the insulin receptor signaling pathway upon insulin stimulation49, 57. In the study by Carvalho et 
al49 this effect was shown to compare to lean control levels 6 months after surgery despite 
decreased insulin sensitivity prior to RYGB. Thus, at least in SAT, the obesity-induced insulin 
resistance is reduced after surgery. However, in rat models of RYGB few changes were observed 
in  insulin receptor stimulation as validated by its phosphorylation or in expression of  its 
downstream signaling molecules in adipose tissue 58, 59 while one study found increased 
activation of downstream insulin receptor signaling via phosphorylation of Akt in the mesenteric 
depot60. These apparently conflicting results most likely reflect that samples were obtained under 
conditions that were not optimal to reflect acute stimulation with a comparable level of insulin. 
The groups of animals differed in insulin levels and not all studies fasted the animals to down-
regulate endogenous insulin prior to harvesting the samples.  

Catecholamines. In contrast to insulin, plasma catecholamines play an important role in 
stimulation of lipolysis. Previous research has suggested that obesity causes “catecholamine 
resistance” preventing adipose tissue from being appropriately catabolized when energy demand 
is high (e.g. fasting and/or exercise).  Nonetheless this area of research has received relatively 
little attention over the past several decades.  However, there is reason to revisit this 
phenomenon61. Substantial evidence exists that adipose tissue in obese individuals indeed is 
resistant to catecholamine-induced lipolysis62, 63 which also explains why lipids accumulate in 
adipose depots despite obesity being linked to increased sympathetic activation64. 
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Catecholaminergic stimulation of lipolysis in adipocytes takes place via stimulation of 
adrenergic receptors of which the adipocyte contains several types. The best described receptor 
subtype is the beta-3 adrenergic receptor, which elicits a strong lipolytic response upon 
activation. In contrast, the alpha 2 receptor inhibits lipolysis. It has been hypothesized that the 
balance between these receptor sub-types changes with obesity and result in changes in the 
lipolytic response. Yet information about catecholaminergic responsiveness in adipose tissue 
after RYGB or VSG is sparse. Kaartinen et al.65 isolated adipocyte membranes from obese 
subjects and patients, who had achieved substantial weight loss with bariatric surgery and found 
that lipolytic effects of pharmacological stimulation of beta adrenergic receptors were reduced 
with obesity as compared to lean subjects whereas the response after surgery was higher than in 
the lean controls despite no difference in receptor density between the groups. A mouse study 
examining beta-3 adrenergic receptor gene expression after RYGB found the levels to be 
increased  in VAT66. These findings match the increases in adrenergic response seen after weight 
loss in obese individuals43, 67.  
 
In the setting of beta-adrenergic regulation of adipocytes it is worth mentioning the brown 
adipose tissue, which is highly metabolically active upon adrenergic stimulation and has a 
catabolic effect by converting fatty acids released by lipolysis to heat. Brown adipose tissue has 
only recently been proven active in human adults and there is a great interest in exploring the 
therapeutic potential of its activation as it has been suggested as an explanation for the increased 
energy expenditure reported with RYGB68-70. However, discrepancies have been reported 
between species with studies in rodents collectively failing to show such an effect36, 70-72 whereas 
data from the clinic suggests activation68, 69, 73. As the function of this tissue in relation to 
metabolism, obesity, and bariatric surgery is still not fully established, more information needs to 
be generated to understand its significance in these settings. 
 
In general, the bulk of the evidence points towards surgery improving adipose tissue metabolic 
adaptability in terms of postprandial storage and fasting-induced release of fatty acids when 
appropriate. These changes do not occur immediately after surgery but rather take significant 
time to become evident.  The profound hypocaloric state and attendant weight loss that follows 
surgery should be considered a significant confounder when interpreting changes in lipolytic 
capacity of adipose in the first weeks and months after surgery. More studies are needed to 
elucidate the molecular mechanisms behind depot specific long-term responsiveness towards 
insulin and catecholamines and also to clarify to which extent changes are bariatric surgery 
specific.  
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Adipokine secretion 

Besides functioning as a storage depot, adipose tissue is also considered an endocrine organ 
secreting hundreds of different signaling proteins (adipokines) into the circulation74. The actions 
of adipokines span autocrine signaling involved in lipid homeostasis and adipogenesis, crosstalk 
with the immune system, and conveying information on energy status to the central nervous 
system (CNS) and other metabolic organs such as muscle and liver. The most well-known 
adipokine is the hormone leptin, which is the major contributor to the communication between 
adipose tissue and the CNS serving to suppress appetite when lipid storage is high. Similar to 
insulin, leptin responsiveness seems to be adversely affected by obesity such that despite 
increases in circulating leptin with adipose expansion, leptin is not able to successfully convey 
this surplus energy status to the brain75. In addition to this leptin has been shown to stimulate 
proinflammatory immune responses76. Adiponectin is another well characterized adipokine, 
which acts on the peripheral metabolic tissues (liver and muscle). However, unlike leptin, plasma 
levels of adiponectin decrease, rather than increase with overall fat mass expansion, and as 
adiponectin is highly correlated to metabolic derangements of obesity and type 2 diabetes77 the 
secretion of this adipokine is considered to be a hallmark of healthy adipocyte function. This is 
consistent with the observation that large dysfunctional adipocytes tend to decrease secretion of 
this adipokine to the circulation78. Adiponectin exerts its effects via receptors expressed in 
muscle and liver and to some extent by autocrine actions causing improved insulin sensitivity as 
well as stimulating glucose utilization and fatty acid oxidation79. Other less investigated 
adipokines that have been linked to metabolic function and obesity are visfatin and chemerin. 
Visfatin is produced primarily in VAT and has been linked to glucose usage, albeit the 
mechanism for this is still highly debated. Yet, several studies have shown a strong positive 
correlation between visfatin and impaired metabolic health80. Chemerin has received interest for 
its autocrine actions in adipocyte. Especially since it is a necessary factor for adipogenesis and 
also it regulates adipocyte cellular metabolism81. In addition to these there are a multitude 
inflammatory cytokines produced in adipose tissue but these will be described in more detail in 
the inflammation section below. 

As would be predicted based on fat mass changes, leptin decreases82-87 whereas adiponectin 
increases82, 85, 86, 88-90 after bariatric surgery (see table 1 for more references). These findings 
point strongly towards adipose tissue regaining its endocrine capacity after surgery. It has also 
been reported that SAT expression of leptin goes down after RYGB91 whereas adiponectin gene 
expression in primarily SAT was reported to increase in only one out of five studies84, 91-94. In the 
context of these findings it is worth mentioning the novel hypothesis that adiponectin is produced 
in significant amounts by adipocytes in the bone marrow95. In support of this hypothesis 
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Coughlin et al.96 found adiponectin expression to be highly upregulated in femoral adipose tissue 
after surgery. Both visfatin and chemerin have generally been found to decrease after surgery11, 

90, 97-102 and some studies report a correlation between reductions in the levels of these adipokines 
and improvements of other metabolic parameters such as insulin resistance, fatty liver and/or 
inflammation 90, 98-100, 102  Whether the secretion of adipokines plays significant role in the 
improved metabolic state after surgery or is rather just a reflection of changes in adipose tissue 
mass is not fully elucidated and there are still mechanisms of action with many of the newly 
discovered adipokines, that are not well understood yet, but it has been described that 
adiponectin production in SAT after surgery is doubled after only 2 weeks103 – before significant 
weight loss has occurred – suggesting weight loss independent adipokine responses.  

Adipose inflammation 

Low grade chronic inflammation within adipose tissue is associated with obesity.  The fact  that  
adipose mass in the obese may constitute as much as 50% of bodyweight and contain more than 
1 million immune cells/g accentuates the significance of this tissue as an immunological organ 
with capacity to influence systemic immune function 104.  Adipose inflammation has been 
hypothesized to be an important contributor to systemic insulin resistance and multiple other 
metabolic derangements105.  Despite its potential importance, the precipitating events for this 
inflammatory process are still being debated. Hypertrophic adipocytes increase production of 
pro-inflammatory adipokines106 and also saturated fatty acids in the extracellular space have the 
capability to initiate a direct inflammatory response in macrophages through activation of pattern 
recognition receptors such as Toll-like receptors107.  

Chronic low-grade inflammation in adipose tissue contributes to levels of inflammatory markers 
in the circulation and for this reason bariatric surgery follow-up studies frequently apply 
measurements of common biomarkers such as CRP (C-Reactive Protein), TNF-alpha, and/or IL-
6. IL-6 is mostly consistently  reported to decrease after surgery15, 31, 49, 85, 108 albeit there are 
reports of no change as well82. There is less consensus with TNF-alpha levels as they have been 
reported to decrease108, 109, stay unaltered110, or even increase 111 in patients after surgery as 
compared with levels before surgery and  between groups of obese versus operated patients. In 
addition the presence of the inflammatory adipokine Monocyte Chemotactic Protein-1 (MCP-1) 
in the blood has likewise been reported to decrease 11. Inflammation has also been evaluated 
within the adipose depots by protein or gene expression of these pro-inflammatory cytokines and 
the results resemble the findings from blood with decreased expression of IL-6, TNF-alpha, and 
MCP-146,31, 93, 112-114.  
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CRP originates primarily from the liver. Still it is considered a marker of adipose inflammation 
as the liver is highly affected by obesity and CRP has consistently been shown to be upregulated 
with obesity. After bariatric surgery CRP levels show rapid11 and large115 declines that persist for 
up to 10 years109 post-surgery.  

Another aspect of inflammation is the abundance and inflammatory phenotype of immune cells 
residing within the adipose tissues. SAT, relative to VAT contains not only fewer immune 
cells/mm3 in general116 but also the macrophage population31, their assembly into crown like 
structures117 and the balance of pro-inflammatory over anti-inflammatory macrophages118 
decrease after surgery118. These findings are supported by a recent comprehensive RNAseq 
analysis of gene expression in SAT showing that 3 months after surgery clusters of genes related 
to specific immune populations all decreased119.  

With inflammation comes fibrotic remodeling and potential excessive synthesis of extracellular 
matrix components120 and accordingly studies within animals models have shown that adipose 
fibrosis is reduced when macrophages are depleted121. One of the major consequences of fibrosis 
is that the adipose tissue loses the plasticity to expand or contract with metabolic demands such 
that fibrosis in the obese state negatively affects the ability to lose weight after surgery82, 122. Yet 
whether surgery improves the ability of the fibrotic adipose to heal better than with weight loss 
induced by calorie restriction has not been examined.      

To the best of our knowledge, very few studies have successfully measured local inflammation 
within adipose tissues after surgery in animal studies. However, these limited findings do 
indicate that inflammation decreases within the distinct adipose depots as assessed by TNF-alpha 
and IL-6 mRNA expression as well as number of macrophages and T-cells residing within the 
mesenteric depot in particular33, 60, 82, 123. These observations support the contention that bariatric 
surgery reduces inflammation associated with obesity.  

 

Future directions 

Bariatric surgery is by far the most effective treatment for obesity, yet the resources required to 
treat the obesity epidemic with surgery outstrip our ability to deliver these surgical interventions 
to a large percentage of those impacted. An understanding of the mechanisms that underlie the 
potent effects of bariatric surgery on systemic metabolism will lead to novel targets for the 
development of therapeutics for obesity and metabolic disease. Towards this goal it is crucial to 
distinguish between physiologic changes resulting from weight loss secondary to reduced caloric 
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intake and those that are a direct and independent effect of surgery per se as many responses will 
overlap In animal studies, weight loss-independent effects are confirmed with weight-matched or 
pair-fed control groups. As seen in table 1, few clinical studies include a weight loss control 
group due to the challenging if not impossible task of inducing weight loss of the same 
magnitude by diet restrictions in humans. Also this discrepancy in bodyweight outcome makes it 
difficult to compare studies with surgery alone to those studies where other interventions are 
investigated. Alternative approaches include comparing different types of surgery in the same 
study or avoiding pooling results from several different surgeries (a significant number of studies 
were excluded from table 1 for this reason) to better define the distinct effects of different 
operations. In addition physiological changes that occur before significant weight loss might be 
detected by studying subjects in the early post-operative period. So far the studies that have used 
these approaches have shown that bariatric surgery independently reduces the mass of VAT, 
improves the circulating adipokines123 as well as reduces lipid accumulation in the liver and 
blood123-127. We propose that the following mechanisms could be responsible but require more 
investigation to be fully elucidated (see figure 3): 

 

A) One of the current candidates for weight loss independent mechanisms is changes in bile 
acid levels. Plasma bile acids have been shown to increase after surgery in humans128 and 
animals126 -  an effect that is weight independent and has been hypothesized to underlie 
the dramatic effects of bariatric surgery on metabolism129. Bile acids act as endogenous 
ligands for several receptors of which FXR (Farnesoid-X Receptor) and TGR5 (G 
protein-coupled bile acid receptor 1) have received particular attention. FXR is a nuclear 
receptor that regulates lipid metabolism and trafficking as it is expressed in the intestine, 
liver, and adipose tissue130. FXR and its target genes have been shown to modulate 
adipocyte phenotype and function 131. Interestingly, in our search to identify molecular 
mechanisms behind the metabolic effects of sleeve gastrectomy, we found that deletion 
of FXR abolished the effect of VSG in high fat fed mice132. TGR5 is a cell-surface 
receptor which is expressed in BAT but not WAT and deletion of this receptor does 
accordingly not affect weight loss after VSG in mice, yet it reduces the glucoregulatory 
improvements that occur after surgery 133. One of the potential mechanisms by which bile 
acid receptor activation is hypothesized to exert beneficial effects is by reducing 
endoplasmic reticulum (ER) stress – a stress response proven to be increased in adipose 
tissue with obesity in animal models as well as in clinical studies 134, 135 having impact on 
insulin sensitivity and inflammation. Recent work from Cummings et al. has confirmed 
this as a possible mechanism of action60. In addition to neural and hormonal input, 
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adipose tissues also receive metabolic regulatory input by other mechanisms. FGF21 
(Fibroblast Growth Factor 21) and FGF19 (Fibroblast Growth Factor 19) are two 
endocrine FGFs that have both been shown to be upregulated by bariatric surgery in 
humans136 137.  FGF21 controls the adipose metabolic phenotype and has been shown to 
hold great therapeutic potential for treating type 2 diabetes and obesity138, 139. 
Interestingly, Lips et al.136 compared RYGB directly to gastric banding and weight loss 
by calorie restriction, and found that FGF21 levels were robustly upregulated with RYGB 
only. An additional aspect of interest with FGF21 is that it is differentially expressed in 
type 2 diabetes and furthermore gene expression in the liver after RYGB differs between 
patients with diabetes remission and those without140. However, a caveat with FGF21 is 
that it appears to differ between rodents and humans, such that translational 
extrapolations may be hard to establish. 

B) Also it is worth considering the impact of bariatric surgery on the function of adipose 
tissue as an immunological organ capable of modulating not only immune populations in 
other tissues but also metabolic outcomes. This aspect of immune function has not been 
discovered until very recently but adds to our understanding of how immune cells 
directly influence the regulation of metabolism141. Recently discovered key players of 
interest in this setting are distinct sub population of T-cells, namely iNKT (invariant 
Natural Killer T) cells and MAIT (Mucosal Associated Invariant T) cells. Magalhaes et 
al.142 studied these two T-cell populations in obese and diabetic patients and found that 
both these types of T cells decreased in the circulation with obesity and type 2 diabetes. 
The MAIT cells were found to recruit to the adipose tissues in obesity and type 2 diabetes 
where they shifted to a distinct IL-17 cytokine profile. With bariatric surgery the 
abundance of these cells in the circulation increased (albeit not to the level of the lean 
controls) and they produced less IL-17. What makes these cell populations of specific 
interest in the setting of bariatric surgery are that 1) in contrast to the inflammatory 
component of the immune system these cells maintain a healthy homeostasis143, 144, 2) 
iNKT seems to be able to interact directly with adipose metabolism by the adipocytes 
presenting lipid antigens to these T-cells, which in return regulate insulin sensitivity in 
the adipocytes145 3) MAIT are known to be associated to the gut mucosa and thus 
provides a potential missing link to the potent effects of surgery to alter the microbiota 
can directly impact the adipose tissue function. Such findings emphasize that the immune 
system could be involved in the metabolic benefits observed after surgery.  

C) Alterations in the gut-brain axis may contribute to weight loss-independent effects of 
bariatric surgery such as gut signaling to the CNS regarding postprandial status via 
humoral and neural signals. The CNS, in turn, can regulate metabolic function via 
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efferent neuronal activity of target metabolic organs, including adipose tissue which has 
been shown to become hypertrophic when denervated due to lack of sympathetic nervous 
system stimulation of lipolysis 146-148. In addition, sympathetic stimulation not only 
affects the release of fatty acids through lipolysis but also induces “beige” or “brite” 
adipocyte differentiation149 with a concomitant increase in thermogenesis and fatty acid 
catabolism.  Accordingly, it has been demonstrated that animals with more beige 
adipocytes are protected from obesity and diabetes150 even though it is not yet fully 
understood if this effect relates to increased thermogenesis alone or whether there are 
secretory factors at play as well151. The presence of beige adipocytes within SAT upon 
stimulation after bariatric surgery have not yet been fully investigated, but we 
hypothesize that induction of beige adipocytes might be one of the mechanisms by which 
bariatric surgery improves metabolism as catecholaminergic responsiveness seem to be 
increased after surgery. Evidence for this comes from Neinast et al. who reported 
upregulation of genes involved in beigeing after RYGB in mice66. The CNS has also been 
shown to be a regulator of beige fat and so could be a mediator of any such surgical 
effects to increase the number of beige adipocytes after surgical intervention.   
 
 
Conclusion 

To advance our understanding of obesity and why bariatric surgery is superior to other treatment 
options we will have to strive for a deeper understanding of how different physiological 
processes and organs interact in the setting of metabolism. Current literature holds tantalizing 
hints that bariatric surgery affects adipose tissue far beyond mere reduction in lipid content. We 
believe this is important given the crucial role of adipose tissue in organism survival and energy 
usage. Adipose tissue communicates directly with multiple metabolic target organs regarding 
acute and chronic energy status and is likely a key component to the success of surgery.  
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Figure 1. Bariatric surgery procedures 
 
In the Roux-en-Y Gastric Bypass procedure a small stomach pouch is created under the 
esophagus. The jejunum is then attached to this pouch causing nutrient flow to bypass the 
proximal part of the duodenum. In the vertical sleeve gastrectomy procedure about 80% of the 
stomach is removed along the greater curvature. The intestines are left unaltered. 
 
 
Figure 2. Changes in adipocytes after surgery 
 
After surgery the number of adipocytes stays the same but adiposity is decreased by a reduction 
in the lipid content/size of the individual cells. The amount of inflammatory immune cells 
residing within the adipose tissue also decreases.  
Individual adipocytes respond differently to lipolytic stimuli before and after surgery. In the 
obese state insulin is not able to suppress lipolysis causing leakage of FFA in the fed state and 
catecholamine stimulated lipolysis is hampered. Leptin secretion is high causing hyperleptinemia 
whereas adiponectin production is low. Also the adipocyte secretes pro-inflammatory adipokines 
such as MCP-1 and Il-6. After surgery the response towards lipolytic signals improve with 
insulin inhibiting FFA release and responsiveness towards catecholamines being restored. Leptin 
secretion decreases whereas adiponectin is upregulated. Proinflammatory adipokines are 
downregulated. 
 
Figure 3. Proposed novel mechanisms for adipose improvement after surgery 
 

A) It is persistently reported that plasma bile acid levels go up after bariatric surgery. Bile 
acids can act upon the FXR receptor causing effects in metabolic tissues and genetic 
deletion of the FXR receptor eliminates the effect of sleeve gastrectomy in mice. We 
propose that changes in bile acid signaling induced by bariatric surgery has the capacity 
to improve the function of the adipocyte 

B) With surgery the composition of the bacteria in the gut changes. There is a tight 
interaction between the microbiota and the immune system. With the recent discoveries 
that immune cells have ability to regulate metabolic outcomes and that immune cell 
populations known to respond to microbiota changes are found in the adipose tissues, 
there is the possibility that cells of the immune system can significantly impact adipose 
function and that these changes can be initiated by bariatric surgery 

C) Adipose tissue receives innervation from the CNS and this has physiological impact as 
denervation of specific depots causes hypertrophy. As bariatric surgery causes metabolic 
changes related to central regulation of metabolism this draws attention to the possibility 
that neural output to the adipose tissues are altered with surgery causing physiological 
changes 
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