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Essentials

• C57BL/6J-tissue plasminogen activator (tPA)-deficient

mice are widely used to study tPA function.

• Congenic C57BL/6J-tPA-deficient mice harbor large

129-derived chromosomal segments.

• The 129-derived chromosomal segments contain gene

mutations that may confound data interpretation.

• Passenger mutation-free isogenic tPA-deficient mice

were generated for study of tPA function.

Summary. Background: The ability to generate defined

null mutations in mice revolutionized the analysis of gene

function in mammals. However, gene-deficient mice gen-

erated by using 129-derived embryonic stem cells may

carry large segments of 129 DNA, even when extensively

backcrossed to reference strains, such as C57BL/6J, and

this may confound interpretation of experiments per-

formed in these mice. Tissue plasminogen activator (tPA),

encoded by the PLAT gene, is a fibrinolytic serine pro-

tease that is widely expressed in the brain. A number of

neurological abnormalities have been reported in tPA-defi-

cient mice. Objectives: To study genetic contamination of

tPA-deficient mice. Materials and methods: Whole genome

expression array analysis, RNAseq expression profiling,

low- and high-density single nucleotide polymorphism

(SNP) analysis, bioinformatics and genome editing were

used to analyze gene expression in tPA-deficient mouse

brains. Results and conclusions: Genes differentially

expressed in the brain of Plat�/� mice from two indepen-

dent colonies highly backcrossed onto the C57BL/6J strain

clustered near Plat on chromosome 8. SNP analysis attrib-

uted this anomaly to about 20 Mbp of DNA flanking Plat

being of 129 origin in both strains. Bioinformatic analysis

of these 129-derived chromosomal segments identified a

significant number of mutations in genes co-segregating

with the targeted Plat allele, including several potential null

mutations. Using zinc finger nuclease technology, we gener-

ated novel ‘passenger mutation’-free isogenic C57BL/6J-

Plat�/� and FVB/NJ-Plat�/� mouse strains by introducing

an 11 bp deletion into the exon encoding the signal peptide.

These novel mouse strains will be a useful community

resource for further exploration of tPA function in physio-

logical and pathological processes.

Keywords: brain; congenic mice; gene targeting; mutation;

tissue plasminogen activator.

Introduction

The development of methods to selectively disrupt genes in

mice by homologous recombination in embryonic stem

(ES) cells provided a potent new tool for analysis of gene

function in mammals that has been of immeasurable value

to a wide range of research fields [1]. Because germ line-

competent ES cells were most successfully derived from

various sub-strains of the 129 mouse strain, the large

majority of gene disruptions initially were made in this

strain. Due to the poor breeding characteristics, neurologi-

cal and neuroanatomical abnormalities and high tumor

incidence of 129 mice, gene-targeted mice developed using
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129 ES cells typically were backcrossed to inbred reference

strains, such as C57BL/6J. However, because of the low

probability of meiotic crossover occurring close to the tar-

geted gene, a large region of DNA is likely to remain of 129

origin, even in ‘congenic’ mice backcrossed for 10 genera-

tions (P = 0.91 for more than 1 centiMorgan of 129-

derived DNA flanking each side of the targeted gene) [2].

Importantly in this respect, a recent direct comparison of

the 129 and C57BL/6J genome sequences uncovered that

the two strains differ by no less than 1395 deletions, inser-

tions or nucleotide substitutions in protein coding regions,

which resulted in 188 lost or gained stop codons, 875 frame

shift variants and 332 splice donor or acceptor variants [2].

This finding led the authors of the above study to conclude

that essentially all constitutively gene-targeted mouse

strains generated using 129-derived ES cells carry ‘passen-

ger mutations’ that confound data interpretation [2].

Indeed, several examples of erroneous attribution of

observed phenotypes in gene-targeted mice generated using

129-derived ES cells have emerged recently [2–4]. With

regards to extracellular proteases, the reported resistance

of matrix metalloproteinase (MMP)-13-deficient mice and,

most likely, MMP-7-deficient and MMP-8-deficient mice,

to LPS-induced lethality was demonstrated not to be a con-

sequence of the loss of the MMP. Rather, it was caused by

a null mutation in the neighboring Casp11 gene, which is

present in 129 mice, but not in C57BL/6J mice [2]. A sec-

ond issue with many ES cell-generated gene-disrupted mice

relates to the use of homologous recombination to generate

the null mutation. This strategy often involves the deletion

of large segments of DNA within the targeted gene that

could result in the deletion of cis-acting regulatory elements

and microRNAs, while the insertion of a powerful neomy-

cin selection cassette could similarly modulate the expres-

sion of genes flanking the targeted locus.

Tissue plasminogen activator (tPA) is a fibrinolytic ser-

ine protease [5] that is widely expressed in the brain

[6–10], where it is involved in a diverse array of physio-

logical and pathophysiological processes unrelated to fib-

rinolysis that were identified in large part through the

analysis of tPA-deficient mice [11–25].
During transcriptomic profiling of genes differentially

expressed in the brains of tPA-deficient mice extensively

backcrossed to the C57BL/6J strain, we noted a highly

significant over-representation of differentially expressed

genes clustering around the Plat gene, encoding tPA, on

chromosome 8. A similar anomalous clustering of differ-

entially expressed genes was observed when we analyzed

a second colony of tPA-deficient mice independently

highly backcrossed to the C57BL/6J strain. Single nucleo-

tide polymorphism (SNP) analysis provided evidence that

at least 22 Mbp of DNA flanking Plat remained of 129

origin in each C57BL/6J- Plat�/� strain. Furthermore,

bioinformatic analysis identified several mutations, includ-

ing potential null mutations, in protein coding genes

located on this chromosomal segment.

Using zinc finger nuclease (Zfn) technology, we engi-

neered a null mutation in the Plat gene of C57BL/6J and

FVB/N mice. We demonstrate that isogenic C57BL/6J-

Plat�/� mice, free of 129 DNA, do not show anomalous

clustering of differentially expressed genes in proximity to

the targeted Plat gene. These novel isogenic Plat�/�

mouse strains constitute a valuable community resource

for further exploration of tPA functions in the brain and

other tissues.

Materials and methods

Mice

Mice were housed in standard barrier facilities under

approved protocols.

Expression array analysis

Twelve- to 14-week-old male ‘Melbourne’ C57BL/6J-

Plat�/� and age-matched C57BL/6J mice (Jackson Labo-

ratory, Bar Harbor, ME, USA) were transcardially trans-

fused with ice-cold PBS (eight per genotype). The

hippocampus was dissected out and placed in ‘RNA

later’. RNA was extracted using the ‘RNeasy Lipid Tis-

sue’ kit (Qiagen, Valencia, CA, USA) according to the

manufacturer’s instructions. RNA was then pooled from

pairs of mice to give four samples from each genotype for

subsequent analysis. The extracted RNA was quality con-

trolled, hybridized to Illumina microarray chips and ana-

lyzed by the SRC MicroRNA facility (University of

Queensland, Australia) using MouseWG-6 v2.0 Expres-

sion BeadChip (Catalog ID: BD-201-0202). Genes were

considered differentially expressed if the adjusted P value

was less than 0.05. The original high-throughput microar-

ray data are available through the following links:

https://cloudstor.aarnet.edu.au/plus/index.php/s/PYxAH-

TIkijH4zYy and https://cloudstor.aarnet.edu.au/plus/in-

dex.php/s/jPAXctPNeiIXKvQ.

RNAseq

Six-week-old ‘Michigan’ C57BL/6J-Plat�/� and

‘Bethesda’ C57BL/6J-Plat�/� littermates (four mice per

genotype), and age-matched wild-type C57BL/6J control

mice (four mice per genotype), were euthanized by CO2

inhalation. The brains were dissected out, the olfactory

bulb and cerebellum removed, and the brains snap fro-

zen in liquid nitrogen. cDNA library preparation and

Illumina high-throughput sequencing were performed by

The University of Michigan’s DNA Sequencing Core.

Bioinformatic analysis of these data was conducted by

the University of Michigan Bioinformatics Core. All

data from these studies have been deposited in the gene

expression omnibus (GEO) database with accession

number GSE76093. Genes were considered differentially
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expressed if presenting with an adjusted P value

(q-value) of 0.05001 or less and fold-difference in expres-

sion of more than 0.3. Genes located on the Y chromo-

some were excluded from the analysis because the

analyzed mice were both male and female.

SNP analysis

Low-density SNP analysis of the entire mouse genome was

performed by the Jackson Laboratory using the ‘JAX 150

SNP Panel’ polymorphic between C57BL/6J and 129

(Table S1). The panel consists of 154 SNPs that cover the

19 autosomes and the X chromosome with a density of

~15–20 Mbp/SNP. High-density SNP analysis of mouse

chromosome 8 was performed by the Jackson Laboratory

using a chromosome 8-specific panel of 34 SNPs, polymor-

phic between C57BL/6J and 129, covering the length of the

chromosome with a density of ~3.5 Mbp/SNP (Table S2).

Generation of Plat�/� mice using Zfns

A pair of Zinc finger-FokI fragment fusion proteins (Zfns)

binding, respectively, 50-GACTGGCTTTCCCAT-30 (nu-

cleotides 9399–9413 of the Plat gene, NC_000074.6) and 50-
GACCAGGTGGGT’30 (nucleotides 9419–9430 of the Plat

gene) were generated by Sigma-Aldrich (St Louis, MO,

USA). mRNA encoding the Zfn pair was generated by

in vitro transcription and microinjected into the male pronu-

cleus of C57BL/6J and FVB/NJ zygotes, which were

implanted into pseudo-pregnant mice. The ensuing founders

were screened by PCR using the primer pair 50-AAGAGT-

CATTGCTGGATGGG-30 (forward) and 50-GAT-

CACTCCTGGGAACGTGT-30 (reverse), which amplifies

the 325 bp fragment constituting nucleotides 9221–9545 of

the Plat gene. Founders positive for mutations in the signal

peptide-encoding exon 2 of Plat were further characterized

byDNA sequencing and screened for germ line transmission

by breeding to C57BL/6J or FVB/NJ.

tPA Western blot analysis

Non-reduced and non-boiled protein lysates from brains

were separated by SDS-PAGE and transferred to poly

(vinylidene difluoride) (PVDF) membranes. The mem-

branes were blocked with 5% non-fat dry milk for 1 h.

The blot was incubated with 2 lg/mL rabbit anti-human

tPA (ASHTPA-GF; Molecular Innovation, Novi, MI,

USA) for 1 h at room temperature. Bound antibody was

visualized by incubation for 1 h with donkey anti-rabbit-

HRP (Jackson Immuno Research, 711-036-152) 1 : 5000.

Plasminogen-casein zymography

Plasminogen-casein zymography was performed as previ-

ously described [26]. Lysis zones were visualized by stain-

ing of gels with Coomassie brilliant blue.

tPA activity assay

Active tPA was determined using a commercial sandwich

tPA capture ELISA kit (Molecular Innovations,

NTBIOCPAI) as recommended by the manufacturer.

Statistical analysis

Distribution of differentially expressed genes over all

chromosomes: we used a chi-square statistic with a refer-

ence distribution calculated using simulation (because

many of the expected hit counts are very small). Specifi-

cally, the expected number of ‘hits’ per chromosome,

assuming uniform distribution, was calculated and com-

pared with the observed number of hits per chromosome.

This comparison utilized a chi-square statistic (but not a

chi-square reference distribution). To obtain a reference

distribution we generated Poisson counts from 100 000

randomizations with mean values equal to the expected

number of hits per chromosome under uniformity,

accounting for the differing lengths of the chromosomes.

Positions of differentially expressed genes on chromo-

some 8: to assess the probability of the observed hits on

chromosome 8 being random, we divided the chromo-

some into 1 Mbp intervals and counted the number of

hits per interval. We then used a chi-square statistic to

compare this distribution of hit positions with what

would be expected under a uniform distribution in which

the hits were equally likely to occur at any point along

chromosome 8. The reference distribution was calculated

using simulation, with a uniform distribution to define

random positions for hits along the length of chromo-

some 8.

Bioinformatic analysis

Bioinformatic analysis of ‘passenger mutations’ co-segre-

gating with the targeted Plat allele was carried out using

the Sanger ‘Mouse Genomes Project – Query SNPs,

indels or SVs’ website (http://www.sanger.ac.uk/sanger/

Mouse_SnpViewer/rel-1505) [27,28].

Results

Transcriptomic profiling of brains of two independently

generated strains of congenic C57BL/6J-Plat�/� mice reveals

anomalous clustering of differentially expressed genes

around Plat on chromosome 8

C57BL/6J-Plattm1Mlg mice [29] were housed at the Aus-

tralian Centre for Blood Diseases, Monash University

(hereafter termed Melbourne C57BL/6J-Plat�/� mice). In

2009, when the expression analysis was carried out, these

mice were estimated to be backcrossed to C57BL/6J mice

for 13 generations. RNA was isolated from the brains of

Melbourne C57BL/6J-Plat�/� mice and from co-habitating
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age- and sex-matched C57BL/6J mice and hybridized to

whole genome expression arrays. Quadruplicate analysis

was performed, with each sample representing pools of

RNA from two mice. Overall, only 13 genes reporting in

the array were identified as differentially expressed in the

brain of C57BL/6J-Plat�/� mice, when compared with the

C57BL/6J control mice (Table 1). Surprisingly, 11 of these

13 genes (85%) were located on chromosome 8, which also

harbors the Plat gene (P < 0.000001, see ‘Materials and

methods’ for details on statistics). Furthermore, all of these

11 genes clustered around the Plat gene, on a chromosomal

segment spanning approximately 19 Mbp upstream to

8 Mbp downstream of Plat (Fig. 1A). This clustering of

differentially expressed genes within this 27 Mbp segment

is also highly anomalous (P < 0.000001), considering that

the total length of mouse chromosome 8 is approximately

129 Mbp and the total length of the mouse genome is more

than 2600 Mbp.

We next set out to examine if the abnormal distribution

of differentially expressed genes in Melbourne C57BL/6J-

Plat�/� mice was also observed in other congenic colonies

of tPA-deficient mice. Specifically, we analyzed C57BL/

6J-Plattm1Mlg mice housed at the University of Michigan

(hereafter termed Michigan C57BL/6J-Plat�/� mice), esti-

mated to be backcrossed for > 10 generations to C57BL/

6J in 2015 when the analysis was carried out. Brains of

four Michigan C57BL/6J-Plat�/� mice and four wild-type

C57BL/6J mice from Jackson Laboratories were subjected

to transcriptomic profiling by RNAseq. We again

observed an abnormally high frequency of differentially

expressed genes (eight of 32, 25%) located on chromo-

some 8 (P < 0.003) (Table 2). Furthermore, all eight

genes were located approximately 18 Mbp upstream to

5 Mbp downstream of Plat (P < 0.000001) (Fig. 1B).

Evidence for 129 origin of differentially expressed genes on

chromosome 8 of tPA-deficient mice

To explore the basis of the anomalous clustering of differ-

entially expressed genes around the Plat gene in the two

independently backcrossed congenic strains of C57BL/6J-

Plat�/� mice, we next contracted Jackson Laboratories to

perform SNP analysis of Michigan C57BL/6J-Plat�/�

mice and Melbourne C57BL/6J-Plat�/� mice. We first

employed a JAX 150 SNP Panel polymorphic between

C57BL/6J and 129, which covers the 19 autosomes and

the X chromosome with a density of ~15–20 Mbp. Strik-

ingly, of 154 SNPs analyzed in Michigan C57BL/6J-

Plat�/� mice, only one was found to be 129 specific

(rs3701395, Table S1) and this SNP was located

19.7 Mbp upstream of Plat, just upstream of a cluster of

five differentially expressed genes. This SNP was also 129

specific in Melbourne C57BL/6J-Plat�/� mice, as was the

adjacent SNP (rs3701395 and rs3684251, Table S1). Mel-

bourne C57BL/6J-Plat�/� mice were also heterozygote for

one chromosome 1 SNP (rs3697376, Table S1). Remark-

ably, this SNP was located very close to both the chro-

mosome 1-located genes differentially expressed in

Melbourne C57BL/6J-Plat�/� mice (chromosome loca-

tion-bp, rs3697376: 65042402. C430010P07Rik: 66719248-

66817562. Mtap2: 66175273-66442583). Based on these

findings, we next performed a high-density SNP analysis

of chromosome 8, employing 34 SNPs, polymorphic

between C57BL/6J and 129 (Fig. 2A and B and

Table S2). In Michigan C57BL/6J-Plat�/� mice, a contin-

uous cluster of seven SNPs analyzed, located 19-0.3 Mbp

upstream of Plat, were identified as being 129 specific

(Fig. 2A). An identical cluster of 129-derived SNPs was

found in Melbourne C57BL/6J-Plat�/� mice, which also

displayed two additional 129 SNPs located just down-

stream of Plat (Fig. 2B). Notably, the chromosomal seg-

ments identified in the SNP analysis as being 129 derived

in the two mouse strains harbored most of the genes dif-

ferentially expressed on chromosome 8 of the Michigan

C57BL/6J-Plat�/� mice and all of the identified genes dif-

ferentially expressed in the Melbourne C57BL/6J-Plat�/�

mice (Fig. 2A and B, and Table S1).

Bioinformatic analysis identifies multiple passenger

mutations in congenic C57BL/6J-Plat�/� mice

Locating the specific regions of 129-derived DNA in

Michigan C57BL/6J-Plat�/� and Melbourne C57BL/6J-

Plat�/� mice allowed for the direct bioinformatic identifi-

cation of ‘passenger mutations’ co-segregating with the

targeted Plat allele by using the Sanger ‘Mouse Genomes

Project – Query SNPs, indels or SVs’ website (http://

www.sanger.ac.uk/sanger/Mouse_SnpViewer/rel-1505)

Table 1 Chromosomal location of genes differentially expressed in

Melbourne C57BL/6J-Plat�/� mice

Chromosome

Length

(Mbp)

# Differentially

expressed genes

1 195 2

2 182 0

3 160 0

4 157 0

5 152 0

6 150 0

7 145 0

8 129 11

9 125 0

10 131 0

11 122 0

12 120 0

13 120 0

14 125 0

15 104 0

16 91 0

17 95 0

18 91 0

19 61 0

X 161 0

Y 95 0
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[27,28]. Interestingly, the 129-derived regions of both

Michigan C57BL/6J-Plat�/� mice and Melbourne C57BL/

6J-Plat�/� mice harbored five protein-coding genes

(Cd209a, Cd209b, Ccl25, Defb34 and Defb46) predicted to

be null in 129 mice and wild-type in C57BL/6J mice or vice

versa, as evidenced by the presence of in-frame stop

codons, frame shift-inducing insertions and deletions

(Table 3). An additional eight genes (Arhgef18, Cd209e,

BC068157, Gm560, Tubgcp3, Mcf2 l, Myom2 and Mchp1)

harbored one or more mutations causing non-conservative

amino acid substitutions. Owing to additional 129-derived

regions upstream of Plat, Melbourne C57BL/6J-Plat�/�

mice also displayed mutations in Adam3.

C57BL/6J-Plat�/� mice, generated by zinc finger nuclease

targeting of C57BL/6J mice, do not show anomalous

clustering of differentially expressed genes around Plat

We next used custom-designed zinc finger nucleases (Zfns)

to generate tPA-deficient mice de novo. A Zfn was

engineered to introduce mutations into the signal peptide-

encoding exon 2 of Plat (Fig. 3). mRNA encoding the

Zfn was microinjected into fertilized C57BL/6J and FVB/

NJ embryos that were implanted into pseudo-pregnant

females. Analysis of born offspring identified a number of

mice with mutations in exon 2 of Plat. This included

C57BL/6J and FVB/NJ offspring with an identical 11 bp

deletion in the signal peptide-coding exon 2, which were

selected for further analysis. This deletion removes

nucleotides 52–62 of the Plat open reading frame and

introduces a frame shift mutation after Pro17 of the tPA

signal peptide and a premature stop signal (Fig. 3A). This

gave rise to a null allele, as confirmed by plasminogen-

casein zymography (Fig. 3B), Western blot (Fig. 3C) and

tPA activity assays (Fig. 3D) of brain tissue from mice

bred to homozygosity for the targeted allele and their

wild-type littermates. These novel mouse strains hereafter

are termed, respectively, Bethesda C57BL/6J-Plat�/� and

Bethesda FVB/NJ-Plat�/�. As expected, low-density SNP

analysis of Bethesda C57BL/6J-Plat�/� mice showed all
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A
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Fig. 1. The clustering of genes differentially expressed in brains of congenic tPA-deficient mice in the vicinity of Plat is unrelated to the loss of

tPA. (A) RNA was extracted from congenic ‘Melbourne’ C57BL/6J-Plat�/� mice and age- and gender-matched C57BL/6J wild-type controls,

and whole-genome transcriptome analysis was performed by using expression arrays. The locations of Plat and of differentially expressed genes

on chromosome 8 are shown. Eleven of 13 differentially expressed genes (excluding Plat) in tPA-deficient brains (85%) are located within a 27

Mbp interval, flanking Plat. (B) RNA was extracted from congenic ‘Michigan’ C57BL/6J-Plat�/� mice and wild-type littermates and whole-

genome transcriptome analysis was performed by RNAseq. The locations of Plat and of differentially expressed genes on chromosome 8 are

shown. Eight of 32 differentially expressed genes (excluding Plat) in tPA-deficient brains (25%) are located within a 30 Mbp interval flanking

Plat. (C). RNA was extracted from ‘Michigan’ C57BL/6J-Plat�/� mice and ‘Bethesda’ C57BL/6J-Plat�/� littermates and whole-genome tran-

scriptome analysis was performed by RNAseq. The locations of Plat and of differentially expressed genes on chromosome 8 are shown. Seven

of 19 differentially expressed genes (excluding Plat) (37%) are located within a 26 Mbp interval flanking Plat. (D) No anomalous clustering of

differentially expressed genes in brains of isogenic ‘Bethesda’ C57BL/6J-Plat�/� mice around Plat on chromosome 8. RNA was extracted from

‘Bethesda’ C57BL/6J-Plat�/� mice and wild-type littermates and whole-genome transcriptome analysis was performed by RNAseq. The loca-

tions of Plat and of differentially expressed genes on chromosome 8 are shown.
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SNPs to be C57BL/6J derived (Table S1). High-density

SNP analysis of chromosome 8 from Bethesda C57BL/6J-

Plat�/� mice (Table S2 and Fig. 2) showed all SNPs but

one to be C57BL/6J specific. The single 129-specific SNP

(rs3709624, Table S2, indicated by red asterisk in Fig. 2)

also genotyped as 129 specific in two C57BL/6J control

mice purchased from Jackson Laboratories that were

included in the analysis (‘Control’, columns L and M in

Table S2), and we currently have no explanation for this

finding.

We next set out to provide direct experimental evidence

that the differential expression of chromosome 8 genes in

brains of Melbourne and Michigan C57BL/6J-Plat�/�

mice was not a consequence of loss of tPA, but rather a

result of retention of a 129-derived chromosomal seg-

ment. For this purpose, we interbred the new Bethesda

C57BL/6J-Plat�/� mice with Michigan C57BL/6J-Plat�/�

mice to generate littermate pairs of Bethesda C57BL/6J-

Plat�/� and Michigan C57BL/6J-Plat�/� mice. These

mice, both devoid of tPA, were then subjected to tran-

scriptomic profiling by RNAseq using quadruplicate anal-

ysis. A conspicuous clustering of genes differentially

expressed in Bethesda C57BL/6J-Plat�/� mice and Michi-

gan C57BL/6J-Plat�/� littermates around chromosome 8

was again observed, with seven of 19 differentially

expressed genes (37%) located on chromosome 8

(P < 0.05), clustering 19 Mbp upstream to 2.9 Mbp

downstream from Plat (P < 0.000001) (Fig. 1C and

Table 4). In sharp contrast, when the identical RNAseq

analysis was performed comparing brains from Bethesda

C57BL/6J-Plat�/� mice with those from their wild-type

littermates, no over-representation of differentially

Table 2 Chromosomal location of genes differentially expressed in

Michigan C57BL/6J-Plat�/� mice

Chromosome

Length

(Mbp)

# Differentially

expressed genes

1 195 0

2 182 1

3 160 0

4 157 1

5 152 2

6 150 0

7 145 2

8 129 8

9 125 3

10 131 3

11 122 3

12 120 0

13 120 2

14 125 1

15 104 0

16 91 0

17 95 3

18 91 0

19 61 3

X 161 0
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Fig. 2. Congenic tPA-deficient mice contain large contiguous segments of 129-derived DNA. High-density single nucleotide polymorphism

(SNP) analysis of congenic ‘Michigan’ C57BL/6J-Plat�/� mice (A), congenic ‘Melbourne’ C57BL/6J-Plat�/� mice (B) and isogenic ‘Bethesda’

C57BL/6J-Plat�/� mice (C). Positions of SNPs specific for strain 129 mice vs. C57BL/6J mice are indicated with red asterisks, and the positions

of SNPs specific for strain C57BL/6J mice vs. strain 129 mice are indicated with black circles.
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expressed genes on chromosome 8 was found, with only

two of 37 differentially expressed genes (5%) residing on

chromosome 8 (P = NS), located, respectively, 50 and

61 Mbp from Plat (Fig. 1D and Table 5) (P = NS).

Discussion

This current study provides evidence that tPA-deficient

mice highly backcrossed to C57BL/6J mice display differ-

ences in gene expression in the brain that are not related

to the absence of tPA, but rather to the way the Plat gene

was targeted. Two colonies of highly backcrossed C57BL/

6J-Plat�/� mice, made by targeting Plat 129-derived ES

cells, showed the same anomalous clustering of differen-

tially expressed genes in the vicinity of Plat, when inde-

pendently analyzed by whole genome array analysis and

RNAseq. In the two analyses, 86 and 25% of all differen-

tially expressed genes were located within a segment of

chromosome 8 roughly 19 Mbp upstream to 8 Mbp

downstream of Plat. Considering the length of the mouse

genome of more than 2600 Mbp, less than 1.5% of differ-

entially expressed genes would be expected to be located

on this short segment of chromosome 8, which constitutes

just 1.03% of the mouse genome. Furthermore, an iso-

genic C57BL/6J-Plat�/� mouse strain, generated in this

study by Zfn-mediated genome editing in C57BL/6J mice,

did not show this anomalous clustering of differentially

expressed genes. High-density SNP analysis showed that

both Melbourne and Michigan C57BL/6J-Plat�/� mice

contained a surprisingly large contiguous 129-derived

chromosomal segment, and we provide direct experimen-

tal evidence that the presence of this chromosomal seg-

ment is responsible for the anomalous clustering of

differentially expressed genes in C57BL/6J-Plat�/� mice.

Importantly, the 129-derived chromosomal segment

that co-segregates with the targeted Plat allele displayed a

number of differences in coding regions, when compared

with the corresponding chromosomal segment of C57BL/

6J mice, with at least four protein-coding genes poten-

tially being null in the 129 mice and wild-type in C57BL/

6J mice or vice versa, and eight additional genes display-

ing non-conservative amino acid substitutions. Notably,

some of these genes have reported roles in human brain

function: ARHGEF18 is involved in neurite retraction [30]

and was linked in a genome-wide association study to

sexual dysfunction in individuals treated for major

depression [31]. MCF2L participates in the formation and

stabilization of glutaminergic synapses of cortical neurons

[32], and SNPs in MCF2L and TUBGCP3 were identified

as predictive for successful smoking cessation [33].

Homozygosity for mutations in MCPH1 causes micro-

cephaly [34], whereas homozygous loss of ADAM3A is

associated with pediatric high-grade glioma and diffuse

intrinsic pontine gliomas [35].

Table 3 Passenger mutations associated with 129-DNA regions in ‘Michigan’ and ‘Melbourne’ Plat�/� strains

Gene

Position

on chr.8

(Mbp)

Distance

from Plat

(Mbp)

Coding region mutations in 129 vs. C57BL/6J

Mutated in

Michigan

Mutated in

Melbourne

Stop gain/

loss Frame shift Missense

Arhgef18 3.40 19.30 T315M;S975P + +
Cd209a 3.74 18.96 After C64 R13G;T36P + +
Cd209e 3.85 18.85 W208Stop + +
Cd209b 3.92 18.78 R247Stop C42S; I259V

A175V; T369A; V389M; E428G;

V439I;

R524Q; P558L; T559A; S620P;

P690S;

+ +

BC068157 4.21 18.49 F716L;P779T;S950A

S82P; W86R; H116Y; E120K;

P154S;

+ +

Ccl25 4.34 18.36 After P98 M169I + +
Tubgcp3 12.64 10.06 G190S + +
Mcf2l 12.95 9.75 Stop1102L + +
Myom2 15.10 7.60 R123Q;M131L;S234P;L977I;

S1311N

A300V; A303V; S469L; C580F;

T615A;

+ +

Mcphl 18.60 4.10 T615K + +
Defb34 19.12 3.58 After D25 + +
Defb46 19.24 3.46 C32Stop C21F + +
ENSMUSG00000097230 19.79 2.91 + +
AY761185 20.94 1.76 + +
Plat 22.70 0 N/A N/A

ADAM3 24.70 2.00 Stop823S G741D +

N/A, not applicable.
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Fig. 3. Generation of isogenic C57BL/6J-Plat�/� and FVB/NJ-Plat�/� mice. (A) De novo generation of Plat null allele. Schematic structure of

the proximal part of the mouse Plat gene (top), and the sequence of the signal peptide-encoding exon 2 (upper case letters) and flanking intron

sequences (lower case letters) (bottom). The Zfn binding sites are in bold letters, with the Zfn cleavage site in red. The 11 bp deleted in the

C57BL/6J and FVB/NJ strains carried forward for analysis are underlined. This deletion introduces a frame shift resulting in the production of

a mRNA encoding amino acid 1-17 of tPA fused to a 19 amino acid nonsense peptide. (B) Plasminogen-casein zymography. Lanes 1–4: puri-
fied human tPA. Lanes 5–8: protein extracts from brains of a litter of FVB/NJ mice containing two wild-type (lanes 5 and 8) and 2 Plat�/� lit-

termates (lanes 6 and 7). (C) tPA Western blot. Lane 1: purified human tPA. Lanes 2–5: protein extracts from brains of a litter of mice

containing two wild-type (lanes 2 and 5) and two Plat�/� littermates (lanes 3 and 4). (D) Active tPA (middle column) and total tPA (right col-

umn) protein extracts from brains of a litter of mice containing two wild-type (top and bottom row) and two Plat�/� littermates (middle rows).

Table 4 Chromosomal location or genes differentially expressed in

Michigan and Bethesda C57BL/6J-Plat�/� mice

Chromosome

Length

(Mbp)

# Differentially

expressed genes

1 195 2

2 182 2

3 160 0

4 157 0

5 152 0

6 150 1

7 145 2

8 129 7

9 125 0

10 131 1

11 122 1

12 120 1

13 120 1

14 125 0

15 104 0

16 91 0

17 95 1

18 91 0

19 61 0

X 161 0

Y 95 ND

ND, not determined.

Table 5 Chromosomal location of genes differentially expressed in

Bethesda C57BL/6J-Plat�/� mice

Chromosome

Length

(Mbp)

# Differentially

expressed genes

1 195 1

2 182 2

3 160 1

4 157 2

5 152 2

6 150 0

7 145 4

8 129 2

9 125 2

10 131 4

11 122 3

12 120 1

13 120 3

14 125 1

15 104 4

16 91 0

17 95 2

18 91 0

19 61 2

X 161 1

Y 95 ND

ND, not determined.

© 2016 International Society on Thrombosis and Haemostasis

Genetic contamination of gene-targeted mice 1625



It should be noted that the 129-derived co-segregating

chromosomal segments identified in the congenic C57BL/

6J-Plat�/� mouse strains have the potential to confound

data interpretation irrespective of whether the wild-type

mice used as controls are littermate-derived or age- and

sex-matched C57BL/6J mice. Our study, thus, highlights

the importance of reconstitution experiments in non-iso-

genic mice, where a wild-type phenotype can be restored

via the introduction of exogenous tPA into tPA-deficient

mice [11], or where tPA-overexpressing mice exhibit an

opposite phenotype to that of tPA-deficient mice [36].

Similarly, with regards to plasmin-dependent functions of

tPA, one can eliminate the confounding effects of co-

inherited passenger mutations when tPA-deficient and

plasminogen-deficient mice exhibit similar phenotypes

[37]. It is important to stress, however, that the present

study provides no evidence, directly or indirectly, that

any of the published phenotypes in tPA-deficient mice are

caused by 129-derived passenger mutations co-inherited

with the targeted Plat allele. Nonetheless, it is also clear

from the data presented in the current study that caution

must be exerted when interpreting phenotypes observed in

C57BL/6J-Plat�/� mice. Related to this, it is interesting

to note that this region of chromosome 8, which is syn-

tenic with human chromosome 8, has been suggested to

be a potential hub for genes associated with neuropsychi-

atric disorders and with cancer [38]. Undoubtedly, the

C57BL/6J-Plat�/� and FVB/NJ-Plat�/� mice generated

here should provide two novel mouse strains for the

research community to further explore tPA function;

strains which are free of co-inherited passenger mutations

that are inevitable when using 129-derived ES cells. Nev-

ertheless, the Zfn technology used to generate the two

mouse strains is relatively new, and the degree to which

‘off-targeting’ of the germ line occurs has not been fully

investigated [39,40]. Potential off-target mutations in the

two novel mouse strains, however, would only constitute

a potential long-term problem if located in proximity to

Plat.

It should also be stressed that in conditionally-targeted

strains, the potential of passenger mutations to confound

data interpretation can largely be eliminated by the use of

appropriate littermate controls, including Cre-negative lit-

termates that carry two conditionally targeted alleles and,

therefore, are expected to carry the same set of passenger

mutations near the gene of interest [2].

The plasminogen activation system was among the first

proteolytic systems to be analyzed by gene targeting in

mice. Consequently, targeting of genes encoding most

components of the system was carried out using 129-

derived ES cells. This includes, besides Plat, Plau[29],

Plaur[41,42], Plg[43,44], Serpine1[45], SerpinF2[46] and

Annat2[47]. In light of the speed, efficiency and low cost

of current genome editing technologies, the regeneration

of isogenic strains carrying null mutations in these genes

should be considered.

Addendum

A. L. Samson, D. A. Lawrence, T. H. Bugge, R. L. Med-

calf and R. Szabo conceived and designed experiments.

D. A. Lawrence and R. Szabo generated and analyzed

Plat�/� mice. A. L. Samson, T. H. Bugge, R. L. Medcalf

and R. Szabo performed array analysis and analyzed

data. A. L. Samson, D. A. Lawrence and T. H. Bugge

performed RNAseq and analyzed data. T. H. Bugge

wrote paper.
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