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Microhabitat preferenc& climate effects

ABSTRACT

Deterministic processasay uniquelyaffectco-distributedspecies’ phylogeographic patterns
such that discordant genetic variation among taxa is predicegcexXplicitly testing
expectations.of genomic discordanceaistatistical framework remains challenging. Here, we
construct spatially andrgporally dynamic models to investigate the hypothesefstt of
microhabitat'preferences the permeability of glaciated regions to gene flow in two closely
related montane specidstilizing environmental niche models from the Last Glacial Maximum
and the presend inform demographic models of changes in habitat suitability trwes; we
evaluate the relative probabilitiestefo dternative modelsising approximate Bayesian
computation (ABC)n which glaciated regions are eitherggrmeabler (ii) a barrier to gene
flow. Results based dhe fit of theempiricaldata todatasetsimulated using a spatially explicit
coalescent under alternative models inditla#genomic datare consistent with predictions
about the hypothesized role of microhabih generating discordapatterns of genetic variation

among thestaxéSpecifically, a model in which glaciated areas acted as a barrier was much more

probable based on patterns of genomic variatidbaiex nova, a wetadapted specieslowever,
in thedry-adaptedC. chalciolepis, the pemeable model was more probglkdéhough the
difference«in'the support of the models wawll This work highlights howgtatisticalinferences
can be used to distinguish deterministic procetfsdsire expected to result discordant

genomic patterns amorggpecies, includingpeciesspecific responses to climate change
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Microhabitat preferenc& climate effects

INTRODUCTION

Understanding the contribution of specsgecific attributes to observed patterns of genetic
variation is criticafor determining why taxa responded similarly (or dissimilarly) to historical
climate changesFortunately, newly developespatially explicitmethodologieshat generate
geneticexpectations undelternative scenarigg.g., Neuenschwandetral. 2008;Knowles &
Alvarade-Serrano 2010; Brown Bnowles2012) offer an opportunity tevaluate the relative
support for competing hypotheses relatedpecies’ life history charéeristics For example,
comparing the fit of empirical data to models tleapture differences ispecieshabitat
requirementssor ithe habitat stability across a landscape (e.g.etH#. 2013)mayprovides
insight intortherole of biotic factors in structuring genetic variation. Howewamn ghatthe
number of biologically informed models that could be tested for any given study sgstem i
limitless the challenge is how to decide what models to test (Knowles 2009).

Even.though it might be possible to compare a hundred different models (e.g., Pelletier &
Carstens 2014), such an approach may not be desirable. For example, if the diffenences a
the models are‘trivial (e.g., the models differ in what may be considergghce parameters that
do not impact the interpretation)the biologicalinsights provided by selecting one model over
another will'be limitedSuch inherent constraints of model-based approaches reinforce the
importance of developing modelsat illuminateprocesses dfiological interest (Papadopoulou
& Knowles.2015a, 2016ut see O’'Mearat al. 2015 for a dissenting point of view). In other
words, it issnetonlytheanalyticalapproach per se, but the creativity and intimate knowledge of
a study system that a researcher brings to such tests that ultimately determines how much insight
a model-based phylogeographic analysis might providéheR than buildingarratives centered
upon how wellempiricaldaa should fitgenericscenarig (e.g., testing for a correlation under an
isolation hy.distance modeljsights can be gained by developiragratives derived from
organisms’ natural historieas well as historicacologicaland climatic factorsto generate
testable hypothes¢Bapadopoulou & Knowles 2016). Given that not all biological
characteristics.(e.g., dispersal capability or habitat specificities) of a species may be important, or
that their effects may vary depending upon the geographic or temporal scale of study
(Papadopoulou & Knowles 2016), the key is to identify those characteristics that previdts
about the processesstturing genetic variation (e.g., the role of geographic barriers or changing
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81 climatic conditions)When coupled witldatasimulated under biologically informed models, the
82 relativefit of empirical genetic dat® alternativenodels forms the basis for rigorous statistical
83 testsof competing hypotheses (see also Bruggeatan' 2010; Eppersoet a/.2010; Landguth
84  etal201Q; Morgaret al 2011; Shirket al 2012; Papadopoulou & Knowles 20)5b
85 Herewedtest the role o$peces’ microhabitat preferencesd theirpotential interactions
86  with shifting distibutions associated with climatic changestructuringthe geographic
87 distribution‘of'genetic variation in two species of montane sediggsX L., Cyperaceae).
88  Briefly, although the species-@xcur within montan&abitatacross the southern Rocky
89  Mountains,C. ngva, an inhabitant of wet microhabitats (i.e., occurring predominanthin
90 drainages)nay-have been disproportionately displaced to lower elevdtielasiveto dry-
91 adapted speciebecause of thergeaccumulation of snow and ice in this microhabitat during
92 glacial periodgFig. 1).As a consequenad populationpersisence being limited tower
93 elevations around the margins of glaciated habitat, populaifd@snova may have been
94 relatively isolatedluringthe glacial periodthatpredomingedthroughout the Pleistocene (i.e.,
95  most of thestime during the Pleistocene is represented by glacial, not intérglacads). This
96 narrative contrasts with plant species that inhabit meadows, ridges, and slopesGuch as
97 chalciolepis, Inhabitants of drier microhabitats may have persisted in high elevationlatas t
98 remaineddree of glaciers @persistent snow throughout glacial cycles (although the persistence
99 of such populations is controversig@achteret al. 2016), in additiorio populations that may
100 have established at lower elevations. As a reGutthalciolepis populations may have remained
101  more intereonnected throughout glacial periods. Although the geographic patterning of
102  population'structure observed in these two species is consistent with such sen@sati
103  described in Massatti & Knowle€X)14),evaluating the extent to which differences in the
104 patterns of genetic variation can be ascribed to microhabitat differences requires formalization of
105 these narratives into models for statistical testing.
106 To test.whether current genetic structtetectsa species’ ability/inability to persist within
107  higher elevation microhabitats during glacial perjoglsgeneratd genetic expectatiaunder
108 two alternative.models — ométh glaciated regions aspermeabldiabitat and another with the
109 regions as barier to gendlow — using the integrative distributional, demographic, and
110 coalescent (iDDC) modelingpproachile et al. 2013) Specifically, we createdemographic
111  modelsthatincorporaed spatial and temporal heterogegeit climatically suitablereas, as
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112 informed by present and past ecological niche models;emuired thapopulationseither

113  persistwithin or be excludeffom glaciated areasee also Currat & Excoffier 2004; Wegmann
114 et al. 2006).By performingtests of the fit of the empirical data to simulated dasasehg

115 approximate Bayesian computation (ABC; see Beaumtait 2002 for an overview of ABC)
116 andtests of.model validation, we evaludtehetheithe speciesliffer in their supportor the

117  alternativesmodels in a manner consistent withhyyothesis that microhabitat differences

118 determinenowspecies respond to shifts in climatdisstudyis not onlya detailed analysis of
119 how speciespecific propertiesnaydetermine whether taxa respbsimilarly (©r dissimilarly)
120 to climateichange, but our woaksoillustrateshow generaharrativesabout the processes

121  structuringsgenetic variatiotean be formalized into models fstatisticaltesting We discuss our
122  findings in‘terms of our ability tgeneralie the effects of climate change on montane

123 communitiesas well asacknowledgeeneral caveats with our analyses thate open questions
124  requiring further analysis.

125

126 MATERIALS AND METHODS

127

128  Genomic data generation and processing

129 Carex chalciolepis (N = 110 andC. nova (N = 109 leaf material was field collected

130 from 11lsampling localities acroskefull extent of theirgeographicatanges irthe southern

131 Rocky MountainsKig. 1; TableS1). Within populations,hie collectingdistanceamong

132 individualsswas, maximizetb decrease the probabilibf sampling related individualgwverage
133  distance between samples of 300 m, and a minimum distance of 35 m). Leaf material was stored
134  insilica gel until DNA was extracted witDNeasy Plat Mini Kits (Qiagen, Hilden, Germay)
135 following the manufacturer’s protocd@s with previous libraries (see Massatti & Knowles

136  2014), anonymous genomic loci were developed usirgstriction associated DNA sequencing
137 (RADseq).approach (for details sead?sonet al. 2012); library construction and data

138  processingds‘described in full detail in the Supporting InformaBaefly, fragments ranging in
139 size from 400,to 500 base pairs were sequenced at The Centre for Applied Genonpital (Hos
140 for Sick Children, Toronto, Canada) to generate 50 base pair, single-end neglgsn&cleotide
141  polymorphisms $NPs) were identified using auftinomialbased likelihood model that
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142  accounts for sequencing error implemente8tacksv1.25 (Hohenlohet al. 2010; Catchest

143  al. 2011; Catchent al. 2013)

144 Five lllumina 2500 sequencing run&re used to generate data for this projecorder
145 toi) maximize thenumber of unlinked locij) reduce missing data to the fullest exteiit

146  maximize the.number of individuals per population, and iv) ensure that the subsampled SNP
147  datasets displayed the same genetic patterns among populations as the larger, unfiltered datasets
148 we employedthe following post-processing procedures. Only RADsegdotaining up to

149 three SNPswereretained, and foeach RADseq locusne randomly selectésNPwas exported
150 into asTRUCTUREformatted fileif the locuscontained lesthan 50% missing dataaRernsof

151 genomewide SNPvariation among individuals and populatiomerethenvisualized for each
152  speciewith"PCAsin the program R (R Core Team 2014) using thegadet’ package (Jombart
153  2008) and thadudi.pca’ function missing dataverereplaed by the mean frequenoy the

154  correspondingllele. Subsequently, we minimized missing data by manually rem@&MNfgsand
155 individuals.containingn excess of missing dadadrecheckingPCAsto ensurghat the

156  subsamplingsprocedure did not alter the major axes of genetic variation among pop(dagons
157 alsoHuang'& Knowles 2014). Individuals &f chalciolepis andC. nova contained an average
158 of 4.9% and.5.3% missing data, respectivéighleS2).

159 Custom scripts were uséd convert thesTRUCTUREformattedfiles into ARLEQUIN-

160 formattedfiles, whichwereinput intoARLSUMSTAT to extractthe empirical summary statistics
161 used inABC (see below)We also used thempirical ARLEQUIN-formattedfiles to create mask
162 thatwere appliedo the simulated dasats so thamount and pattern of missing aat the

163 simulated data'would matgheciselythat ofthe empirical datasetall custom scriptsand

164  genomic datare depositeth Dryad (doi10.5061/dryad.ng3byv

165
166 iDDC approach
167 Simulated genetic datasets to evaluate the support for the alternative mibaels, (i)

168 glaciers asarrierand ii) permeable glaciated regions (which allowed for Ipeedistence

169  within and gene flow acroggaciated regions) (Fig. 2)were generatedsing the iDDC

170 approach (described in detail in Eeal. 2013).Briefly, simulated genetic datasets were

171 generatedising a coalescent model informeddspatially and temporally explicit demographic
172  model thatreflected differences ihabitat suitabilitiescross space and tinlgased on the
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ENMs; described below), in addition to either population persistence within or excfusm
glaciated areas (i.e., the hypothesized predictions for the dry aratiajetied species,
respectively) The fit of the empirical genetic data to tfweo alternative modelwas evaluated
using approximate Bayesian computation (ABC), along with procetiuxedidateparameter
estimates anghodel quality(Wegmam et al. 2010).All scripts for the iDDC analysese
deposited'in Dryaddi:10.5061/dryad.ng3hv

Quantification"of Aabitatsuitability. Habitat suitabilityacross the southern Rocky Mountains

during the present and LGias estimatetbr C. chalciolepisandC. nova with MAXENT v3.3.3e
(Phillips etal..22006). Nineteebioclimatically informativevariables for the prest (WorldClim
v1.4; Hijmanset'al. 2005) and the LGMPMIP2CCSM; Braconnogt al. 2007)wereusedto
generateéhe environmatal niche models (ENMdull detailsarepresentedn the Supporting
Information). Georeferenced distribution points representativeach species’ entire range were
collected from personal fieldwork and validated voucher specimens housed at the Rocky
Mountain Herbarium (species distributi points are available dbi:10.5061/dryad.ng3hvTo

have acomputationallytractable number of te for demographic simulations (detailed below),
we statistically downscaled the cell sizes of the ENMs to 0.42 decimal degtk&5 knf per

cell) (e.gsRayet al. 201Q Heet al. 2013).Subsequently, thealues of theellsin theLGM and
present ENNM denotinghe logistic habitat suitability scadranging continuously from 0 to 1)
determined byAXENT were reassignedpecifically, the logistic values were grouped into ten
categoriessusing the ‘equal interval’ clustering method in ArcMap 10.0 (E&RlaRts,
California, USA)and assignedaluesrangingfrom 1-10.Given the extreme similarity of the
ENMs betveen the species (for both the present and past; Fig. S1), an averageabittite
suitability scores of the two species was generated for each time period and used for the
demographic.simulations (see details belddy) using estimates of habitstitabilities for the
present and past based on averages for the two species, we provide a standardized model that
avoidsthe coenfounding influences of subtle differences in the unique ENMs of the taxa that
could contribute to the relative probabégi ofthe alternative models (as opposed to differences
in the permeability of the glaciated areas themselves, which is the central focus of thdrstudy).
addition to thepresent and LGMENMs thatweregenerated for each speciEsdscapesf

habitat suiabilitiesspecific to the two alternative modelere generated:ne in which the
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glaciated areawerea barrier and one in which thesgjiors remained permeabléetailed

below), corresponding to the hypothesized effect of differences in microhabitajléiceated

regions would have been permeable in the dry, but not thadegited specied)lote that
becausenicrohabitatdifferences are manifeat a small spatial scale (i.e., meters or less) due to
the complex.interaction between topography and environmental conditions in montane regions,
the “habitat, suitabilities of the taxa based on quantification from the ENMs are similardyd

conveythatenvironmental conditions aseliitable for the species occurrence

SimulaeddatasetsDemographic and coalescent simulations were performgeL ATCHE2 (Ray

et al. 2010)togenerate patterns of genetic variation where habitat suitabilities differed across a
landscape anthroughtime (see Knowles & Alvarad&errano 2010; Brown and Knowles 2012).
For each of thejtwo models tested (i.e., glaciers as barriers vs. perimaaitd¢ Fig. 2, 1 000
000 simulagd datasetwere generated folaeh specieseparatelyi.e., 4 000 000 total}Jniform
priors were used for the demographic parametersi{egyeerdeme migration ratem,
maximum carrying capacity of a denke,and the population sigef the initial populations,
Nanc), and heearrying capacitiesf demeswerescaled proportionally ttheir habitat suitability
values. Imsaether wordslata were simulated over a range of maxiniiwalues, with the highest
quality habitat (demes with values of X¥8aclhing full carrying capacity (100%), while carrying
capacities bdemes associated wilbwer quality habitatveredecreased proportioral(see
Knowles & Alvarado-Serrano 2016ig. 2. Eachgenerationm proportion of the population
migrates out'of,the local deme to adjacent cels, {o the north, south, west, agalst). After the
exchange ofindividual$pcal demes grow logistically at the rate of 1, regulated by the carrying
capacity inferred fronthe habitat suitability Demographic simulatiawere initialized with a
southern, central, and northern populatieee(Fig. 2, each with a population size Nfnc. Note
that population treesstimatedising empirical SNP data f@. chalciolepisandC. nova
clustered populations sampled from these regions, validating our use of that@apiulations.
Thelandscapethatinformed the demographic modeling procedure differed tines.
Specificallyjfor. both thebarrier and permeabhaodels, annitial landscape based ¢ime ENM
at the LGM was used to inform the demographic simulations from generations Thésitial
landscape wasflowed by a modespecific landscape (i.e., a landscape represeatihgr (i)
glaciated areas as barriers or (ii) permeable glaciated areag)drarations 751-1750, which
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235 correspondetb the height of the last Plemsteneglaciation. For théinal period from

236 generations 1751-2083, the demographic modeling was informadilmglscapwith habitat

237  suitabilitiesbasedon an ENMestimatedisingcontemporary climatic conditiorfer both models
238 (Fig. 2). With a generation time of 3 years for these high elevation spgaieser 2003) and the
239  scaling of the.generations by a factor of 15 (to make simulations computationallglépthe

240  simulationsspan a time period from the present to the LGM and beydoig. that nedeling was
241 extended beyond the LGHfe., thefirst 750 generations) to provide a sufficient amount of time
242  for all suitable*habitat to be occupied over all possible combinations of populathmgdghic
243  parameters. Becauséthis scaling, any biological interpretation of absolute values of population
244  genetic parametergould need to badjustedaccordingly.

245 As noted above, the initial and final landscapes used to perform the demographic
246  simulations were the same between the models (and species), whereas the landscape

247  corresponding to the height of th&M for the two models differed in one key aspect: the

248  habitat suitability valuesfahe glaciated areas (which wedentifiedfrom maps of glacial

249  morainesandrglacial tilj see Ehlers & Gibard 2004; Colorado Geological Survey

250 http://coloradegeologicalsurvey.ojgSpecifically, under the model in which glaciers would
251 have acted.as barriedemesreconstructedsglaciated were assignedavalueof 0. In

252  contrast,inthe alternative model in which such glaciated areas were permedleathes

253  were decreased by 85% of the original value estimated from the LGM tNieh corresponds
254  toimpededdispersartelative to the surrounding naglaciated area(Fig. 2),with alower bound
255 of K = 20. Fhisilower bound was used because of the uncertainty surrounding habitat quality
256  estimates imlemes wherehabitatsuitability scoregell below the maximum training sensitivity
257  plusspecificity threshold identified byAXENT. Varying theK-values for demes withighly

258 uncertain habitat suitability could introduce demographic consequences that woulthtiage
259 influence on.the resulting patterns of genetic variafaliminaryanalyses confirmed that gene
260 flow was able.to occur among populations separated by glai@spite reduced carrying

261 capacitiesBecauseC. chalciolepisandC. nova were predicted to occur in and adjacent to

262  montane habitat during the LGM, but mothegeographically distaibwer elevation basins

263 and plains (whichvere predominantly represented by demes with values oflJemes with

264  habitat suitability values of 1 were assumed to be uninhabitsdxeFig 2).
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A spatially explicit coalescenhodel informed by the denspecific demographic
parameters was used to simulgémeticdata(i.e., genetic variation differed across the landscape
depending on the specific combinatiomgfkK, andNanc; Excoffier et al. 2000; Curratt al.
2004).An independent coalescent process was run to generate a genealogy for each locus
analyzed in.the empirical data (i.2142 and 101@oalescent simulations f@. chalciolepisand
C. nova, respectivelyfor each of the 4 000 000 datasstaulatedwith different combinations
of demagraphic parameters (the range of which as specified by the.ffamis)simulated
datasetconsisted of the same number of individdedsn the samethe corresponding sampling
localities, \withthe same amount of missing data,inthe empircal data

For.eaeh of the simulated genetic datasets, as with the empiricalidataymmary
statistics werescalculated usingLSUMSTAT v.3.5.2(Excoffier & Lischer2010). These included
the number ofegregating sitegs) for each population and across populationsan
heterozygosity across loci for each population and across populdtipra@ pairwise
populationksr (Weir & Cockerham 1984¥or a total 0f83 summary statistivalues calculated

persimulated-dataset

Model f£lectionand \alidation Approximate Bayesian computatioREC) was used to select

between. alternative modeks implementedith ABCestimator in ABCtoolbox (Wegmarah

al. 2010). Rither than using the 83 summary statistic vaili@gspendentlyo estimate
parametergpartial least squares (PLS) components (BoulesgkeStrimmer 2007) were

extracted fromhe summary statistiassing the “PLS” package (Mevik & Wehrens 2007) with
boxcox treatment (Box & Cox 1964) in R for the first 20 @0@ulatonsfor each model and
speciesThis approach removebe effects of interactions between summary statistics and
reducesthe curse of dimensionality@ssociated with using a large number of summary statistics
(Boulesteix& Strimmer2007). We examined the root mean squared error (RMSE) prediction for
each parameter to decide how many PLS compotentse forparameter estimatn (Fig. S2.

Of the millien"simulated datasets generated for eactiepeander a particular model, 5000
simulations(0:5%)whose summary statistics were closest to those calculatedifesmpirical
genomic datavere retaineénd usedor parameter estimation amaodel selectionPost

sampling regressn adjustment waapplied usig the ABC-GLM (general linear model)

function (Leuenberger & Wegmann 2010)R to obtain postear distributions of the
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296 parameers. Bayes factoysvhich arethe ratic between majinal densities of the two models,

297  were usedor model selectioma higheratio indicates more suppdir the first mode(Jeffreys

298  1961).

299 To evaluate whether a model is capable of generatingsoaiiar tothe empirical data,

300 the likelihood.of the empirical dateascomparedo the likelihoods otheretained simulations

301 under the GLM model. If all the retained simulations have a better likelihoodnhahserved

302 data (i.e:,'a’lovP-value), it would indicate a model is highly unlikely (Wegmahal. 2010). A

303 coefficientofvariation ) of each parameter explainedthy PLScomponers was also

304 computed and used as an indicatothef power of estimation (Neuenschwaneteal. 2008).For

305 the most probable model selectedeach speciesheaccuracy of parameter estimates was

306 validated using 1000 pseudo-observatiomsegated from prior ditributions of the parametei$

307 estimation of the parameters is unbiased, posterior quantiles of the parameters from pseudo runs
308 should be uniformly distribet (Cooket al. 2006; Wegmanet al. 2010). The posterior

309 quantiles of true parameters for each pseudo run were also calculated based on the posterior
310 distributioprafithe regression-adjusted 5000 simulations closest to the pseud@imser

311

312 RESULTS

313

314  Empirical genomic dataset

315 Almost 180 000 000 (average 1 630 280 £719 977 per individual) and 172 000 000

316 (average /579,380 £733 329 per individuaBds were generated for thE0 and 10€.

317 chalciolepisandC. nova individuals respectivelfTable ). The retentiorof reads after data
318 processing and assembiyth Stacksaveragd 86% per individual for both species. The final
319 dataset contained 1142 loci with 1 SNP per locus across 10¢ichdils ofC. chalciolepis and
320 1010 loci with.1. SNP per locus across 99 individual€.afova, after postprocessing steps to
321 remove loci.and/or indiduals because of missing data. Hataset had good representation of
322  all sampledspopulations for tests with iBC approaci{Table S3)

323
324  Model selection and validation
325 Based orthe relative informatin content contained in the PLS componeihis firstsix

326  PLSsof the predictor variables (i.e., the summary statistics) vetagnedfior ABC analysegsee
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327  Fig. S9. Posterior distributios of parameter estimategere distinct fronthe prior, indicating
328 theycontained information relevant to estimating the paramétgs 3). Moreover, comparison
329 of the posterior distributions before and after GLM regression adjustment of theek@iaed
330 simulationsshows a marked improvement of parameter estimateghetGLM regressior(Fig.
331 3). The &curacyof theparameteestimatevaried(Tablel). Specifically,in addition to a flatter
332  posterior probability (Fig. 3Yhe lowest powefor estimating parametealues was associated
333  with the"aneestral population si@lanc), as indicated by the loweRf values across models
334 (Tablel). Neverthelessgistsof potential bias of parametestimateshowthat posterior

335 distributions of\anc areuniformly distributed in botlspecieqFig. 4). In contrasthe histograms
336  of the posterior,quantilest mandK did deviatesignificantly from a uniform distribution for
337  both species based on analyses of 1000 pselsierved datasetsuggesting potential bias
338 (Fig. 4).

339 Based orthe marginal densitiesalculated from the 50Q@tainedsimulations for each
340 model,the'model with the best fit to the empirical ddiased on Bayes factywdiffered

341 between species. Specificalthe modelwith glaciated areaasbarriess was more probable for
342  C. nova, whereaghe model with permeable glaciated areas was more probab for

343  chalciolepis(although i the latter case, the difference waarginal), which corresponds to the
344  hypothesized effect ahicrohabitadifferenceqTablel). Evaluation of whethéhe most

345 probable modelvascapable of producing thempiricaldatain each specie@.e., consideration
346  of theP-values) indicated thahotonly were theya good fit, but they wera better fit (i.e.a

347 largerP-value)than the alternativenodels suggesting aetter correspondence between the
348 empirical datasand the simulated défable ).

349

350 DISCUSSION

351

352  Our study,highlightshe formalization of biologically informed hypothese®® a statistical

353  modeliestingframeworkseePapadopoulou & Knowles 2016) évaluatevhetherspecies

354  specific traitsumay mediate the effects of climate change. Specifically, we show that species’
355 responses to glaciationsaybe intricately tied taheir microhabitat preferenceBelow we

356  discuss the implications of our findings when considering the effects of clilmatge on co-
357 distributed taxa, and especially on species in montane communities.
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In contrast to studies that rely upon correlative approaches to identify fdcbrsay
structure genetic variatiqisee Massat Knowles 2014) here the link between genetic patterns
and process is expligite., data were simulated widither population persistence within or
exclusion from glaciatkareas- the hypothesized predictions for the dry and wet-adapted
species, respectivelpased on the differential accumulation of glaciers on ridges and drainages;
see Fig. LJand the fit of empirical data to alternative modeésstatistically evaluatk
Moreover"our'study differs from other modelsed approaches in which a generic or “naive”
model is applied (i.e., a model that is not informed by biological knowledge of a patrticula
system)(Pelletier & Carsten2014;Grummeret al. 2015;0’Mearaet al. 2015) we designed our
study to targetsspecies that differed in one key {raiicrohabitat. Minimizing differences
between taxa allowed us to explicitly test hypothese®d at providingpecific insights about
the contributioniobpeciesspecific traitgo patterns of genetic variatidalbeit with some
caveatssee below In addition to discussing the utility of the iDDC approach to test if
phylogeographic discord reflects deterministic factors, we address both temgésland
limitationsswithgsuch inferences. Lastly, we highlight the insights that comparative

phylogeography can provide regardihg role of biotic factors in structuring genetic variation

Ecol ogi cal-and evolutionary implications for montane taxa

The finding of a correspondence between a model in which glaciated areas were barriers
to gene flow and genomic variation in the vaefaptedC. nova, as opposed to a model in which
glaciated areas, were permeable, as with genomic variation in taelapye C. chalciolepis
(Table 1), hassa number of ecological and evolutionary implications. From an ecological
perspective, our work highlights how generalizations about the response of montane
communities to climate change may be overly simplified (see absaAtleret al. 2016).
Importantly,the structure of genomic variation of t6arex speciedliffers significantly (i.e., the
parameterization and fit of the alternative models differed between the taxa; Table 1), despite
both sedgesibeing common anddisiributed (Massatet al. 2016) and having many biological
similarities,ineludingtraits associated with dispersal capabilitsreover, herespective fibf
the dryadaptedrersus wetadaptedspecieso a moe! with either population persistence within
or exclusion from glaciated areadndine with expectations derived from knowledge of the
interactiors of persistent snow and ice witticrohabitas in montane ecosystems (Ehlers &
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389 Gibbard 2004). As such, #his the first study to directhest causal mechanismelated tdhe

390 persistencef populations in glaciated regions (Loleel. 2011; Westergaaret al. 2011,

391 Lanieret al. 2015; Wachteet al. 2016). Specifically, differing support for tiheostlikely model
392 between the speci€¢$able ) suggests thapecies adapted to wetter microhabitats were more
393 isolated arounthe margins of glaciers, whereas species adapted to drier microhabitats persisted
394  within glaciated regiongas well as establishing Bwer elevations) and remained relatively

395 connectedby‘gene flow.

396 It is"generally acceptetthat satistical evaluation of alternatiyocesseghat might have
397 generated observed patterns of genetic variation (e.g., through model selectionrpmaed

398 used herejs critical because similagenetic patterns may result finadifferent demographic

399 processes(Csillerst al. 201Q Heet al. 2013). However, our study is more tremexample of

400 model-based statistical phylogeography (Knowles 2009). Specifically, in compaittoothrer
401 comparative phylogeographic analyses, our study standseocatise a deterministic process that
402 is expected to generate discantlgenomic variatioamong taxas evaluated (i.ethe fit of

403 alternativermodels is predicted to differ depending on a taxon’s microhabitatpomalesy to

404 the hypothesized persistence in or exclusion from previously glaciated digias)ontrasts with
405 the traditien,of relying upon phylogeographic concordance for assessing the role ofiegmpet
406  processesyand where discord is commonly attributed to the idiosyncrasies of hesierydd in
407 Papadopoulou & Knowles 2016). Nevertheless, there are some caveats with our approach.
408 Specifically, while we have conducted analyses aimed at addressing the quality of our inference
409 (discussedsin‘the following section), there are additional hypotheses thahwnet rule out. Note
410 that all modebased comparative phylogeographic studiee ths issue (Knowles 2009 that

411 s, this cautionis not unique to our study, or specific to the iDDC procedure per se. Moreover,
412  from our perspective, such a discussion is extremely helpful for considering arlaitsesy be
413  worth pursuing.in the future to provide additional insights into the role of biotic factors

414  structuring.genetic variation. In this regard, we would argue that the merit of our stday, a
415 comparativesphylogeographic studies more generally, is not in identifying “the evolutionary
416  history” of taxa. Instead, it is the insights gained by identifying the probability of onehegimot
417  relative to others, which is a function of the both the study design and its execution. As noted
418 above, and given that patterns of genetic variationany species are postulatedeflectthe

419 interactionf ecology andalimatic oscillations (Avise & Walker 1998; Hewitt 2000; Carstens
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420 & Knowles 2007), our results set the stage for additional work that is needed mgftwread

421 generalizations can bedved from model-based comparative phylogeographic analyses about
422  the role of speciespecific traits in structuring genetic variation (see also Papadopoulou &

423  Knowles 2016).

424

425  Validation and.inter pretation of model-based inferences

426 Thereare both methodological and conceptual aspects of masked inferences that

427  must be considered to avoid erroneous conclusions or tests that offer Imsitgds. For

428 example, there are a number of methodological issues that can be especialhgicttalvith

429  ABC procedures (see Oatisal. 2013) and the iDDC approach we applied. These include issues
430  with approximatinghe likelihood of models with summary statistics (Pritcheiral. 1999;

431 Beaumontt al. 2002) as opposed to using all of the detanfull likelihood-based models (Hey

432 & Nielsen 2004, 2007; Kuhner 2006; Nielsen & Beaumont 2009; Hey 2Btdgover,in

433  addition to.difficulties associated with particular steps in ABC procedargs post-sampling

434  adjustmentwhen the relationshipilween parameters and summary statistics is extrapolated

435 beyond the'region of the observed datasestBeaumonet al. 2002 Leuenberger & Wegmann

436  2010), ABC.will always produce a posterior distribution, even if the model is a pooitiie

437  data(Bertorlle et al. 2010). Accordingly, model validation csitical.

438 Several approaches wapplied suggest that our results are generally robust. We evaluated
439 the potential bias in parameter estimates (Fig. 4), contrasted the posterior probability of

440 parameterestimatesegpand postGLM (Fig. 3) and relative to the prior, as well as utilized the

441 RMSE of parameter estimates (Fig. S2) to infaecisions about the inclusion BLS

442  componefts. While the predictive power of the data for some parameters differBifsee

443  Table 1) and the posterior quantiles calculated from pseudo observed datasetsncdrimtith

444  showed a,significant departure from a uniform distribution (Gaak 2006; Wegmanst al.

445  2010), we note'that for both species, the most probable model provided not only (i) a good fit to
446  the empirical'@enomic data, but (ii) it was a better fit compared to the less probable model (Table
447 1). Specifically, the Bayes factor indicates strong support forahéeb modein C. nova, and

448  thismodel has a much higher probability of generating simulations with likelitiales

449 comparable téthe empiricadatacompared to thpermeable model (TablE). In C. chalciolepis,

450 themarginal densitiesf the two models are much more similar. As a consequence, although the
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451 empirical data is more probable under the permeable model, the difference in supabdrbas
452  theBayes factors not strongNevertheless, it is worth noting that, even though some

453  combinations of parameters produce data that match the. chalciolepis empirical data under
454  the karrier modelthe rmeable model hasnauch wider parameter region that getesalata

455  close to the,empirical data (as reflected in differences iR4tredues forthe two models; Table
456 1). The fit'of the empirical data undiwese complex models is very encouraging because it can
457  be difficult'to'capture the complicated nature of a spehis®ry. For example, despite

458 approaches*forevaluating complex models, the likelirmidde empirical datander the most

459  probable model may be much lower than any data simulated under such a model (see Excoffier
460 etal. 2013):

461 Even'though our models are capable of generating the data (Table 1), this does not mean
462 the most probable models for the two species are the “correct”\Weesckowledge that there
463  could beother models not considered here that might fit the empirical Hataever, this does

464  not discount the insights gained with respect to the goal of the study, which was tioetiagtrw
465 the empiricalrdata of two species would gort alternative models as predicted if the

466  microhabitatswof the species mediated their responses to climate dnathggeregard,

467  comparison.of the estimated parameter values may illuminate possible differences in the
468 populationsdynamics of the specigsder climate change scenaritis particular, we note that.

469 chalciolepistended toward higher valueskf.x and lower values ah compared t&. nova,

470  while the difference itNanc Wwas more ambiguousecause of uncertainty in the estimation of this
471  parameter(Fig. 3). Specificallthe PLSs of the summary statistics were informativelfor a

472  parameterin:both species, but estimates\yf,c are associated with only moder&evalues, in

473  contrast td the very hig? for theother parameters (Table 1).the context of glaciations, these
474  combinations of parameter values may intimate hihitatstability for dryadapted species

475 facilitated larger, effective population sizes and lower rates of migration, while continual

476  disturbance within wet microhahbis fostered relatively lower population sizes and higher rates
477  of migrationin‘wetadapted specidg.g., the reestablishment of populations in disturbed

478 habitat3. Our analyses support this proposition, but the detected biases in some parameter
479  estimations (Fig. 4) cautions against interpreting the parameters directiy/égeeanret al.

480 2010).
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481 Evaluatingpotential demographic differences between the species under changing

482  climatic conditiongs an important area for future consideration. Such investigations may include
483  tests of whethesupport for alternative modeisflect differences in howstimats of habitat

484  suitability (as informed by ENMsscale to poplation demographic parameteFar example, a

485  particular value of habitat suitabilitpay nottranslate into equivalent predicted carrying

486  capacities betweeBarex species (as modeled here). While there are not pronounced differences
487  in the contemporary abundanea#<C. chalciolepis andC. nova that suggest norequivalent

488 relationship'between the suitability of a habitat and local population sifiesences in the

489 local stability ofthe speciespopulations, oevenlocal adaptationcould potentiallycontribute

490 to the differentypatterns of genetic variatiarways noexplicitly accounted for in our models.

491 Likewise, we do not directly model microhabitat preference per se, but inegtadodels with

492  eitherpopulation persistence or exclusion from glaciated areas baskd bypothesized

493  predictions for the dry andetadapted species, respectively, based on the differential

494  accumulation of glaciers on ridges and drainages Fig. 1)It is possible that factors other than
495  microhabitatypreference might contribute to the persistence or exclusiomdfden glaciated

496 areasHence,it‘may not be microhabitat preference, but possiishe untested egarying

497  explanatory.variablehat drives the differencestinefit of the taxato the alternative models.

498 Howevergthe similarity of the taxa makes it difficult to idégtother hypotheticalyetrealistic

499  factors Moreover, any such hypothetical factor would not only have to result in contrasting

500 support for.the alternative modddstween the taxdutalsopreserve the directionality of the

501 model fits (e"g:C. chalciolepis, but notC. nova, mustfit the model withpersistence within

502 glaciated areasind vice a versa for the model witktckision from glaciated area$Ve note that

503 otherspecies that are closely related to andlistributedwith C. chalciolepisandC. nova

504 (Massattiet al. 2016)will facilitate the exploration ofheseintriguing hypotheses, bstich tests

505 are beyond.the scope of our presamdlyses

506

507  Conclusions

508 Using intimate knowledge of the interactions between climate and topography within
509 montane ecosystems, as well as utilizing data from other disciplines (e.g., maps of glacial till and
510 glacial morainesFig. 1), we tested alternative models to elucidate the potential impact of

511 glaciers orco-distributed species. We evaluated the reldiivaf empirical data undee model
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in which glaciated areas were a barrier versus one in which they were pertodabtdhe
biologically informed hypotheses that differences in microhabitat prefesevmad result in
predictable differences in the responses of the taxa to climate change. Our results stiygorted
hypothesized predictions for the dry and wdapted specidsased on the differential
accumulation.of glaciers on ridges and drainages (frigtiie barrier model wahe most

probable feiC. nova, whereas the model with permeable glaciated regions was more probable in
C. chalciolepisi(although in he latter case the difference was not sty@mgble 1)

The'models and approach we apply here go beyond traditional analyses common in
phylogeography (e.g., tests of isolation by distance; Slatkin E8fBromparative
phylogeography (e.g., relying on concordant patterns for inferring the role of factors in
structuring'genetic variation; Papadopoulou & Knowles 2015a). Suchaagp@®are in their
infancy and have only been applied in a limited number of studies (e.g., Neuenschatvahder
2008;Heet al. 2013; Martinkoveet al. 2013). By combining the power that genomic data
provide with the proper validation of complex models, approaches such as iDDC provide an
exciting opportunity to address ecological and evolutionary principles in a catmpar
phylogeographic framework that cannot be addressed using traditional method@&gadter
et al. 2013;.Papadopoulots Knowles 2016).

Acknowledgements

The authors*are grateful for the support and helpful advice of their colleaguesalbs@edn

He on analyses and Anna Papadopoulou for comments on an earlier draft of the manuscript. Thi
work was funded by NSEDEB 1309072 to RM) and the Hinsdale Scholarship from the
University,of Michigan Museum of Zoology to RM.

This article is protected by copyright. All rights reserved



Microhabitat preferenc& climate effects

536 REFERENCES

537

538 Alexander JM, Diez JM, Lexe JM (2016) Novel competitors shape species’ responses to
539 climate changdyature, 525, 515-518.

540

541 Avise JC, Walker D, Johns GC (1998) Speciation durations and Pleistocene effects on vertebrate
542  phylogeographyProceedings of the Royal Society B: Biological Sciences, 265, 17071712.

543

544  Beaumont MA, Zhang WY, Balding DJ (2002) Approximate Bayesian computation in

545  population,geneticsenetics, 162, 2025—-2035.

546

547  Bertorelle G, Benazzo A, Mona S (2010) ABC as a flexible framework to estintategdsphy
548 over space and time: some cons, many Matecular Ecology, 19, 2609-2625.

549

550 BoulesteixAlwStrimmer K (2007) Partial least squares: a versatile tool for the analysis of high
551 dimensional genomic datBriefingsin Bioinformatics, 8, 32—44.

552

553 Box GEPy#Co0x DR (1964) An analysis of transformatidosrnal of the Royal Satistical

554  Society: Series B (Statistical Methodology), 26, 211-252.

555

556  BraconnotsP;"Otto-Bliesner B, HarrisoretSal. (2007) Results of PMIP2 coupled simulations of
557 the Mid-Holeeene and Last Glacial MaximwRart 1: experiments and largeale features.

558 Climate of the Past, 3, 261-277.

559

560 Brown JL,Knowles LL (2012) Spatially explicit models of dynamic histories: examimat

561 the genetic.consequences of Pleistaxglaciation and recent climate change on the American
562  Pika.Molecular Ecology, 21, 3757-3775.

563

564 Bruggeman DJ, Wiegand T, Fernandez N (2010) The relative effects of habitatdoss a

565 fragmentation on population genetic variation in the red-cockaded wdapBocoides

566  borealis). Molecular Ecology, 19, 3679-3691.

This article is protected by copyright. All rights reserved



567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596

Microhabitat preferenc& climate effects

Carstens BC, Knowles LL (2007) Estimating Species Phylogeny from GeedProbabilities
Despite Incomplete Lineage Sorting: An Example fidetanoplus Grasshopper$ystematic
Biology, 56, 400-411.

Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2@itk$: Building and
Genotyping'LecDe Novo From ShorRead SequenceG3 Genes, Genomes, Genetics, 1, 171—

182.

Catchen JgHohenlohe P, Bassham S, Amores A, Cresko WA (2013): Stacksalysis tool set
for population genomic$Jolecular Ecology, 22, 3124-3140.

Cook SR, Gelman A, Rubin DB (2006) Validation of software for Bayesian models using
posterior quantileslournal of Computational and Graphical Satistics, 15, 675—692.

Csilery K, Blum MGB, Gaggiotti OE, Francois O (2010) Approximate Bayesian computati
(ABC) in"practice Trendsin Ecology & Evolution, 25, 410-418.

Currat M, Ray N, Excoffier L (2004) SPLATCHE: a program to simulate geneticsttiver

taking into.account environmental heterogenaitglecular Ecology Notes, 4, 139-142.

Currat M, Exeoffier L (2004) Modern humans did not admix with Neanderthals during their
range expansion into Eurog@.oSBiology, 2, 2264-2274.

Ehlers J, Gibbard PL eds. (200@yaternary Glaciations - Extent and Chronology I1: North
America. Elsevier, London, United Kingdom.

Epperson BK;,McRae BH, Scribnerdkal. (2010) Utility of computer simulations in landscape
geneticsMolecular Ecology, 19, 3549-3564.

This article is protected by copyright. All rights reserved



Microhabitat preferenc& climate effects

597  Excoffier L, Dupanloup I, HartaSanchez ket al. (2013) Robust Demographic Inference from
598 Genomic and SNP DatBL0oS Genetics, 9, e1003905.

599

600  Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programsftrme
601 population genetics analyses under Linux and Wirsdolecular Ecology Resources, 10, 564~
602 567.

603

604  Excoffier £;"Nevembre J, Schneider S (2000) SIMCOAL.: a general coalescentrprimgréne
605 simulation of molecular data in interconnected populations with arbitranpgl@phy.Journal
606  of Heredity;915506-509.

607

608 Grummer JA, Calderéispinosa ML, NietdMlontes de Oca At al. (2015) Estimating the
609 temporal and spatial extent of gene flow among sympatric lizard populations Gelapsrus)
610 in the southern Mexican highlanddolecular Ecology, 24, 1523-1542.

611

612 He Q, Edwards DL, Knowles LL (2013) Integrative testing of how environments from thio pas
613 the present,shape genetic structure across lands&aphksion, 67, 3386—-3402.

614

615 Hewitt G (2000) The genetic legacy of the Quaternary ice &lgdsre, 405, 9074913.

616

617 Hey J (20X0)4solation with migration models for more than two populatbolgcular Biology
618 and Evolutions27, 905-920.

619

620 Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, iongrates and
621 divergence.time, with applications to the divergencBraisophila pseudoobscura andD.

622  persimilis. Genetics, 167, 747-760.

623

624 Hey J, Nielsen R (2007) Integration within the Felsenstein equation for imprové&d\Wdrain
625 Monte Carlo methods in population genetsoceedings of the National Academy of Sciences,
626 USA, 104, 2785-2790.

627

This article is protected by copyright. All rights reserved



628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658

Microhabitat preferenc& climate effects

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resatetipolated
climate surfaces for global land arelernational Journal of Climatology, 25, 1965-1978.

Hohenlohe PA, Bassham S, Etter &@l. (2010) Population Genomics of Parallel Adaptation in
Threespine Stickleback using Sequenced RAD TRIgSS Genetics, 6, €1000862.

Huang H,'Knowles LL (2014) Unforeseen Consequences of Excluding Missing Data from Next-

Generation'Sequences: Simulation Study of RAD SequeBgstamatic Biology, in press.

Jeffreys H(1961Theory of probability, 3rd ed. Clarendon Press, Oxford, United Kingdom.

Jombart T (2008xdegenet: a R package for the multivariate analysis of genetic markers.
Bioinformatics, 24, 1403-1405.

Knowles Ld=(2009) Statistical Phylogeograpkynual Review of Ecology, Evolution, and
Systematics40y593-612.

Knowles Ltz Alvarado-Serrano DF (2010) Exploring the population genetic consequences of the
colonization process with spatio-temporally explicit models: insights from abeglaogical,

demographic and genetic models in montane grasshopf@esular Ecology, 19, 37273745.

Kdrner C (2003l pine plant life: functional plant ecology of high mountain ecosystems.
Springer, Berlin, Germany.

Kuhner MK (2006) LAMARC 2.0: maximum likelihood and Bayesian estimation of population
parametersBioinformatics, 22, 768—770.

Landguth EL,Cushman SA, Murphy MA, Luikart G (2010) Relationships between migration

rates and landscape resistance assessed using indivacheal simulationd/olecular Ecology
Resources, 10, 854—-862.

This article is protected by copyright. All rights reserved



659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687

Microhabitat preferenc& climate effects

Lanier HC, Massatti, R, He Q, Olson LEnéwles LL (2015) Colonization from divergent
ancestors: glaciation signatures on contemporary patterns of genomiowuariafiollared Pikas
(Ochotona collaris). Molecular Ecology, 24, 3688-3705.

Leuenberger.C, Wegmann D (2010) Bayesian computation and model selection without
likelihoods.Genetics, 184, 243-252.

Lohse K, Nicholls JA, Stone Gdt al. (2011) Inferring the colonization of a mountain range-

refugia vs. nunatak survival in high alpine ground beelliebecular Ecology, 20, 394-408.

Martinkova*N,Barnett R, Cucchi & al. (2013) Divergent evolutionary processes associated

with colonization of offshore islandslolecular Ecology, 22, 5205-5220.

Massatti R, Knowles LL (2014) Microhabitat differences impact phylogeographimrdance
of codistributed species: genomic evidence in montane sedge= (.) from the Rocky
Mountains Evelution, 68, 2833—2846.

Massatti.Ry"Reznicek AA, Knowles LL (2016) Utilizing RADseq data for phylogeneélysis
of challenging taxonomic groups: A casedstin Carex sect.Racemosae. American Journal of
Botany, 103, 337-347.

Mevik B-H\Wehrens R (2007) The PLS package: principal component and partial leass squar
regression in RJournal of Satistical Software, 18, 1-24.

Morgan K, O’Loughlin SM, Chen Bt al. (2011) Comparative phylogeography reveals a shared
impact of Pleistocene environmental change in shaping genetic diversity witbitsnopheles
mosquito_species across the If8iarma biodiversity hotspoMolecular Ecology, 20, 4533—

4549.

This article is protected by copyright. All rights reserved



Microhabitat preferenc& climate effects

688 Neuenschwander S, Largiader CR, Ragtldl. (2008) Colonization history of the Swiss Rhine
689  basin by the bullheadCfttus gobio): inference under a Bayesian spatially explicit framework.
690  Molecular Ecology, 17, 757+772.

691

692 Nielsen R, Beaumont MA (2009) Stditsl inferences in phylogeographviolecular Ecology,
693 18, 1034-1047

694

695 Oaks JR, 'Sukumaran J, EsselstyreflAl. (2013) Evidence for climatdriven diversification? A
696  caution for interpreting ABC inferences of simultaneous historical evévaRition, 67, 991

697 1010.

698

699 O'MearaBC, Jackson ND, MoraleGarcia AE, Carstens BQQ15) Phylogeographic Inference
700  Using Approximate LikelihoodsioRxiv, doi: http://dx.doi.org/10.1101/025353.

701

702  PapadopoulousA, Knowles LL (2015a) Genomic tests of the species-pump lsypoRerent
703 island connectivity cycles drive population divergence but not speciation in Caribheets
704  across the.wirgin Island&volution, 69, 150+1517.

705

706 Papadopoulou A, Knowles LL (2015b) Specsgecific responses to island connectivity cycles:
707  refined madels for testing phylogenetic concordance across a Mediterranean Pleistocene
708  Aggregatedsland Complekolecular Ecology, 24, 4252-4268.

709

710 Papadopaulou A, Knowles LL (2016) Refined hypotheses based ongpgoific traits in

711 comparative phylogeographiyroceedings of the National Academy of Sciences, USA, in review.
712

713  Pelletier TA, Carstens B(2014) Model choice in phylogeography using a large set of models.
714  Molecular Eeology, 23, 3028-3043.

715

716 Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double Digest &Abse
717  Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model
718  SpeciesPLOSONE, 7, e37135.

This article is protected by copyright. All rights reserved


http://onlinelibrary.wiley.com/doi/10.1111/mec.12722/abstract�

719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749

Microhabitat preferenc& climate effects

Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species
geographic distributiong&cological Modelling, 190, 231-259.

Pritchard JKs.Seielstad MT, Perkezaun A, Feldman MW (1999) Population growth of human
Y chromosomes: a study of Y chromosome microsatellesecular Biology and Evolution,
16, 1791-1798:

R Core Tean{2012) R: a language and environment for statistical computing. R Foundation for
Statistical €omputing, Vienna, Austria.

Ray N, Currat M, Foll M, Excoffier L (2013PLATCHEZ: a spatially explicit simulation
framework for complex demography, genetic admixture and recombinBt@mnformatics,
26, 2993-2994,

Shirk AJ, Cushman SA, Landguth EL (2012) Simulating patpeocess relationships to validate
landscapesgenetic modelaternational Journal of Ecology, 2012, 539109.

Slatkin M (1993) Isolation by Distance in Equilibrium and Non-Equilibrium Populations.
Evolution, 47, 264-279.

WachterGARPapadopoulou A, Mustere& al. (2016 Glacial refugia, recolonisation patterns,
and diversification forces in Alpinendemidviegabunus harvestmenMolecular Ecology, in

press.

Wegmann, D, Currat M, Excoffier L (2006) Molecular diversity after a range exjpaims
heterogeneous environmen&enetics, 174, 2009-2020.

Wegmann D, Leuenberger C, Neuenschwander S, Excoffier L (2010) ABCtoolbox: a versatile

toolkit for approximate Bayesian computatioBSC Bioinformatics, 11, 7.

This article is protected by copyright. All rights reserved



750
751
752
753
754
755

Microhabitat preferenc& climate effects

Weir BS, Cockerham CC (1984) Estimatingtatistics for the analysis of population structure.
Evolution, 38, 1358-1370.

Westergaard KB, Alsos IG, Popp &lal. (2011) Glacial survival may matter after all: nunatak

signatures in:the rare European populations of two armest: speciesViolecular Ecology, 20,
376-393.

This article is protected by copyright. All rights reserved



756
757
758
759
760
761
762
763
764
765
766

Microhabitat preferenc& climate effects

Data Accessibility

The following data, scripts, and other files will be deposited in Drgaid10.5061/dryad.ng3bv
- Species distribution points usedMAXENT

- Empiricaldatasets (composed of >1000 SNPs for each species)

- Scripts for.editing empirical and simulat8tiPdatasets

- Scripts and settings files used in iDDC analyses

Author Contributions
RM collected specimens, concted lab work, performechodeling, and wrotéhe manuscript.
LLK helped with the development of the experimental design and the modeling scasaxiels

as wrote and edited the manuscript
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767  Table 1. Model statistics for each species and modeling scenario. The Bayes factor represents the ratio betweewitheéhrodel
768  highest marginal density and the alternativedel Note that thd>-value refers to the general fit of the data under a model (i.e., itis
769  based on the likelihood of the retained simulated datasets relative to thebkietif the empirical data, where a hRvalue

770 indicatesithe model is capable of generating the .dag@xmeters includ& .y, the carrying capacity of the deme with the highest
771  suitability; m, the migration rate per deme per generation;Nyagl the ancestral population sizes of initial populations before

772  expansion from refugid? is the coefficiendf determination between a parametad the six PLSs used herein.

773 Species Model Marginal density P-value Bayes factor Parameters R

C. chalciolepis Barrier 4.87 x 10° 0.650 - K e 0.642
m 0.966

Nanc 0.404

Permeable 1.38 x 1¢¢ 0.970 2.84 K rax 0.698

m 0.965

Nanc 0.379

C. nova Barrier 1.29 x 1¢* 0.844 22.69 K max 0.548
m 0.961

Nanc 0.497

Permeable 5.68 x 1¢f 0.078 - K max 0.585

m 0.962

Nanc 0.479
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774
775  Figure 1.Glacial recostructionfor Coloradoduring the Last Glacial Maximuimased on geologitata such as glacial morainékte

776  thedifferential accumulationf glaciersin drainages versus on ridgé€3rcles represent collecting localitiesyowsidentify matching
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777  localities between the glacialap and the ins¢tor details, see Tabl®l). The mage is taken from the ‘Late Pleistocene glaciers of
778  Colorado’ video (Interactive Geology Project, University of Colorado at Boulder /igipcblorado.edy/
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779

780  Figure 2 Alternativemodels used tgenerate patterns of genetic variatiBoth the past and

781 presentdndscapes were the same between the models, while the intermediate ladiffecage
782 in how the glaciated areas were modeled. Specifically, undeathenmodel @), the glaciated
783 areashad.ashabitat suitability of O (denoted by blackhereasinderthe permeablenodel 8),

784  theglaciated areas remained permeable (albeit at a reduced carrying cajemted by grey

785  see text for detailsYhe local carrying capacitied demes differé across the landscapes and
786  were scaled based on habitat suitabilities estimated from ENMs (see colored scale bar). The
787  blackstars in the initial landscape mark theations of ancestral populations used to initiate the

788  simulations
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Figure 3:.Posterior distribution (black line) and mode (vertical dotted line) of parameter estimates for the most protablerC.
chalciolepis (permeable model) an@. nova (barrier model). Results are based on a GLM regression adjustment of thee00€d
simulationssThe distribution of the retained simulations (dashed line) and the prior (gray line) demonstrateveenenihat the

GLM procedure had on parameter estimates and that the data contained information relevant to estimatingtées param
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Figure 4 ¢Distribution of poster quantiles of parameters f@r chalciolepis under the prmeable modglA) andC. nova under the
barrier modelB) to evaluate potential bias in the parameter estim@ssilts are shown only for the most probable modBlay is
measured by a departure from a uniform distribution using a Kolmogorov-Smast¢a P-value <0.05 indicates a non-uniform
distribution)«“Analyses are based on 1000 pseudo-observémamsext for detailsEstimation olNanc is unbiasedvhile the

distributions forK andm are too widdor both species.
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