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ABSTRACT 30 

 31 

Deterministic processes may uniquely affect co-distributed species’ phylogeographic patterns 32 

such that discordant genetic variation among taxa is predicted. Yet, explicitly testing 33 

expectations of genomic discordance in a statistical framework remains challenging. Here, we 34 

construct spatially and temporally dynamic models to investigate the hypothesized effect of 35 

microhabitat preferences on the permeability of glaciated regions to gene flow in two closely 36 

related montane species. Utilizing environmental niche models from the Last Glacial Maximum 37 

and the present to inform demographic models of changes in habitat suitability over time, we 38 

evaluate the relative probabilities of two alternative models using approximate Bayesian 39 

computation (ABC) in which glaciated regions are either (i) permeable or (ii) a barrier to gene 40 

flow. Results based on the fit of the empirical data to datasets simulated using a spatially explicit 41 

coalescent under alternative models indicate that genomic data are consistent with predictions 42 

about the hypothesized role of microhabitat in generating discordant patterns of genetic variation 43 

among the taxa. Specifically, a model in which glaciated areas acted as a barrier was much more 44 

probable based on patterns of genomic variation in Carex nova, a wet-adapted species. However, 45 

in the dry-adapted C. chalciolepis, the permeable model was more probable, although the 46 

difference in the support of the models was small. This work highlights how statistical inferences 47 

can be used to distinguish deterministic processes that are expected to result in discordant 48 

genomic patterns among species, including species-specific responses to climate change.49 
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INTRODUCTION 50 

 51 

 Understanding the contribution of species-specific attributes to observed patterns of genetic 52 

variation is critical for determining why taxa responded similarly (or dissimilarly) to historical 53 

climate changes.. Fortunately, newly developed, spatially explicit methodologies that generate 54 

genetic expectations under alternative scenarios (e.g., Neuenschwander et al. 2008; Knowles & 55 

Alvarado-Serrano 2010; Brown & Knowles 2012) offer an opportunity to evaluate the relative 56 

support for competing hypotheses related to species’ life history characteristics. For example, 57 

comparing the fit of empirical data to models that capture differences in species’ habitat 58 

requirements or in the habitat stability across a landscape (e.g., He et al. 2013) may provides 59 

insight into the role of biotic factors in structuring genetic variation. However, given that the 60 

number of biologically informed models that could be tested for any given study system is 61 

limitless, the challenge is how to decide what models to test (Knowles 2009).  62 

 Even though it might be possible to compare a hundred different models (e.g., Pelletier & 63 

Carstens 2014), such an approach may not be desirable. For example, if the differences among 64 

the models are trivial (e.g., the models differ in what may be considered nuisance parameters that 65 

do not impact their interpretation), the biological insights provided by selecting one model over 66 

another will be limited. Such inherent constraints of model-based approaches reinforce the 67 

importance of developing models that illuminate processes of biological interest (Papadopoulou 68 

& Knowles 2015a, 2016; but see O’Meara et al. 2015 for a dissenting point of view). In other 69 

words, it is not only the analytical approach per se, but the creativity and intimate knowledge of 70 

a study system that a researcher brings to such tests that ultimately determines how much insight 71 

a model-based phylogeographic analysis might provide. Rather than building narratives centered 72 

upon how well empirical data should fit generic scenarios (e.g., testing for a correlation under an 73 

isolation by distance model), insights can be gained by developing narratives derived from 74 

organisms’ natural histories, as well as historical ecological and climatic factors, to generate 75 

testable hypotheses (Papadopoulou & Knowles 2016). Given that not all biological 76 

characteristics (e.g., dispersal capability or habitat specificities) of a species may be important, or 77 

that their effects may vary depending upon the geographic or temporal scale of study 78 

(Papadopoulou & Knowles 2016), the key is to identify those characteristics that provide insights 79 

about the processes structuring genetic variation (e.g., the role of geographic barriers or changing 80 
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climatic conditions). When coupled with data simulated under biologically informed models, the 81 

relative fit of empirical genetic data to alternative models forms the basis for rigorous statistical 82 

tests of competing hypotheses (see also Bruggeman et al. 2010; Epperson et al. 2010; Landguth 83 

et al. 2010; Morgan et al. 2011; Shirk et al. 2012; Papadopoulou & Knowles 2015b). 84 

 Here we test the role of species’ microhabitat preferences and their potential interactions 85 

with shifting distributions associated with climatic changes in structuring the geographic 86 

distribution of genetic variation in two species of montane sedges (Carex L., Cyperaceae). 87 

Briefly, although the species co-occur within montane habitat across the southern Rocky 88 

Mountains, C. nova, an inhabitant of wet microhabitats (i.e., occurring predominantly within 89 

drainages) may have been disproportionately displaced to lower elevations (relative to dry-90 

adapted species) because of the large accumulation of snow and ice in this microhabitat during 91 

glacial periods (Fig. 1). As a consequence of population persistence being limited to lower 92 

elevations around the margins of glaciated habitat, populations of C. nova may have been 93 

relatively isolated during the glacial periods that predominated throughout the Pleistocene (i.e., 94 

most of the time during the Pleistocene is represented by glacial, not interglacial, periods). This 95 

narrative contrasts with plant species that inhabit meadows, ridges, and slopes, such as C. 96 

chalciolepis. Inhabitants of drier microhabitats may have persisted in high elevation areas that 97 

remained free of glaciers and persistent snow throughout glacial cycles (although the persistence 98 

of such populations is controversial; Wachter et al. 2016), in addition to populations that may 99 

have established at lower elevations. As a result, C. chalciolepis populations may have remained 100 

more interconnected throughout glacial periods. Although the geographic patterning of 101 

population structure observed in these two species is consistent with such a narrative (as 102 

described in Massatti & Knowles 2014), evaluating the extent to which differences in the 103 

patterns of genetic variation can be ascribed to microhabitat differences requires formalization of 104 

these narratives into models for statistical testing.   105 

 To test whether current genetic structure reflects a species’ ability/inability to persist within 106 

higher elevation microhabitats during glacial periods, we generated genetic expectations under 107 

two alternative models – one with glaciated regions as a permeable habitat and another with the 108 

regions as a barrier to gene flow – using the integrative distributional, demographic, and 109 

coalescent (iDDC) modeling approach (He et al. 2013). Specifically, we created demographic 110 

models that incorporated spatial and temporal heterogeneity in climatically suitable areas, as 111 
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informed by present and past ecological niche models, and required that populations either 112 

persist within or be excluded from glaciated areas (see also Currat & Excoffier 2004; Wegmann 113 

et al. 2006). By performing tests of the fit of the empirical data to simulated datasets using 114 

approximate Bayesian computation (ABC; see Beaumont et al. 2002 for an overview of ABC) 115 

and tests of model validation, we evaluated whether the species differ in their support for the 116 

alternative models in a manner consistent with the hypothesis that microhabitat differences 117 

determine how species respond to shifts in climate. This study is not only a detailed analysis of 118 

how species-specific properties may determine whether taxa respond similarly (or dissimilarly) 119 

to climate change, but our work also illustrates how general narratives about the processes 120 

structuring genetic variation can be formalized into models for statistical testing. We discuss our 121 

findings in terms of our ability to generalize the effects of climate change on montane 122 

communities as well as acknowledge general caveats with our analyses that leave open questions 123 

requiring further analysis.  124 

 125 

MATERIALS AND METHODS 126 

 127 

Genomic data generation and processing  128 

Carex chalciolepis (N = 110) and C. nova (N = 109) leaf material was field collected 129 

from 11 sampling localities across the full extent of their geographical ranges in the southern 130 

Rocky Mountains (Fig. 1; Table S1). Within populations, the collecting distance among 131 

individuals was maximized to decrease the probability of sampling related individuals (average 132 

distance between samples of 300 m, and a minimum distance of 35 m). Leaf material was stored 133 

in silica gel until DNA was extracted with DNeasy Plant Mini Kits (Qiagen, Hilden, Germay) 134 

following the manufacturer’s protocol. As with previous libraries (see Massatti & Knowles 135 

2014), anonymous genomic loci were developed using a restriction associated DNA sequencing 136 

(RADseq) approach (for details see Peterson et al. 2012); library construction and data 137 

processing is described in full detail in the Supporting Information. Briefly, fragments ranging in 138 

size from 400 to 500 base pairs were sequenced at The Centre for Applied Genomics (Hospital 139 

for Sick Children, Toronto, Canada) to generate 50 base pair, single-end reads. Single nucleotide 140 

polymorphisms (SNPs) were identified using a multinomial-based likelihood model that 141 
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accounts for sequencing error implemented in Stacks v1.25 (Hohenlohe et al. 2010; Catchen et 142 

al. 2011; Catchen et al. 2013).   143 

Five Illumina 2500 sequencing runs were used to generate data for this project. In order 144 

to i) maximize the number of unlinked loci, ii) reduce missing data to the fullest extent, iii) 145 

maximize the number of individuals per population, and iv) ensure that the subsampled SNP 146 

datasets displayed the same genetic patterns among populations as the larger, unfiltered datasets, 147 

we employed the following post-processing procedures. Only RADseq loci containing up to 148 

three SNPs were retained, and for each RADseq locus, one randomly selected SNP was exported 149 

into a STRUCTURE-formatted file if  the locus contained less than 50% missing data. Patterns of 150 

genome-wide SNP variation among individuals and populations were then visualized for each 151 

species with PCAs in the program R (R Core Team 2014) using the ‘adegenet’ package (Jombart 152 

2008) and the ‘dudi.pca’ function; missing data were replaced by the mean frequency of the 153 

corresponding allele. Subsequently, we minimized missing data by manually removing SNPs and 154 

individuals containing an excess of missing data and rechecking PCAs to ensure that the 155 

subsampling procedure did not alter the major axes of genetic variation among populations (see 156 

also Huang & Knowles 2014).  Individuals of C. chalciolepis and C. nova contained an average 157 

of 4.9% and 5.3% missing data, respectively (Table S2). 158 

Custom scripts were used to convert the STRUCTURE-formatted files into ARLEQUIN-159 

formatted files, which were input into ARLSUMSTAT to extract the empirical summary statistics 160 

used in ABC (see below). We also used the empirical ARLEQUIN-formatted files to create masks 161 

that were applied to the simulated datasets so the amount and pattern of missing data in the 162 

simulated data would match precisely that of the empirical datasets. All custom scripts and 163 

genomic data are deposited in Dryad (doi:10.5061/dryad.ng3bv).  164 

 165 

iDDC approach 166 

 Simulated genetic datasets to evaluate the support for the alternative models – that is, (i) 167 

glaciers as barriers, and ii) permeable glaciated regions (which allowed for local persistence 168 

within and gene flow across glaciated regions) (Fig. 2) – were generated using the iDDC 169 

approach (described in detail in He et al. 2013). Briefly, simulated genetic datasets were 170 

generated using a coalescent model informed by a spatially and temporally explicit demographic 171 

model that reflected differences in habitat suitabilities across space and time (based on the 172 
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ENMs; described below), in addition to either population persistence within or exclusion from 173 

glaciated areas (i.e., the hypothesized predictions for the dry and wet-adapted species, 174 

respectively). The fit of the empirical genetic data to the two alternative models was evaluated 175 

using approximate Bayesian computation (ABC), along with procedures to validate parameter 176 

estimates and model quality (Wegmann et al. 2010). All scripts for the iDDC analyses are 177 

deposited in Dryad (doi:10.5061/dryad.ng3bv). 178 

 179 

Quantification of habitat suitability. Habitat suitability across the southern Rocky Mountains 180 

during the present and LGM was estimated for C. chalciolepis and C. nova with MAXENT  v3.3.3e 181 

(Phillips et al. 2006). Nineteen bioclimatically informative variables for the present (WorldClim 182 

v1.4; Hijmans et al. 2005) and the LGM (PMIP2-CCSM; Braconnot et al. 2007) were used to 183 

generate the environmental niche models (ENMs; full  details are presented in the Supporting 184 

Information). Georeferenced distribution points representative of each species’ entire range were 185 

collected from personal fieldwork and validated voucher specimens housed at the Rocky 186 

Mountain Herbarium (species distribution points are available at doi:10.5061/dryad.ng3bv). To 187 

have a computationally tractable number of cells for demographic simulations (detailed below), 188 

we statistically downscaled the cell sizes of the ENMs to 0.42 decimal degrees (∼16.5 km2 per 189 

cell) (e.g., Ray et al. 2010; He et al. 2013). Subsequently, the values of the cells in the LGM and 190 

present ENMs denoting the logistic habitat suitability scores (ranging continuously from 0 to 1) 191 

determined by MAXENT were reassigned. Specifically, the logistic values were grouped into ten 192 

categories using the ‘equal interval’ clustering method in ArcMap 10.0 (ESRI, Redlands, 193 

California, USA) and assigned values ranging from 1-10. Given the extreme similarity of the 194 

ENMs between the species (for both the present and past; Fig. S1), an average of the habitat 195 

suitability scores of the two species was generated for each time period and used for the 196 

demographic simulations (see details below). By using estimates of habitat suitabilities for the 197 

present and past based on averages for the two species, we provide a standardized model that 198 

avoids the confounding influences of subtle differences in the unique ENMs of the taxa that 199 

could contribute to the relative probabilities of the alternative models (as opposed to differences 200 

in the permeability of the glaciated areas themselves, which is the central focus of the study). In 201 

addition to the present and LGM ENMs that were generated for each species, landscapes of 202 

habitat suitabilities specific to the two alternative models were generated: one in which the 203 
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glaciated areas were a barrier and one in which these regions remained permeable (detailed 204 

below), corresponding to the hypothesized effect of differences in microhabitat (i.e., glaciated 205 

regions would have been permeable in the dry, but not the wet-adapted species). Note that 206 

because microhabitat differences are manifest at a small spatial scale (i.e., meters or less) due to 207 

the complex interaction between topography and environmental conditions in montane regions, 208 

the “habitat” suitabilities of the taxa based on quantification from the ENMs are similar and only 209 

convey that environmental conditions are suitable for the species occurrence.  210 

 211 

Simulated datasets. Demographic and coalescent simulations were performed in SPLATCHE2 (Ray 212 

et al. 2010) to generate patterns of genetic variation where habitat suitabilities differed across a 213 

landscape and through time (see Knowles & Alvarado-Serrano 2010; Brown and Knowles 2012). 214 

For each of the two models tested (i.e., glaciers as barriers vs. permeable habitat; Fig. 2), 1 000 215 

000 simulated datasets were generated for each species separately (i.e., 4 000 000 total). Uniform 216 

priors were used for the demographic parameters (i.e., between-deme migration rate, m, 217 

maximum carrying capacity of a deme, K, and the population sizes of the initial populations, 218 

NAnc), and the carrying capacities of demes were scaled proportionally to their habitat suitability 219 

values. In other words, data were simulated over a range of maximum K-values, with the highest 220 

quality habitat (demes with values of 10) reaching full carrying capacity (100%), while carrying 221 

capacities of demes associated with lower quality habitat were decreased proportionally (see 222 

Knowles & Alvarado-Serrano 2010; Fig. 2). Each generation, m proportion of the population 223 

migrates out of the local deme to adjacent cells (i.e., to the north, south, west, and east). After the 224 

exchange of individuals, local demes grow logistically at the rate of 1, regulated by the carrying 225 

capacity inferred from the habitat suitability. Demographic simulations were initialized with a 226 

southern, central, and northern population (see Fig. 2), each with a population size of NAnc

The landscapes that informed the demographic modeling procedure differed over time. 230 

Specifically, for both the barrier and permeable models, an initial landscape based on the ENM 231 

at the LGM was used to inform the demographic simulations from generations 1-750. The initial 232 

landscape was followed by a model-specific landscape (i.e., a landscape representing either (i) 233 

glaciated areas as barriers or (ii) permeable glaciated areas) from generations 751-1750, which 234 

. Note 227 

that population trees estimated using empirical SNP data for C. chalciolepis and C. nova 228 

clustered populations sampled from these regions, validating our use of three initial populations.  229 
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corresponded to the height of the last Pleistocene glaciation. For the final period from 235 

generations 1751-2083, the demographic modeling was informed by a landscape with habitat 236 

suitabilities based on an ENM estimated using contemporary climatic conditions for both models 237 

(Fig. 2). With a generation time of 3 years for these high elevation species (Körner 2003) and the 238 

scaling of the generations by a factor of 15 (to make simulations computationally tractable), the 239 

simulations span a time period from the present to the LGM and beyond. Note that modeling was 240 

extended beyond the LGM (i.e., the first 750 generations) to provide a sufficient amount of time 241 

for all suitable habitat to be occupied over all possible combinations of population demographic 242 

parameters. Because of this scaling, any biological interpretation of absolute values of population 243 

genetic parameters would need to be adjusted accordingly.  244 

 As noted above, the initial and final landscapes used to perform the demographic 245 

simulations were the same between the models (and species), whereas the landscape 246 

corresponding to the height of the LGM for the two models differed in one key aspect: the 247 

habitat suitability values of the glaciated areas (which were identified from maps of glacial 248 

moraines and glacial till; see Ehlers & Gibbard 2004; Colorado Geological Survey 249 

http://coloradogeologicalsurvey.org/). Specifically, under the model in which glaciers would 250 

have acted as barriers, demes reconstructed as glaciated were assigned a K-value of 0. In 251 

contrast, in the alternative model in which such glaciated areas were permeable, the K-values 252 

were decreased by 85% of the original value estimated from the LGM ENM, which corresponds 253 

to impeded dispersal relative to the surrounding non-glaciated areas (Fig. 2), with a lower bound 254 

of K = 20. This lower bound was used because of the uncertainty surrounding habitat quality 255 

estimates in demes where habitat suitability scores fell below the maximum training sensitivity 256 

plus specificity threshold identified by MAXENT . Varying the K-values for demes with highly 257 

uncertain habitat suitability could introduce demographic consequences that would have undue 258 

influence on the resulting patterns of genetic variation. Preliminary analyses confirmed that gene 259 

flow was able to occur among populations separated by glaciers despite reduced carrying 260 

capacities. Because C. chalciolepis and C. nova were predicted to occur in and adjacent to 261 

montane habitat during the LGM, but not in the geographically distant lower elevation basins 262 

and plains (which were predominantly represented by demes with values of 1), all demes with 263 

habitat suitability values of 1 were assumed to be uninhabitable (see Fig 2).  264 
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 A spatially explicit coalescent model informed by the deme-specific demographic 265 

parameters was used to simulate genetic data (i.e., genetic variation differed across the landscape 266 

depending on the specific combination of m, K, and NAnc

For each of the simulated genetic datasets, as with the empirical data, nine summary 274 

statistics were calculated using ARLSUMSTAT v.3.5.2 (Excoffier & Lischer 2010). These included 275 

the number of segregating sites (S) for each population and across populations, mean 276 

heterozygosity across loci for each population and across populations (H), and pairwise 277 

population F

; Excoffier et al. 2000; Currat et al. 267 

2004). An independent coalescent process was run to generate a genealogy for each locus 268 

analyzed in the empirical data (i.e., 1142 and 1010 coalescent simulations for C. chalciolepis and 269 

C. nova, respectively) for each of the 4 000 000 datasets simulated with different combinations 270 

of demographic parameters (the range of which as specified by the priors). Each simulated 271 

dataset consisted of the same number of individuals from the same the corresponding sampling 272 

localities, with the same amount of missing data, as in the empirical data.  273 

ST

  280 

 (Weir & Cockerham 1984), for a total of 83 summary statistic values calculated 278 

per simulated dataset.  279 

Model selection and validation. Approximate Bayesian computation (ABC) was used to select 281 

between alternative models, as implemented with ABCestimator in ABCtoolbox (Wegmann et 282 

al. 2010). Rather than using the 83 summary statistic values independently to estimate 283 

parameters, partial least squares (PLS) components (Boulesteix & Strimmer 2007) were 284 

extracted from the summary statistics using the “PLS” package (Mevik & Wehrens 2007) with 285 

boxcox treatment (Box & Cox 1964) in R for the first 20 000 simulations for each model and 286 

species. This approach removes the effects of interactions between summary statistics and 287 

reduces “the curse of dimensionality” associated with using a large number of summary statistics 288 

(Boulesteix & Strimmer 2007). We examined the root mean squared error (RMSE) prediction for 289 

each parameter to decide how many PLS components to use for parameter estimation (Fig. S2). 290 

Of the million simulated datasets generated for each species under a particular model, 5000 291 

simulations (0.5%) whose summary statistics were closest to those calculated from the empirical 292 

genomic data were retained and used for parameter estimation and model selection. Post-293 

sampling regression adjustment was applied using the ABC-GLM (general linear model) 294 

function (Leuenberger & Wegmann 2010) in R to obtain posterior distributions of the 295 
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parameters. Bayes factors, which are the ratios between marginal densities of the two models, 296 

were used for model selection; a higher ratio indicates more support for the first model (Jeffreys 297 

1961).  298 

To evaluate whether a model is capable of generating data similar to the empirical data, 299 

the likelihood of the empirical data was compared to the likelihoods of the retained simulations 300 

under the GLM model. If all the retained simulations have a better likelihood than the observed 301 

data (i.e., a low P-value), it would indicate a model is highly unlikely (Wegmann et al. 2010). A 302 

coefficient of variation (R2

 311 

) of each parameter explained by the PLS components was also 303 

computed and used as an indicator of the power of estimation (Neuenschwander et al. 2008). For 304 

the most probable model selected for each species, the accuracy of parameter estimates was 305 

validated using 1000 pseudo-observations generated from prior distributions of the parameters. If 306 

estimation of the parameters is unbiased, posterior quantiles of the parameters from pseudo runs 307 

should be uniformly distributed (Cook et al. 2006; Wegmann et al. 2010). The posterior 308 

quantiles of true parameters for each pseudo run were also calculated based on the posterior 309 

distribution of the regression-adjusted 5000 simulations closest to the pseudo-observation.  310 

RESULTS 312 

 313 

Empirical genomic dataset 314 

 Almost 180 000 000 (average 1 630 280 ±719 977 per individual) and 172 000 000 315 

(average 1 579 380 ±733 329 per individual) reads were generated for the 110 and 109 C. 316 

chalciolepis and C. nova individuals, respectively (Table S2). The retention of reads after data 317 

processing and assembly with Stacks averaged 86% per individual for both species. The final 318 

datasets contained 1142 loci with 1 SNP per locus across 101 individuals of C. chalciolepis and 319 

1010 loci with 1 SNP per locus across 99 individuals of C. nova, after post-processing steps to 320 

remove loci and/or individuals because of missing data. The datasets had good representation of 321 

all sampled populations for tests with the iDDC approach (Table S3).  322 

 323 

Model selection and validation 324 

Based on the relative information content contained in the PLS components, the first six 325 

PLSs of the predictor variables (i.e., the summary statistics) were retained for ABC analyses (see 326 
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Fig. S2). Posterior distributions of parameter estimates were distinct from the prior, indicating 327 

they contained information relevant to estimating the parameters (Fig. 3). Moreover, comparison 328 

of the posterior distributions before and after GLM regression adjustment of the 5000 retained 329 

simulations shows a marked improvement of parameter estimates with the GLM regression (Fig. 330 

3). The accuracy of the parameter estimates varied (Table 1). Specifically, in addition to a flatter 331 

posterior probability (Fig. 3), the lowest power for estimating parameter values was associated 332 

with the ancestral population size (NAnc), as indicated by the lowest R2 values across models 333 

(Table 1). Nevertheless, tests of potential bias of parameter estimates show that posterior 334 

distributions of NAnc

 Based on the marginal densities calculated from the 5000 retained simulations for each 339 

model, the model with the best fit to the empirical data (based on Bayes factors) differed 340 

between species. Specifically, the model with glaciated areas as barriers was more probable for 341 

C. nova, whereas the model with permeable glaciated areas was more probable for C. 342 

chalciolepis (although in the latter case, the difference was marginal), which corresponds to the 343 

hypothesized effect of microhabitat differences (Table 1). Evaluation of whether the most 344 

probable model was capable of producing the empirical data in each species (i.e., consideration 345 

of the P-values) indicated that not only were they a good fit, but they were a better fit (i.e., a 346 

larger P-value) than the alternative models, suggesting a better correspondence between the 347 

empirical data and the simulated data (Table 1).  348 

 are uniformly distributed in both species (Fig. 4). In contrast, the histograms 335 

of the posterior quantiles of m and K did deviate significantly from a uniform distribution for 336 

both species based on analyses of 1000 pseudo-observed datasets, suggesting a potential bias 337 

(Fig. 4).  338 

 349 

DISCUSSION 350 

 351 

Our study highlights the formalization of biologically informed hypotheses into a statistical 352 

model-testing framework (see Papadopoulou & Knowles 2016) to evaluate whether species-353 

specific traits may mediate the effects of climate change. Specifically, we show that species’ 354 

responses to glaciations may be intricately tied to their microhabitat preferences. Below we 355 

discuss the implications of our findings when considering the effects of climate change on co-356 

distributed taxa, and especially on species in montane communities.  357 
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In contrast to studies that rely upon correlative approaches to identify factors that may 358 

structure genetic variation (see Massatti & Knowles 2014), here the link between genetic patterns 359 

and process is explicit (i.e., data were simulated with either population persistence within or 360 

exclusion from glaciated areas – the hypothesized predictions for the dry and wet-adapted 361 

species, respectively, based on the differential accumulation of glaciers on ridges and drainages; 362 

see Fig. 1) and the fit of empirical data to alternative models was statistically evaluated. 363 

Moreover, our study differs from other model-based approaches in which a generic or “naïve” 364 

model is applied (i.e., a model that is not informed by biological knowledge of a particular 365 

system) (Pelletier & Carstens 2014; Grummer et al. 2015; O’Meara et al. 2015); we designed our 366 

study to target species that differed in one key trait – microhabitat. Minimizing differences 367 

between taxa allowed us to explicitly test hypotheses aimed at providing specific insights about 368 

the contribution of species-specific traits to patterns of genetic variation (albeit with some 369 

caveats; see below). In addition to discussing the utility of the iDDC approach to test if 370 

phylogeographic discord reflects deterministic factors, we address both the challenges and 371 

limitations with such inferences. Lastly, we highlight the insights that comparative 372 

phylogeography can provide regarding the role of biotic factors in structuring genetic variation.    373 

 374 

Ecological and evolutionary implications for montane taxa 375 

The finding of a correspondence between a model in which glaciated areas were barriers 376 

to gene flow and genomic variation in the wet-adapted C. nova, as opposed to a model in which 377 

glaciated areas were permeable, as with genomic variation in the dry-adapted C. chalciolepis 378 

(Table 1), has a number of ecological and evolutionary implications. From an ecological 379 

perspective, our work highlights how generalizations about the response of montane 380 

communities to climate change may be overly simplified (see also Alexander et al. 2016). 381 

Importantly, the structure of genomic variation of the Carex species differs significantly (i.e., the 382 

parameterization and fit of the alternative models differed between the taxa; Table 1), despite 383 

both sedges being common and co-distributed (Massatti et al. 2016) and having many biological 384 

similarities, including traits associated with dispersal capabilities. Moreover, the respective fit of 385 

the dry-adapted versus wet-adapted species to a model with either population persistence within 386 

or exclusion from glaciated areas is in line with expectations derived from knowledge of the 387 

interactions of persistent snow and ice with microhabitats in montane ecosystems (Ehlers & 388 
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Gibbard 2004). As such, this is the first study to directly test causal mechanisms related to the 389 

persistence of populations in glaciated regions (Lohse et al. 2011; Westergaard et al. 2011; 390 

Lanier et al. 2015; Wachter et al. 2016). Specifically, differing support for the most likely model 391 

between the species (Table 1) suggests that species adapted to wetter microhabitats were more 392 

isolated around the margins of glaciers, whereas species adapted to drier microhabitats persisted 393 

within glaciated regions (as well as establishing at lower elevations) and remained relatively 394 

connected by gene flow.  395 

It is generally accepted that statistical evaluation of alternative processes that might have 396 

generated observed patterns of genetic variation (e.g., through model selection procedures, as 397 

used here) is critical because similar genetic patterns may result from different demographic 398 

processes (Csillery et al. 2010; He et al. 2013). However, our study is more than an example of 399 

model-based statistical phylogeography (Knowles 2009). Specifically, in comparison with other 400 

comparative phylogeographic analyses, our study stands out because a deterministic process that 401 

is expected to generate discordant genomic variation among taxa is evaluated (i.e., the fit of 402 

alternative models is predicted to differ depending on a taxon’s microhabitat, corresponding to 403 

the hypothesized persistence in or exclusion from previously glaciated areas). This contrasts with 404 

the tradition of relying upon phylogeographic concordance for assessing the role of competing 405 

processes, and where discord is commonly attributed to the idiosyncrasies of history (reviewed in 406 

Papadopoulou & Knowles 2016). Nevertheless, there are some caveats with our approach. 407 

Specifically, while we have conducted analyses aimed at addressing the quality of our inference 408 

(discussed in the following section), there are additional hypotheses that we cannot rule out. Note 409 

that all model-based comparative phylogeographic studies face this issue (Knowles 2009) – that 410 

is, this caution is not unique to our study, or specific to the iDDC procedure per se. Moreover, 411 

from our perspective, such a discussion is extremely helpful for considering analyses that may be 412 

worth pursuing in the future to provide additional insights into the role of biotic factors 413 

structuring genetic variation. In this regard, we would argue that the merit of our study, and of 414 

comparative phylogeographic studies more generally, is not in identifying “the evolutionary 415 

history” of taxa. Instead, it is the insights gained by identifying the probability of one hypothesis 416 

relative to others, which is a function of the both the study design and its execution. As noted 417 

above, and given that patterns of genetic variation in many species are postulated to reflect the 418 

interactions of ecology and climatic oscillations (Avise & Walker 1998; Hewitt 2000; Carstens 419 
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& Knowles 2007), our results set the stage for additional work that is needed before any broad 420 

generalizations can be derived from model-based comparative phylogeographic analyses about 421 

the role of species-specific traits in structuring genetic variation (see also Papadopoulou & 422 

Knowles 2016). 423 

 424 

Validation and interpretation of model-based inferences  425 

There are both methodological and conceptual aspects of model-based inferences that 426 

must be considered to avoid erroneous conclusions or tests that offer limited insights. For 427 

example, there are a number of methodological issues that can be especially challenging with 428 

ABC procedures (see Oaks et al. 2013) and the iDDC approach we applied. These include issues 429 

with approximating the likelihood of models with summary statistics (Pritchard et al. 1999; 430 

Beaumont et al. 2002) as opposed to using all of the data as in full likelihood-based models (Hey 431 

& Nielsen 2004, 2007; Kuhner 2006; Nielsen & Beaumont 2009; Hey 2010). Moreover, in 432 

addition to difficulties associated with particular steps in ABC procedures (e.g., post-sampling 433 

adjustment when the relationship between parameters and summary statistics is extrapolated 434 

beyond the region of the observed data set; see Beaumont et al. 2002; Leuenberger & Wegmann 435 

2010), ABC will always produce a posterior distribution, even if the model is a poor fit to the 436 

data (Bertorelle et al. 2010). Accordingly, model validation is critical. 437 

 Several approaches we applied suggest that our results are generally robust. We evaluated 438 

the potential bias in parameter estimates (Fig. 4), contrasted the posterior probability of 439 

parameter estimates pre and post-GLM (Fig. 3) and relative to the prior, as well as utilized the 440 

RMSE of parameter estimates (Fig. S2) to inform decisions about the inclusion of PLS 441 

components. While the predictive power of the data for some parameters differed (see R2 in 442 

Table 1) and the posterior quantiles calculated from pseudo observed datasets of both m and K 443 

showed a significant departure from a uniform distribution (Cook et al. 2006; Wegmann et al. 444 

2010), we note that for both species, the most probable model provided not only (i) a good fit to 445 

the empirical genomic data, but (ii) it was a better fit compared to the less probable model (Table 446 

1). Specifically, the Bayes factor indicates strong support for the barrier model in C. nova, and 447 

this model has a much higher probability of generating simulations with likelihood-values 448 

comparable to the empirical data compared to the permeable model (Table 1). In C. chalciolepis, 449 

the marginal densities of the two models are much more similar. As a consequence, although the 450 
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empirical data is more probable under the permeable model, the difference in support based on 451 

the Bayes factor is not strong. Nevertheless, it is worth noting that, even though some 452 

combinations of parameters produce datasets that match the C. chalciolepis empirical data under 453 

the barrier model, the permeable model has a much wider parameter region that generates data 454 

close to the empirical data (as reflected in differences in the P-values for the two models; Table 455 

1). The fit of the empirical data under these complex models is very encouraging because it can 456 

be difficult to capture the complicated nature of a species’ history. For example, despite 457 

approaches for evaluating complex models, the likelihood of the empirical data under the most 458 

probable model may be much lower than any data simulated under such a model (see Excoffier 459 

et al. 2013).  460 

Even though our models are capable of generating the data (Table 1), this does not mean 461 

the most probable models for the two species are the “correct” ones. We acknowledge that there 462 

could be other models not considered here that might fit the empirical data. However, this does 463 

not discount the insights gained with respect to the goal of the study, which was to test whether 464 

the empirical data of two species would support alternative models as predicted if the 465 

microhabitats of the species mediated their responses to climate change. In this regard, 466 

comparison of the estimated parameter values may illuminate possible differences in the 467 

population dynamics of the species under climate change scenarios. In particular, we note that C. 468 

chalciolepis tended toward higher values of Kmax and lower values of m compared to C. nova, 469 

while the difference in NAnc was more ambiguous because of uncertainty in the estimation of this 470 

parameter (Fig. 3). Specifically, the PLSs of the summary statistics were informative for all 471 

parameters in both species, but estimates of NAnc are associated with only moderate R2 values, in 472 

contrast to the very high R2 for the other parameters (Table 1). In the context of glaciations, these 473 

combinations of parameter values may intimate that habitat stability for dry-adapted species 474 

facilitated larger effective population sizes and lower rates of migration, while continual 475 

disturbance within wet microhabitats fostered relatively lower population sizes and higher rates 476 

of migration in wet-adapted species (e.g., the reestablishment of populations in disturbed 477 

habitats). Our analyses support this proposition, but the detected biases in some parameter 478 

estimations (Fig. 4) cautions against interpreting the parameters directly (see Wegmann et al. 479 

2010).  480 
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Evaluating potential demographic differences between the species under changing 481 

climatic conditions is an important area for future consideration. Such investigations may include 482 

tests of whether support for alternative models reflects differences in how estimates of habitat 483 

suitability (as informed by ENMs) scale to population demographic parameters. For example, a 484 

particular value of habitat suitability may not translate into equivalent predicted carrying 485 

capacities between Carex species (as modeled here). While there are not pronounced differences 486 

in the contemporary abundances of C. chalciolepis and C. nova that suggest a nonequivalent 487 

relationship between the suitability of a habitat and local population sizes, differences in the 488 

local stability of the species’ populations, or even local adaptation, could potentially contribute 489 

to the different patterns of genetic variation in ways not explicitly accounted for in our models. 490 

Likewise, we do not directly model microhabitat preference per se, but instead test models with 491 

either population persistence or exclusion from glaciated areas based on the hypothesized 492 

predictions for the dry and wet-adapted species, respectively, based on the differential 493 

accumulation of glaciers on ridges and drainages (see Fig. 1). It is possible that factors other than 494 

microhabitat preference might contribute to the persistence or exclusion of taxa from glaciated 495 

areas. Hence, it may not be microhabitat preference, but possibly some untested co-varying 496 

explanatory variable, that drives the differences in the fit of the taxa to the alternative models. 497 

However, the similarity of the taxa makes it difficult to identify other hypothetical, yet realistic, 498 

factors. Moreover, any such hypothetical factor would not only have to result in contrasting 499 

support for the alternative models between the taxa, but also preserve the directionality of the 500 

model fits (e.g., C. chalciolepis, but not C. nova, must fit the model with persistence within 501 

glaciated areas, and vice a versa for the model with exclusion from glaciated areas). We note that 502 

other species that are closely related to and co-distributed with C. chalciolepis and C. nova 503 

(Massatti et al. 2016) will facilitate the exploration of these intriguing hypotheses, but such tests 504 

are beyond the scope of our present analyses. 505 

 506 

Conclusions 507 

Using intimate knowledge of the interactions between climate and topography within 508 

montane ecosystems, as well as utilizing data from other disciplines (e.g., maps of glacial till and 509 

glacial moraines; Fig. 1), we tested alternative models to elucidate the potential impact of 510 

glaciers on co-distributed species. We evaluated the relative fit of empirical data under a model 511 
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in which glaciated areas were a barrier versus one in which they were permeable to test the 512 

biologically informed hypotheses that differences in microhabitat preferences would result in 513 

predictable differences in the responses of the taxa to climate change. Our results supported the 514 

hypothesized predictions for the dry and wet-adapted species based on the differential 515 

accumulation of glaciers on ridges and drainages (Fig. 1) – the barrier model was the most 516 

probable for C. nova, whereas the model with permeable glaciated regions was more probable in 517 

C. chalciolepis (although in the latter case the difference was not strong) (Table 1).   518 

The models and approach we apply here go beyond traditional analyses common in 519 

phylogeography (e.g., tests of isolation by distance; Slatkin 1993) and comparative 520 

phylogeography (e.g., relying on concordant patterns for inferring the role of factors in 521 

structuring genetic variation; Papadopoulou & Knowles 2015a). Such approaches are in their 522 

infancy and have only been applied in a limited number of studies (e.g., Neuenschwander et al. 523 

2008; He et al. 2013; Martinkova et al. 2013). By combining the power that genomic data 524 

provide with the proper validation of complex models, approaches such as iDDC provide an 525 

exciting opportunity to address ecological and evolutionary principles in a comparative 526 

phylogeographic framework that cannot be addressed using traditional methodologies (Excoffier 527 

et al. 2013; Papadopoulou & Knowles 2016). 528 

 529 
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- Species distribution points used in MAXENT  758 

- Empirical datasets (composed of >1000 SNPs for each species) 759 

- Scripts for editing empirical and simulated SNP datasets 760 

- Scripts and settings files used in iDDC analyses 761 
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Table 1. Model statistics for each species and modeling scenario. The Bayes factor represents the ratio between the model with the 767 

highest marginal density and the alternative model. Note that the P-value refers to the general fit of the data under a model (i.e., it is 768 

based on the likelihood of the retained simulated datasets relative to the likelihood of the empirical data, where a high P-value 769 

indicates the model is capable of generating the data). Parameters include: Kmax, the carrying capacity of the deme with the highest 770 

suitability; m, the migration rate per deme per generation; and NAnc, the ancestral population sizes of initial populations before 771 

expansion from refugia. R2

773 

 is the coefficient of determination between a parameter and the six PLSs used herein. 772 

Species Model Marginal density  P-value Bayes factor Parameters R2 

C. chalciolepis Barrier 4.87 × 10 0.650 -5 - K 0.642 max 

 m 0.966 

   

 

 

N 0.404 Anc 

 

Permeable 1.38 × 10 0.970 -4 2.84  K 0.698 max 

 m 0.965 

 N 0.379 Anc 

C. nova Barrier 1.29 × 10 0.844 -4 22.69 K 0.548 max 

   

 

 

m 0.961 

 N 0.497 Anc 

Permeable 5.68 × 10 0.078 -6 - K 0.585 max 

   

 

 

m 0.962 

 N 0.479 Anc 
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 774 

Figure 1. Glacial reconstruction for Colorado during the Last Glacial Maximum based on geologic data such as glacial moraines. Note 775 

the differential accumulation of glaciers in drainages versus on ridges. Circles represent collecting localities; arrows identify matching 776 
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localities between the glacial map and the inset (for details, see Table S1). The image is taken from the ‘Late Pleistocene glaciers of 777 

Colorado’ video (Interactive Geology Project, University of Colorado at Boulder, http://igp.colorado.edu/).778 
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 779 

Figure 2. Alternative models used to generate patterns of genetic variation. Both the past and 780 

present landscapes were the same between the models, while the intermediate landscape differed 781 

in how the glaciated areas were modeled. Specifically, under the barrier model (A), the glaciated 782 

areas had a habitat suitability of 0 (denoted by black), whereas under the permeable model (B), 783 

the glaciated areas remained permeable (albeit at a reduced carrying capacity, denoted by grey; 784 

see text for details). The local carrying capacities of demes differed across the landscapes and 785 

were scaled based on habitat suitabilities estimated from ENMs (see colored scale bar). The 786 

black stars in the initial landscape mark the locations of ancestral populations used to initiate the 787 

simulations. 788 A
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 811 

 812 

 813 

 814 

Figure 3. Posterior distribution (black line) and mode (vertical dotted line) of parameter estimates for the most probable model for C. 815 

chalciolepis (permeable model) and C. nova (barrier model). Results are based on a GLM regression adjustment of the 5000 retained 816 

simulations. The distribution of the retained simulations (dashed line) and the prior (gray line) demonstrate the improvement that the 817 

GLM procedure had on parameter estimates and that the data contained information relevant to estimating the parameters. 818 
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 841 

 842 

 843 

 844 

 845 

Figure 4. Distribution of posterior quantiles of parameters for C. chalciolepis under the permeable model (A) and C. nova under the 846 

barrier model (B) to evaluate potential bias in the parameter estimates (results are shown only for the most probable models). Bias is 847 

measured by a departure from a uniform distribution using a Kolmogorov-Smirnov test (a P-value <0.05 indicates a non-uniform 848 

distribution). Analyses are based on 1000 pseudo-observations (see text for details). Estimation of NAnc is unbiased while the 849 

distributions for K and m are too wide for both species. 850 
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