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Abstract 

After many field studies, the establishment of connections between marine microbiological 

processes, sea spray aerosol (SSA) composition, and cloud condensation nuclei (CCN) has 

remained an elusive challenge. In this study, we induced algae blooms to probe how complex 

changes in seawater composition impact the ability of nascent SSA to act as CCN, quantified 

using the apparent hygroscopicity parameter (κapp). Throughout all blooms, κapp ranged between 

0.7 – 1.4 (average 0.95 ± 0.15), consistent with laboratory investigations using algae-produced 

organic matter, but differing from climate model parameterizations and in situ SSA generation 

studies.  The size distribution of nascent SSA dictates that changes in κapp associated with 

biological processing induce less than 3% change in expected CCN concentrations for typical 

marine cloud supersaturations.  The insignificant effect of hygroscopicity on CCN concentrations 

suggests that the SSA production flux and/or secondary aerosol chemistry may be more 

important factors linking ocean biogeochemistry and marine clouds. 

Index Terms: 0305 Aerosols and particles, 0315 Biosphere/atmosphere interactions, 0320 Cloud 

physics and chemistry, 0312 Air/sea constituent fluxes, 3311 Clouds and aerosols 
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1 Introduction 

Natural aerosol particles are responsible for the largest contribution to uncertainty in the aerosol 

indirect effect [e.g., Carslaw et al., 2013; Tsigaridis et al., 2013].  Understanding the properties 

and concentrations of aerosols that were dominant in the pre-industrial atmosphere is key to 

understanding anthropogenic perturbations, since the relationship between aerosol and cloud 

droplet number concentrations is non-linear; sensitivity of cloud droplet concentrations to 

present-day anthropogenic perturbations rests strongly on the pre-industrial baseline 

[Ramanathan et al., 2001].  Sea spray aerosol (SSA) is one of the most abundant types of natural 

aerosol globally, and can play an important role in cloud formation and microphysics through 

their role as cloud condensation nuclei (CCN) [Feingold et al., 1999; Gantt et al., 2012; McCoy 

et al., 2015; Twohy and Anderson, 2008]. 

Major ionic components of seawater (Na+, K+, Mg2+, Cl-) have been found within marine cloud 

droplets and precipitation [Straub et al., 2007; Twohy and Anderson, 2008; Woodcock, 1952] and 

SSA particles have been shown to influence the properties of marine stratocumulus clouds 

[Feingold et al., 1999], especially in remote regions [Glantz, 2010].  While the chemical 

composition of SSA is highly complex [Quinn et al., 2015], it is often roughly approximated as a 

mixture of inorganic and organic species [e.g., Roelofs, 2008] which can be modulated by marine 

microbial activity [Ault et al., 2013; O'Dowd et al., 2015; Wang et al., 2015].  Using a simple 

two-component view of SSA composition and hygroscopicity, global model studies have shown 

that biogeochemical changes within the surface ocean can account for a change in marine CCN 
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concentrations between -5% and +50%, depending on how aerosol mixing state and production 

flux are treated within the models in association with marine microbial activity [Meskhidze et al., 

2011; Tsigaridis et al., 2013; Westervelt et al., 2012].   SSA flux and chemical parameterizations 

would be most complete when informed by chemically and physically realistic experiments that 

control conditions around SSA particles specifically, yet attempt to approximate the complexity 

of marine biogeochemistry.  The present study perturbed seawater chemistry through dynamic 

microbial ecosystem processes to examine chemically complex SSA particles [Lee et al., 2015]. 

Using a plunging waterfall method, SSA particles were produced with physicochemical 

properties similar to those produced by breaking waves [Collins et al., 2014; Stokes et al., 2013]. 

The relative role of chemistry in determining CCN concentrations mostly centers on the 

magnitude of the change in κapp compared with the magnitude of possible changes in the number 

size distribution of aerosol [Dusek et al., 2006].  Rather than focusing on just the average 

composition of particles in the atmosphere, Wex et al. [2010a] illustrated conceptually that the 

mixing state of the chemical components of the aerosol population is a key component of the 

system, which has been shown in laboratory [Collins et al., 2013; Schill et al., 2015], field 

[Cubison et al., 2008; Padro et al., 2012], and modeling studies [Meskhidze et al., 2011; Roelofs, 

2008].  The strongest effect of composition in decreasing CCN activity occurs when the 

abundance of particle types with significantly different intrinsic hygroscopicity vary with size 

and the less hygroscopic particles have smaller dry diameters than the more hygroscopic 

particles [Collins et al., 2013; Wex et al., 2010a].   
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This study aims to constrain the CCN-derived hygroscopicity of SSA as a function of biological 

activity within a set of laboratory-generated marine phytoplankton bloom experiments [Lee et 

al., 2015].  Approaching the highly complex chemical system of SSA in a top-down manner is 

useful for gaining an understanding of the ensemble effect of all chemical changes to the system 

with respect, in this case, to the phase of biological activity in the microcosm.  While a predictive 

understanding of the cloud activity of SSA requires a detailed understanding of the physical 

chemistry of the activating droplet, this study aims to broadly characterize the response of the 

CCN derived hygroscopicity of SSA to marine microbial processes.  The relative importance of 

particle hygroscopicity in driving expected CCN concentrations from nascent SSA in the marine 

boundary layer is discussed and compared with the current climate model paradigm. 

2 Methods 

2.1 Measurement of the Hygroscopicity Parameter 

The hygroscopicity of nascent SSA particles was measured using size-resolved CCN analysis.  A 

dry, monodisperse aerosol is generated by selecting a specific size with an electrostatic classifier 

(TSI, Inc., Model 3080L) operated with a sheath flow of 5 liters per minute and a total sample 

flowrate of 1 liter per minute.  The monodisperse output of the electrostatic classifier was then 

split isokinetically to a continuous flow, stream-wise thermal gradient cloud condensation 

nucleus counter (CCNC; Droplet Measurement Technologies, Model CCN-100) and a 

condensation particle counter (CPC; TSI, Inc., Model 3010).  The ratio of particles that activated 

into cloud droplets within the CCNC at a specified supersaturation (s) was used to determine the 
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activation diameter (Dact) of the aerosol sample where 50% of the particles are cloud-active.  The 

Dact and s pairs determined by this method were used to calculate the hygroscopicity parameter 

(κ) [Petters and Kreidenweis, 2007] using Equation 1: 

𝜅𝑎𝑝𝑝 = 4𝐴3𝜎𝑙𝑣
3

27𝑇3𝐷𝑎𝑐𝑡
3 𝑙𝑛2(𝑠)                 [1] 

where 𝐴 = 8.69251 × 10−6 K m3 J-1 and σlv is the surface tension of the liquid/vapor interface 

of the droplet, and T is the temperature.  This relatively simple formulation of the hygroscopicity 

parameter is an approximation [Petters and Kreidenweis, 2007; 2013], but deviations in κ 

derived from this calculation in comparison with numerical methods are much smaller than 

experimental uncertainties (κ ± 10%).  While κ strictly parameterizes only the Raoult’s Law term 

of the Kohler equation [Petters and Kreidenweis, 2007], the surface tension of the activating 

droplet is assumed to be constantly that of pure water (72 mN m-1) for consistency across studies 

[e.g., Padro et al., 2012; Sullivan et al., 2009], as the surface tension of droplets at activation is 

difficult to quantify [Ruehl et al., 2012].  Especially in cases where droplet surface tension is of 

potential importance to the observations, κ is often labeled as ‘apparent’ (κapp) [Sullivan et al., 

2009] when surface tension is assumed constant.  If changes in surface tension were to impact 

CCN activation, the coupled influence of the surface tension and solvent activity would be 

essentially lumped together within κapp.  The apparent hygroscopicity convention was adopted in 

this study in light of the high degree of chemical complexity and the relatively weak degree of 

physicochemical characterization of SSA particles to date [Quinn et al., 2015]. 
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2.2 Sample Preparation 

This study evaluated the CCN activity of nascent SSA particles generated during a series of 

marine biological microcosm experiments.  The methodology and detailed analysis of certain 

biological and chemical aspects of this type of experiment was described in detail by Lee et al. 

[2015], but a brief explanation will be given here.  For each experiment, a sample of natural, 

coastal seawater was obtained, filtered using 50 µm Nitex mesh (Sefar Nitex 03-100/32), and 

allowed to equilibrate thermally with the laboratory overnight.  The seawater sample was added 

to a Marine Aerosol Reference Tank (MART) [Stokes et al., 2013], at which point control 

measurements were made.  Guillard’s f/2 growth medium with sodium metasilicate [Guillard 

and Ryther, 1962] was added to the seawater to  and light was supplied continuously to (ca. 70 

µE m-2 s-1) to stimulate algae growth. The seawater was mixed and aerated by introducing large 

bubbles of filtered air into the bottom of the tank through 3 mm diameter Tygon tubing.  When 

the chlorophyll-a (chl-a) concentration in the seawater reached an empirically-determined 

threshold of approximately 12 mg m-3, SSA particle generation was commenced.  SSA was 

generated using the plunging waterfall mechanism of the MART [Stokes et al., 2013] for two-

hour periods, wherein the waterfall was ‘pulsed’ with a duty cycle of 4 seconds ON and 4 

seconds OFF to simulate the episodic nature of a breaking wave in the open ocean [Collins et al., 

2014].  Six, 2 hour periods of SSA generation were performed each day until about 7 days past 

the time where chl-a concentrations in the seawater bulk returned to baseline values.  CCN 
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activity measurements presented in this study were conducted at least 3 times and at most once 

per day during each microcosm experiment. 

3 Results and Discussion 

3.1 Hygroscopicity of Sea Spray from Laboratory Phytoplankton Blooms 

Three laboratory-generated phytoplankton bloom microcosm experiments were conducted within 

a MART system from which size- and supersaturation-resolved CCN active fractions of SSA 

particles were quantified (see Supplemental Information).  Dry particle diameter and critical 

supersaturation pairs were used to calculate κapp for a variety of time points along each bloom 

microcosm experiment.  The data are separated into three general periods: pre-bloom (after 

nutrient addition), peak chl-a, and post-bloom (Figure 1a).  Overall, κapp averaged 0.95 ± 0.15 

(1σ) with a range of 0.7 – 1.4 for all sizes studied (Figure 1b).   Measurements of hygroscopicity 

in laboratory experiments utilizing complex organic matrices like the present study and that of 

[Fuentes et al., 2011] lack full agreement with in situ SSA generation studies performed  in the 

North Atlantic [Quinn et al., 2014] and the Mediterranean Sea [Schwier et al., 2015] (Figure 1b, 

gray markers).  Differences in production method between this study and Quinn et al. [2014] 

were ruled out by direct comparison of the sintered diffusion stone [Bates et al., 2012] and 

MART waterfall methods in the same seawater (Figure S2), as expected based on the findings of 

Fuentes et al. [2010b].  The aforementioned in situ studies also disagree with one another with 

respect to the response of κapp to biological activity metrics (e.g., chl-a): the observations of 

Schwier et al. [2015] indicate that κapp of SSA was only slightly less sensitive to biological 
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activity than current parameterizations [e.g., Gantt et al., 2011; Rinaldi et al., 2013] would have 

predicted, whereas Quinn et al. [2014] observed little-to-no relationship between chl-a and κapp 

for freshly-produced SSA.  Discrepancies between studies using natural seawater could be 

ascribed to regional differences in organic matter composition and/or microbial community 

composition. 

The range of κapp values obtained in this study agrees well with other laboratory studies of SSA 

generated from chemically complex, algae-dominated seawater samples (Figure 2) [Collins et 

al., 2013; Fuentes et al., 2011; Moore et al., 2011; Wex et al., 2010b].  For particles with Dp < 

120 nm, all studies on such systems to date have indicated that the CCN-derived κapp were 

greater than 0.7 (c.f. Table 1, Collins et al. [2013] and references therein).  It should be noted 

that the previous laboratory studies presented in comparison to the work described herein 

[Collins et al., 2013; Fuentes et al., 2011; Moore et al., 2011; Wex et al., 2010b] use algae-

produced organic matter samples that were static in composition and produced in monoculture.  

Any chemical differences documented between samples in those studies are related to either 

organic matter concentration or source organism.  In contrast, the present study differs 

importantly from previous efforts due to the use of the Microbial Loop to induce temporally 

dynamic organic matter composition changes in the seawater through natural biochemical 

interactions between marine organic matter and the biological community in the seawater [Azam 

et al., 1983; Lee et al., 2015].  Several groups have posited that chl-a (a metric for phytoplankton 

biomass) may not be a universal basis for parameterizing the properties of nascent SSA [Quinn 
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and Bates, 2011; Wang et al., 2015], and that microbial processes are of great importance to 

shaping the composition and physicochemical properties of nascent SSA [Ault et al., 2013; 

Collins et al., 2013; O'Dowd et al., 2015; Prather et al., 2013; Wang et al., 2015].  With such 

arguments in mind, the present study quantified the CCN-derived κapp values of SSA produced 

from a stimulated dynamic ecosystem that was initiated from 50 µm filtered coastal seawater.  

While phytoplankton exudate production was likely the most influential process controlling 

organic matter composition in monoculture-based studies [Collins et al., 2013; Fuentes et al., 

2011; Moore et al., 2011; Wex et al., 2010b], the bloom microcosm experiments presented in this 

study include biochemical processes (e.g., enzyme activity) that influence the organic matter 

dynamics throughout this type of experiment [Riemann et al., 2000].  Important organic matter 

processes include not only those associated with primary productivity, like exudate production, 

but also processes associated with algae senescence, such as predation by bacteria and viruses, 

heterotrophic bacterial productivity and metabolism, cell lysis, and bacterial enzyme activity 

[Azam and Malfatti, 2007; Pomeroy et al., 2007].  Using a similar chemical system, prior 

laboratory studies have shown that bacterial processing could be important to SSA composition, 

mixing state, and physicochemical properties [Ault et al., 2013; Collins et al., 2013; Prather et 

al., 2013; Wang et al., 2015].  In particular, Collins et al. [2013] showed that bacterial growth on 

ZoBell media in natural seawater was associated with a major decrease in CCN-derived κapp, yet 

additions of algae monocultures to both bacteria-rich seawater and fresh coastal seawater yielded 

much smaller depressions of SSA hygroscopicity, similar to the present study.  Bacterial 
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processing of ZoBell media, rich in peptone and yeast extract, appears to have had a stronger 

effect on κapp of SSA than did bacterial degradation of natural algae-produced organic matter, 

known to be rich in carbohydrates.  Comparison of these two mesocosm/microcosm studies, 

along with the aforementioned comparison between the present study and those of Schwier et al. 

[2015] and Quinn et al. [2014] suggest that the specific chemical composition of organic matter 

may influence the relationship between κapp and marine microbial activity. 

In general agreement with the bloom experiments presented herein, a recent study by Schill et al. 

[2015] showed a lack of change in the CCN-derived hygroscopicity of SSA for experiments 

wherein various representative proxy compounds for marine organic matter were sequentially 

added to a MART containing artificial seawater, resulting in an ultimate organic matter 

concentration of 350 µM C.  The final concentration of this ‘artificial bloom’ experiment was 

similar to the total organic carbon concentration found in the phytoplankton bloom experiments 

in the present study (Figure S1).  Overall, studies using state-of-the-art SSA production methods 

that range from additions of a few simple proxy compounds to those utilizing complex, 

phytoplankton-based organic systems have illustrated a common range of CCN-derived 

hygroscopicity for freshly emitted SSA particles between κapp = 0.7 – 1.4. 

The apparently small consequence of changing marine biological activity on the CCN-derived 

κapp of SSA in this study may be related to the mechanism of organic enrichment in SSA 

particles [Quinn et al., 2015; Russell et al., 2010; Wang et al., 2015].  The insoluble and/or 

amphiphilic nature of the organic components of SSA [Facchini et al., 2008] have led to model 
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studies assigning κorg < 0.1 [Meskhidze et al., 2011; Westervelt et al., 2012].  In the surface 

ocean, about 60-75% of organic molecules are less than 1 kDa [Benner, 2002].  With an average 

molecular weight cited around 4370 kg kmol-1 [Moore et al., 2008], marine organic matter 

would, conversely, have an expected κorg value of about 0.006 [Eq. 3, Petters et al., 2009].  The 

bubble-mediated SSA production process is well known to be chemically selective [e.g., 

Hoffman and Duce, 1976], and it has been shown that SSA has a different composition than the 

seawater from which it formed [Quinn et al., 2015].  Detailed chemical studies have shown that 

the composition of SSA particles with Dp < 1 µm is dominated by fatty acids [e.g., Cochran et 

al., 2016; Frossard et al., 2014; Wang et al., 2015], suggesting that the surface tension of 

droplets formed from SSA particles could be smaller than that of pure water.  Decreased surface 

tension (σlv) due to the addition of surface active organic material would cause κapp to remain 

higher than if only the solute properties of the organic component were acting on the system 

alone, as σlv is held at 72 mN m-1 in Equation 1 for κapp by definition.  To be clear, the true role 

of surface tension in cloud droplet activation is under current scrutiny [e.g., Farmer et al., 2015; 

Petters and Kreidenweis, 2013; Prisle et al., 2008; Ruehl et al., 2016].  The potential importance 

of σlv for SSA particle CCN activation is suggested based on current knowledge of particle 

composition and the repeated experimental determinations of hygroscopicity in this study with 

elevated marine organic matter present.  Close inspection of the findings of one experiment in 

this study (Figures 2 and S2) reveals a 12-18% increase in κapp during a subset of the bloom 

microcosm experiments.  If such an increase in κapp was due to changes in droplet surface 
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tension, it would align with the increasing prevalence surface active compounds during the ‘peak 

chl-a’ and ‘post-senescence’ periods of algae blooms [Cochran et al., 2016; Zutic et al., 1981].  

Overall, an analysis of the κapp values from this study indicated that the apparent organic volume 

fraction (εapp,org) of the SSA particles was less than 0.4 (Dp = 30 – 80 nm)  (see Supplemental 

Information), whereas measured organic fractions approaching unity have been noted in nascent 

SSA particles with D < 200 nm [Facchini et al., 2008; Prather et al., 2013].  Such discord 

between CCN-derived organic content with more direct measures of CCN could indicate the 

influence of surface tension on cloud droplet activation.  Generally speaking, the senescent 

period of an algae bloom is characterized by a high diversity of biogeochemical processes within 

microbial ecosystems [Azam and Malfatti, 2007; Pomeroy et al., 2007], which has been shown to 

have important impacts on the composition and the enrichment of organic matter in SSA 

particles [Lee et al., 2015; O'Dowd et al., 2015], including an enrichment of fatty acids in the 

aerosol [Cochran et al., 2016; Wang et al., 2015]. 

3.2 Comparison with Primary Marine Organic Aerosol Parameterizations 

Ambient aerosol measurements in the marine boundary layer have suggested a relationship 

between biological activity in the surface ocean and the organic mass fraction of marine aerosol 

[O'Dowd et al., 2004].  Analysis of submicron aerosol organic mass fraction data from coastal 

sites, mainly focused on a single long-term sampling effort at Mace Head, Ireland, has produced 

a series of proposed relationships between chl-a and the submicron organic matter fraction in 

SSA [Fuentes et al., 2010a; Gantt et al., 2011; O'Dowd et al., 2008; Rinaldi et al., 2013; Vignati 
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et al., 2010].  Global models use these source function parameterizations to derive not only the 

organic fraction of SSA, but also can further calculate physicochemical property parameters 

from the known organic mass fraction in the aerosol, provided some assumptions.  As discussed 

above, the hygroscopicity parameter can be derived from the organic volume fraction of the 

aerosol.  Figure 2 shows the κapp values determined in this and similar studies superimposed on 

the assumed κ values as a function of chl-a concentration for a variety of organic mass fraction 

parameterizations (see Supplemental Information).  Most parameterizations underestimated κ in 

comparison with experiments at nearly all chl-a concentrations studied experimentally.  It should 

be noted that most of the parameterizations were derived from conditions where chl-a < 5 mg m-

3, and most of the experimental data in this study had chl-a > 10 mg m-3 due to technical 

considerations [Lee et al., 2015].  Still, the CCN activity of SSA in these experiments was not 

well approximated by the existing organic mass fraction parameterizations.  Bulk composition 

data (and parameterizations derived therefrom) may not be suited to predict the properties of 

nascent SSA particles as CCN.  Unpredicted CCN behavior could result from uncertainties in the 

interactions of SSA particles with water during cloud droplet activation [Moore et al., 2011; 

Ovadnevaite et al., 2011] or the insensitivity of aerosol mass measurements to detailed chemical 

changes in aerosols at CCN-relevant sizes. 

3.3 Sea Spray Aerosol Size Distributions and CCN Concentrations 

In order to connect (intensive) aerosol physicochemical properties with the (extensive) expected 

CCN number concentrations (NCCN) at a particular supersaturation, one must closely inspect the 
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size distribution of particles [Dusek et al., 2006].  Figure 3 shows the size distribution and size-

resolved cumulative distribution function (CDF) of SSA generated by a laboratory breaking 

wave, which is nearly identical in shape to the aerosol size distribution generated by the plunging 

waterfall within the MART [Collins et al., 2014; Stokes et al., 2013].  Superimposed on the size 

distribution are 3 vertical dashed lines that correspond to Dact for κ values of 1, 0.1, and 0.01, 

respectively.  Changes in hygroscopicity which lead to changes in Dact that span the peak in the 

size distribution correspond to the highest sensitivity of NCCN to changes in κ.  Since the range of 

values measured in this study range was between κapp = 0.7 – 1.4, a change in Dact (or κapp) from 

one extreme of this range in κapp to the other (blue vertical band in Figure 3) would not lead to a 

large changes in NCCN.  If SSA particle composition changed enough to shift the hygroscopicity 

through the whole range in κapp observed in the phytoplankton bloom microcosm experiments 

described in this study (as a liberal estimate), the corresponding change in NCCN would be less 

than 3% for supersaturations relevant to marine clouds (sc ≤ 1%).  Hence, based on these 

experiments, one would expect the composition of nascent SSA particles to have a small effect 

on NCCN over the ocean.   

If biogeochemically-induced changes in SSA particles were to have a significant impact on cloud 

properties in remote marine regions [e.g., McCoy et al., 2015; Quinn and Bates, 2011], it is most 

likely derived from changes in the size-resolved emission rate of particles [Alpert et al., 2015; 

Fuentes et al., 2010a] or through biogenic secondary processes acting on primary SSA [Charlson 

et al., 1987; Lana et al., 2012].  Size-resolved studies of the production flux of SSA particles 
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have been done previously [de Leeuw et al., 2011; Lewis and Schwartz, 2004] with results that 

vary to a degree that can strongly influence the findings of global model studies [Tsigaridis et 

al., 2013].  Alpert et al. [2015] recently used a plunging water jet system to generated SSA from 

seawater in which a phytoplankton bloom was grown, similar to the present study.  It was found 

that the production flux increased approximately 3-fold for particles with Dp < 200 nm during the 

bloom.  Based on the κapp values measured in this and comparable studies (Figure 1), the upper 

limit value of Dact for nascent SSA would be 125 nm (sc = 0.1%, κapp = 0.7). An increase in SSA 

flux such as that observed by Alpert et al. [2015] would therefore translate to an increased flux of 

CCN as well.  Fuentes et al. [2010a] and Schwier et al. [2015] also showed that regions of the 

ocean with higher chl-a led to a greater production flux of particles during in situ controlled SSA 

production experiments using plunging water jet systems.  It should be noted that recent studies 

have shown that the formation of a thick foam within laboratory SSA generators through 

continuous bubble production (like the continuous plunging water jet apparatus) can strongly 

influence the size distribution and composition of the aerosol when seawater organic matter 

concentrations are high [Collins et al., 2014; King et al., 2012].  The ‘pulsed’ operation of the 

MART used in this study reduces the buildup of foam by mimicking the episodic behavior of 

waves in the open ocean [Collins et al., 2014].  None of the aforementioned SSA flux studies 

gave an explicit characterization of foam within the SSA generator during organic matter-

dependent flux studies; future studies are encouraged to monitor surface conditions.  Still, 

increasing concentrations of particles with Dp > Dact would explain a primary marine 
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contribution to correlated chl-a and cloud drop number concentrations that have been noted in 

the Southern Ocean [e.g., McCoy et al., 2015; Meskhidze and Nenes, 2006], especially 

considering the small changes in hygroscopicity observed herein. 

4 Conclusions 

The range of CCN-derived hygroscopicity for nascent SSA particles generated in a controlled 

environment using a pulsed plunging waterfall technique during a set of phytoplankton bloom 

microcosm experiments was quantified in this study.  The overall value of κapp was observed to 

remain greater than 0.7 for all experiments, with an average of 0.95.  In general, these results 

compare well with chemically simpler laboratory studies in which SSA particles were generated 

from seawater samples doped with algae-produced organic matter, suggesting that overall 

impacts of biological activity on SSA κapp values are relatively weak.  The shape of the size 

distribution from a breaking wave (and from the MART plunging waterfall) dictates that changes 

in hygroscopicity within the range observed in this study would only account for up to 3% 

change in NCCN for typical marine cloud supersaturations.  However, alterations to the SSA 

production flux for Dp > Dact could help explain observed correlations between biological 

activity and cloud properties in remote oceanic regions.  This is especially evident in light of the 

relatively small changes in κapp associated with large increases in the organic matter 

concentration and/or status of biological activity of the seawater from which the SSA were 

generated.  Continued characterization of the SSA production flux under different marine 

biogeochemical states using state-of-the-art SSA generators is warranted.  Careful accounting of 
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the production of foam within such generators is highly recommended to ensure that conditions 

for SSA production are well characterized.  Chemically-characterized effects on the size-

resolved number flux of particles from the ocean and reconciliation of the discrepancies between 

production of SSA from in situ studies and those from laboratory experiments should be 

priorities for the field. 
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Figure 1: (a) General scheme for the growth of phytoplankton, bacteria, and viruses within a 

MART microcosm with Pre-peak chl-a, Peak chl-a, and Post-peak chl-a periods labeled. (b) 

Hygroscopicity of nascent SSA particles from a variety of laboratory and field studies, 

segregated by dry particle diameter.  Measurements presented in this study are shown as 

triangles; colors are coordinated with (a). The method by which the sample was generated is 

shown in parentheses.  Data from the North Atlantic are from Quinn et al. [2014], Ostreococcus 

(Ostr.) and Synechococcus (Synech.) are from Moore et al. [2011] (highest organic matter 

concentrations), and Dunaliella tertiolecta monoculture from Collins et al. [2013].  Shading for 

algal exudates from Fuentes et al. [2011] and Wex et al. [2010b] represents the range of values 

obtained from various algae utilized.  Key details on each study are noted in the text. 

 

Figure 2: Selected SSA organic mass fraction parameterizations based on measured ocean 

surface chl-a concentration, translated into κ values (see Supporting Information).  Measured κapp 

values from this and prior studies of nascent SSA have been superimposed for comparison. 

 

Figure 3: (a.) Number size distribution of nascent SSA from wave breaking (top) and the 

“inverted” cumulative distribution (CDF) of the same data (bottom).  The inverted CDF is the 

integral of the size distribution between a size (Dp) and the upper limit of the distribution.  When 

evaluated at the activation diameter (Dact), the inverted CDF represents the number concentration 
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of CCN expected (NCCN).  The vertical red dashed lines indicate Dact for a κ value that is labeled 

at the base of the figure when sc = 0.4%.  The blue shaded band indicates the full range of κapp 

values (0.7 – 1.4) observed in the MART microcosm bloom experiments. (b.) Percentage change 

in total NCCN for the wave breaking size distribution when considering a hypothetical change in 

hygroscopicity from a reference state of κ = 0.8 to the value shown on the horizontal axis.  

Contour lines are superimposed to help guide the eye; line color changes from black to white 

only to maximize contrast. 
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