1

- 2 Received Date : 30-Sep-2015
- 3 Revised Date : 04-Feb-2016
- 4 Accepted Date : 17-Feb-2016
- 5 Article type : Original Article
- 6
- 7

Abstract: 8

111

9 The venomous snake subfamily Hydrophiinae includes more than 40 genera and approximately 200 species. Most members of this clade inhabit Australia and have been well studied. But, due 10 to poor taxon sampling of Melanesian taxa, basal evolutionary relationships have remained 11 12 poorly resolved. The Melanesian genera Ogmodon, Loveridgelaps, and Salomonelaps have not been included in recent phylogenetic studies, and the New Guinean endemic, Toxicocalamus, has 13 14 been poorly sampled and sometimes recovered as polyphyletic. We generated a multilocus phylogeny for the subfamily using three mitochondrial and four nuclear loci so as to investigate 15 16 relationships among the basal hydrophiine genera and to determine the status of *Toxicocalamus*. We sequenced these loci for eight of the twelve described species within *Toxicocalamus*, 17 representing the largest molecular dataset for this genus. We found that a system of offshore 18 19 island arcs in Melanesia was the center of origin for terrestrial species of Hydrophiinae, and we recovered Toxicocalamus as monophyletic. Toxicocalamus demonstrates high genetic and 20 21 morphological diversity, but some of the molecular diversity is not accompanied by diagnostic morphological change. We document at least five undescribed species that all key 22 23 morphologically to T. loriae, rendering that species polyphyletic. Continued work on *Toxicocalamus* is needed to document the diversity of this genus and likely will result in 24 25 additional species discovery. Our increased taxon sampling allowed us to better understand the evolution and biogeography of Hydrophiinae; however, several unsampled lineages remain, 26 27 whose later study may be used to test our biogeographic hypothesis. 28

29 ADDITIONAL KEYWORDS: Australasia – Fiji – Melanesia – Snake – Solomon Islands

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi</u>: 10.1111/Z0J.12423

2	n
_ D	U
-	-

- 31
- 32
- 33

34

INTRODUCTION

The Hydrophiinae Fitzinger, 1843 is one of two subfamilies within Elapidae Boie, 1827 and 35 contains some of the most venomous snake species in the world, including taipans, tiger snakes, 36 sea kraits, and sea snakes. There are more than 40 genera and close to 200 species recognized 37 (Wallach, Williams, & Boundy, 2014; The Reptile Database, 2015). Members of this subfamily 38 39 are found terrestrially throughout Melanesia and Australia (Australasia) as well as in marine tropical and subtropical environments in the Indo-Pacific. Monophyly of Hydrophiinae has been 40 41 well supported through morphological (McDowell, 1970; McCarthy, 1985) and genetic (Slowinski, Knight & Rooney, 1997; Keogh, 1998; Slowinski & Keogh, 2000; Sanders et al. 42 2008; Metzger et al., 2010) work. Also, Laticauda Laurenti, 1768 (sea kraits), has been well 43 established as the basal lineage within Hydrophiinae and has an Oriental origin (Keogh, 1998; 44 45 Sanders et al. 2008; Metzger et al., 2010; Lane & Shine, 2011). Consequently, evidence points to an Oriental origin of the Hydrophiinae through marine invasion, followed by a terrestrial 46 47 reemergence in Melanesia (McDowell, 1970; Keogh, Shine & Donnellan 1998; Scanlon & Lee, 2004). However, there is conflicting evidence whether all Melanesian taxa are basal to 48 49 Australian taxa or if there have been reverse exchanges from Australia to Melanesia as well (Sanders et al. 2008; Metzger et al., 2010). 50

51 The evolutionary relationships and biogeographic origins of the basal hydrophiine genera have been difficult to assess due to incomplete taxon sampling (Scanlon, 2003; Scanlon & Lee, 52 53 2004; Pyron Burbrink & Weins, 2013). Included among these poorly represented groups are five 54 monotypic genera: Micropechis Boulenger, 1896 from New Guinea; Ogmodon Peters, 1864 from 55 Fiji, and Loveridgelaps McDowell, 1970, Salomonelaps McDowell, 1970, and Parapistocalamus Roux, 1934 from the Solomon Islands. Parapistocalamus has never been included in a 56 phylogenetic study. *Micropechis* has been represented by up to two individuals, and the other 57 58 three monotypic genera have only been represented by one individual in molecular phylogenetic studies. For the four genera included, there was evidence that they were basal members of the 59 60 clade (Keogh, 1998, Keogh et al., 1998; Scanlon & Lee, 2004). In subsequent phylogenetic

studies, *Ogmodon*, *Salomonelaps*, and *Loveridgelaps* were not included, and the basal lineages
were poorly resolved within Hydrophiinae (Sanders *et al.*, 2008; Metzger *et al.*, 2010; Pyron, *et al.*, 2013).

In addition, the unstable placement of the basal genera has been influenced by 64 insufficient sampling within Cacophis Günther, 1863, and Toxicocalamus Boulenger, 1896. 65 66 *Cacophis* is found in the rainforests of eastern Australia, has been represented in phylogenetic studies by only one of the four species in the genus (Cacophis squamulosus Duméril, Bibron & 67 Duméril, 1854), and its placement among the Hydrophiinae has been unstable (Keogh et al., 68 1998; Scanlon, 2003, Scanlon & Lee, 2004; Sanders et al., 2008; Metzger et al., 2010; Pyron et 69 70 al., 2013). Toxicocalamus, endemic to New Guinea and adjacent islands to the north and southeast, has been represented by one or two of the twelve described species. 71 72 For Toxicocalamus, Sanders et al. (2008) used a single representative (T. preussi Sternfeld, 1913) and did not recover it among the basal Melanesian taxa of the Hydrophiinae. 73 74 Rather, another New Guinean genus, *Micropechis*, was retrieved as basal. A second sample from 75 a different species (T. loriae Boulenger, 1898) was added by Metzger et al. (2010) and also used 76 by Pyron et al. (2013). Both found that the two species did not cluster together, raising the possibility that Toxicocalamus is in fact polyphyletic, which would also be consistent with the 77 78 prior assignment of its current contingent of species across three genera. Beyond this, evolutionary relationships of Toxicocalamus to other elapids remain poorly understood, and 79 80 relationships within the genus have never been assessed. Toxicocalamus consists of 12 named species of cryptozoic snakes (McDowell, 1969; 81 82 Kraus, 2009; O'Shea, Parker & Kaiser, 2015). The genus was named by Boulenger (1896) to accommodate a single species, T. longissimus, endemic to Woodlark Island, off southeastern 83 84 New Guinea. Boulenger (1898), Lönnberg (1900), and Sternfeld (1913) later named Apistocalamus, Pseudapistocalamus, and Ultrocalamus, respectively, to contain related snake 85 species newly named by them. Of these, *Pseudapistocalamus* was synonymized with 86 Toxicocalamus and the other two taxa subsumed within that genus as subgenera by McDowell 87 (1969). These subgenera were recognized on the basis of major differences involving loss or 88 89 fusion of assorted head scales, relative body width, and osteological and hemipenial features (McDowell, 1969); nonetheless, these names have not been used by subsequent authors. Indeed, 90 91 the only systematic work on the genus subsequent to McDowell's (1969) revision has been the

synonymization of *Vanapina lineata* (de Vis, 1905) with *T. longissimus* (Ingram, 1989) and the
description of two new species by Kraus (2009) and one new species by O'Shea *et al.* (2015).
Additional species require description (O'Shea, 1996; Kraus, 2009; O'Shea *et al.* 2015; F. Kraus,
unpubl. data); for example, snakes currently assigned to *T. loriae* are a sibling-species complex
(Kraus, 2009, unpubl. data; O'Shea *et al.* 2015; and see below), and the western half of New
Guinea has barely been surveyed for these snakes. Consequently, diversity in the genus will
certainly be higher than apparent from existing nomenclature.

This sparse systematic treatment stems from the under-collected nature of the Papuan 99 herpetofauna generally and the secretive habits of these snakes specifically, both of which factors 100 have led to a scarcity of specimens to support biological studies (with "T. loriae" being the sole 101 exception). Similarly, field studies of these snakes have been non-existent. In the almost 120 102 103 years since the genus was described, only two authors on the genus (Kraus, O'Shea) appear to have had experience with the species in the field. Despite this, these snakes appear to be 104 105 ecologically unusual among elapids in feeding primarily on earthworms (O'Shea, 1996; Shine & Keogh, 1996; Goodman, 2010; Calvete et al., 2012; O'Shea et al., 2015; F. Kraus, unpubl. data), 106 107 although fly pupae and a land snail have also been reported among stomach contents (Bogert & Matalas, 1945; McDowell, 1969). Beyond these ecological attributes, species of *Toxicocalamus* 108 109 exhibit a range of morphological variation that is unusual within any snake genus. Some species are very thinly elongated, whereas others are of average snake habitus, and one is rather stout. A 110 111 number of different fusions among the head and body scales has occurred. Fusion of head scales is common among fossorial snakes, but it usually involves consistent fusion of one or two pairs 112 113 of scales. In *Toxicocalamus*, subcaudal scales may be single or divided, the anal scale may be single or divided, dorsal scale rows vary from 13-17, and five separate types of fusion have 114 115 occurred among the head scales (McDowell, 1969; Kraus, 2009). The history of these evolutionary modifications and what may account for their variation remain unknown. 116 Most, if not all, species are also behaviorally inoffensive, being disinclined to bite – for 117 example, one of us (FK) has handled 40 living animals of eight named and several unnamed 118 species and has never witnessed any attempt to bite. Further, it is doubtful that the small gapes 119 120 and fangs of most species would allow for envenomation of humans or other larger vertebrates

should they attempt to bite. Despite this, *T. longissimus* – the only species examined to date – has

122 very potent venom components (Calvete et al., 2012), which would seem unnecessary for either

capture of their earthworm prey or for effective defense, given their structural and behavioral 123 limitations. Furthermore, T. buergersi Sternfeld, 1913 has a very elongated venom gland that 124 extends posteriorly into the body cavity (McDowell, 1969), suggesting that it has the capacity to 125 produce a large quantity of venom. Again, it is unclear what dietary or defensive use this ability 126 could serve. It is possible that the highly toxic venom components of T. longissimus are merely 127 128 phylogenetically conserved and retained from ancestors. However, it remains difficult to explain the large venom glands of *T. buergersi*. 129

Here we conduct a molecular phylogenetic analysis to 1) better understand the evolution 130 of the basal genera within Hydrophiinae, 2) determine Toxicocalamus' phylogenetic placement 131 within the subfamily, and 3) determine the evolutionary relationships of the species within this 132 peculiar genus. To address the basal instability, we include available sequence data from other 133 134 hydrophilines, including the monotypic Melanesian genera Micropechis, Ogmodon, Loveridgelaps, and Salomonelaps. However, we were unable to include additional species from 135 136 *Cacophis* within this study due to lack of sample availability. We address the paucity of prior taxonomic sampling within *Toxicocalamus* by utilizing eight of the 12 named species, as well as 137 138 additional species currently undescribed. Of the four named species of Toxicocalamus missing from our dataset, two are known only from holotypes (T. grandis Boulenger, 1914 and T. 139 140 ernstmayri O'Shea, Parker & Kaiser, 2015), another from two specimens (T. spilolepidotus McDowell, 1969), the fourth from five (T. buergersi). We were unsuccessful in obtaining DNA 141 142 from preserved specimens of the latter two species, so we did not attempt to sample the holotypes. 143

144

145

- 146

147

MATERIAL AND METHODS

TAXON SAMPLING

To determine the evolutionary placement of *Toxicocalamus* within the Hydrophiinae, we 148 used sequences on GenBank for 90 individuals from 68 species (Appendix 1). These 68 species 149 include representatives of 40 of 44 genera within Hydrophiinae. The remaining four genera do 150 151 not have sequences currently available. Two of these (Kolpophis Smith, 1926 and Thalassophis Schmidt, 1852) are seasnakes and likely would not change the topology if they were included. 152 Antaioserpens Wells & Wellington, 1985, is, according to Scanlon, Lee, & Archer (2003), sister 153

to *Simoselaps*, whose placement has been stable in the phylogeny of Hydrophiinae (Sanders *et al.*, 2008; Metzger *et al.*, 2010; Pyron, *et al.*, 2013). The final genus, *Parapistocalamus*, from the
northern Solomon Islands would be a valuable addition to the phylogeny if tissues ever become
available. In addition, we used six species from the other subfamily of Elapidae, Elapinae Boie,
1827, to root our phylogeny.

We collected 26 tissue samples of *Toxicocalamus* from 12 localities on New Guinea and surrounding islands. We also acquired two tissue samples of *Toxicocalamus* through tissue loan. In addition, there was one *T. preussi* sequence available on GenBank, and Scott Keogh provided sequence data for an additional *T. preussi*. These samples represent eight of the twelve currently named species, as well as samples from individuals of undescribed species (Fig 1; Table 1).

- 164
- 165

166

DNA EXTRACTION, AMPLIFICATION, AND SEQUENCING

We used the DNEasy Blood and Tissue Kit (Qiagen) to extract total genomic DNA from 167 all tissue samples. We performed gel electrophoresis on a 2.0% agarose gel to determine quality 168 169 of the extracted DNA. We attempted to sequence three mitochondrial loci and four nuclear loci for all individuals: 16S rRNA (16S), cytochrome b (cyt-b), NADH dehydrogenase (ND4), oocyte 170 maturation factor (*c-mos*), recombination activating gene 1 (*RAG-1*) myosin heavy chain 2 intron 171 (MyHC-2), and β -spectrin nonerythrocytic intron 1 (SPTBN1) using published or designed 172 173 primers and standard PCR conditions (Table 2). PCR product was cleaned using Gel/PCR DNA Fragment Extraction Kit (IBI). Cleaned PCR product was sequenced in both directions at the 174 175 University of Arizona Genetics Core Facility on an ABI 3730XL DNA Analyzer (Applied Biosystems Inc.). 176

- 177
- 178
- 179

SEQUENCE ALIGNMENT AND DATA ANALYSIS

To visualize and edit chromatograms, we used Sequencher 5.1 (Gene Codes Corp.).
Heterozygosities at nuclear loci were coded with the appropriate IUPAC ambiguity code. We
used the MUSCLE alignment algorithm (Edgar, 2004) in MEGA 5.1 (Tamura *et al.*, 2011) with
default settings to align sequences and then verified alignments by eye. Protein-coding sequences

were translated into amino acids to ensure no stop codons were present. All other sequences usedin this study are from GenBank (Appendix 1).

186	We calculated genetic distances within Toxicocalamus for all loci and compared levels of
187	genetic diversity among species of Toxicocalamus in MEGA 5.1 (Tamura et al., 2011) using the
188	Tamura and Nei (TrN) model (Tamura & Nei, 1993) for nucleotide substitution. To determine
189	the appropriate partition and model of evolution for our loci, all possible partitions were
190	considered for the protein-coding genes, while 16S, MyHC-2, and SPTBN-1 were left
191	unpartitioned. We then used the Bayesian Information Criterion (BIC) and the greedy search
192	scheme in PartitionFinder (Lanfear et al., 2012) to generate the best partition and modeling
193	scheme for all programs used in our phylogenetic analyses (Table 2).
194	
195	PHYLOGENETIC ANALYSES
196	
197	We used MrBayes 3.1.2 (Huelsenbeck & Ronquist, 2001; Ronquest & Huelsenbeck,
198	2003) and RAxML 8.0.20 (Stamatakis, 2014) for phylogenetic analysis. For both programs, we
199	generated a concatenated phylogeny of all loci used, as well as individual gene trees for each
200	locus.
201	We simultaneously ran MrBayes two times with 1 cold and 3 hot chains for 7 million
202	generations each. The starting trees were independent between runs and randomly chosen. We
203	sampled one out of every 1000 trees. The first 20,000 trees were discarded as burn-in, and then
204	we used Tracer 1.6.0 (Rambaut, Suchard & Drummond, 2013) to plot the log-likelihood scores
205	against generation number to ensure stationarity was reached. A 50% majority-rule consensus
206	tree was calculated using the posterior distribution of trees. ML analyses in RAxML were
207	performed with 1000 bootstrap pseudoreplicates. We visualized the phylogenetic trees with
208	FigTree 1.4 (Rambaut & Drummond, 2012). Nodes with posterior probabilities (PP) of ≥ 0.95
209	from BI and nodes with bootstrap support (BS) \geq 75% from ML were considered strongly
210	supported.
211	
212	CHARACTER MAPPING
213	

214 We mapped relative width of ventrals, fusion of the preocular and prefrontal scales, anal plate divided/undivided, internasal fused to prefrontal, and subcaudals undivided onto our 215 216 phylogeny. These five characters were chosen because they are important in Toxicocalamus 217 species identification and McDowell (1969), Kraus (2009), and O'Shea et al. (2015) incorporated them into their dichotomous keys for Toxicocalamus. We used the most 218 219 parsimonious character map to determine the ancestral state for the character. If two parsimonious trees were equally likely, we used the character state of *Ogmodon vitianus* as the 220 outgroup to determine which character map to present. 221 222 RESULTS 223 224 TAXON SAMPLING 225 Several of our sampled undescribed species of *Toxicocalamus* key out morphologically to 226 227 T. loriae (O'Shea, 1996; Kraus, 2009; O'Shea et al., 2015) and are referred to as T. loriae in many museum collections. However, we retrieve these samples across a wide range of our 228 229 phylogeny. For the sake of clarity in presenting our results, we will refer to each of these as "T. loriae Clade 1, T. loriae Clade 2, etc.", recognizing that these represent cryptic species that 230 231 require further taxonomic elucidation but that they have remained morphologically undiagnosed and clustered under a single name (Kraus, 2009; O'Shea et al., 2015). 232 233 234 **SEQUENCE DATA** 235 We generated sequences for 28 individuals within *Toxicocalamus* and deposited them on 236 237 GenBank (Table 1). In total, including GenBank sequences for outgroup taxa, we analyzed 126 individuals. The length of the concatenated alignment was 5843 base pairs: 1754 mitochondrial 238 protein-coding, 521 rRNA, 1834 nuclear protein-coding, and 1734 nuclear intron (Table 1; Table 239 2). Protein-coding genes did not contain frameshifts or internal stop codons. Genetic distances 240 between species or clades with *Toxicocalamus* ranged from 0.06 - 0.29 for *cyt-b*, 0.07 - 0.32 for 241 *ND4*, 0.02 – 0.19 for *16S*, 0.01 – 0.06 for *MyHC*-2, 0.00 – 0.03 for *RAG1*, 0.00 – 0.01 for *c-mos*, 242 and 0.00 - 0.04 for SPTBN1 sequences. 243 244

245

246

We present the BI phylogenies of the concatenated dataset and include the ML bootstrap support values on the nodes (Fig. 2; Fig. 3). Overall, the BI and ML trees were identical at all supported nodes (PP of \geq 0.95 from BI and/or nodes with BS \geq 75% from ML). The only differences in the topologies generated by the two algorithms were in the nodes without support,

none of which change the relationships among the basal genera or the relationships among
species within *Toxicocalamus*. Thus, our interpretations and the conclusions drawn are the same
under each analysis.

254 Our results support Hydrophinae as monophyletic and *Laticauda* as the basal member, as found in previous studies (Sanders et al., 2008; Metzger et al., 2010; Lane & Shine, 2011; Pyron, 255 256 et al., 2013). Our phylogeny is also in general agreement with relationships found among the Australian genera and seasnakes (Scanlon & Lee, 2004; Wuster et al., 2005; Lukoschek & 257 258 Keogh, 2006; Sanders et al., 2008). However, inclusion of Ogmodon, Salomonelaps, and *Loveridgelaps*, along with more representatives from *Toxicocalamus*, yielded a novel topology 259 260 for these genera in relation to Micropechis, Aspidomorphus Fitzinger, 1843, Demansia Gray, 1842, and *Cacophis*. The included species from the Solomon Islands and Fiji are the basal 261 262 terrestrial lineage within Hydrophiinae (Fig. 2; PP=1/BS=99), and *Toxicocalamus* is the nextmost-basal lineage, clearly supporting Melanesia as the origin of the terrestrial Hydrophiinae. 263 264 All analyses found *Toxicocalamus* to be monophyletic. Within *Toxicocalamus*, *T*. stanleyanus Boulenger, 1903 + T. preussi (PP=1/BS=99) is strongly supported as a clade basal to 265 266 the remaining species. Toxicocalamus holopelturus McDowell, 1969 was strongly supported as sister to the remaining species (Fig. 3; PP=1/BS=93). Within the latter clade, T. loriae was found 267 268 to be polyphyletic, though T. loriae Clade 1's placement was only weakly supported (Fig. 3). As expected based on morphological similarity (Kraus, 2009), T. misimae McDowell, 1969 and T. 269 270 *longissimus* are sister species (Fig. 3). This sister relationship is further corroborated by the geological history of the two islands these species occupy. Misima Island and Woodlark Island 271 272 are home to T. misimae and T. longissimus, respectively, and were connected as recently as 1.2 273 million years ago, before the opening Woodlark Basin separated them (Taylor, Goodliffe, & Martinez, 1999). 274

In analyses of *ND4* and *cyt-b* gene trees, the position of *T. loriae* Clade 1 was recovered as basal to the remaining lineage of "*T. loriae*" Clades 2-6, *T. mintoni* Kraus, 2009, and *T. pachysomus* Kraus, 2009. For this phylogenetic arrangement, *T. mintoni* and *T. pachysomus* render the "*T. loriae*" species complex paraphyletic. Nonetheless, both are morphologically very distinct from "*T. loriae*". Several additional "*T loriae*" specimens were found to form four strongly supported (Clades 2, 3, 5, 6) and one weakly supported (Clade 4) lineages (Fig 3).

- 281 282
- 283

CHARACTER MAPPING

We found that the ancestral state within *Toxicocalamus* was narrow ventrals which is not 284 seen in *Ogmodon*, *Salomonelaps*, *or Loveridgelaps*. This corresponds to a long and thin overall 285 286 habitus with the normal snake habitus being regained later either once or twice depending on the character-state reconstruction used (Fig. 4A). The state for *Ogmodon vitianus* is preocular 287 288 unfused to prefrontal; therefore, if that is basal in *Toxicocalamus*, these scales have become 289 fused three independent times (Fig. 4B). Ogmodon vitianus has a divided anal plate. Interpreting 290 this as ancestral, the anal plates have fused twice within *Toxicocalamus* (Fig. 4C). The character state of internasal fused to prefrontal is seen in T. preussi and T. buergersi (not in analysis), and 291 292 having undivided subcaudals is an autapomorphy in *T. holopelterus* (Fig. 4D).

- 293
- 294 295

DISCUSSION

By including genera not used in prior phylogenetic analyses and representing 296 *Toxicocalamus* by a majority of its species, we generated a well-supported phylogeny of the 297 298 Hydrophiinae, clarifying placement of basal taxa and shedding light on the species relationships within the enigmatic New Guinean endemic *Toxicocalamus*. Congruent with previous studies, 299 300 we found Hydrophiinae to be monophyletic, with *Laticauda* basal to all other lineages (Keogh, 1998; Scanlon & Lee, 2004; Sanders et al. 2008; Metzger et al., 2010; Lane & Shine, 2011). Our 301 302 results indicate that the five basal-most terrestrial genera in the subfamily are from Melanesia 303 and that the early ancestors of Hydrophiinae were likely cryptozoic. Our study clearly demonstrates the adverse effects of inadequate taxon sampling on phylogenetic estimations. By 304 utilizing eight described and several undescribed species of *Toxicocalamus*, we determined that 305

306 the genus is monophyletic, contrary to previous studies (Metzger et al., 2010; Pyron, et al., 2013), and we confirm that species currently designated *Toxicocalamus loriae* represent a 307 species complex in need of taxonomic revision (Kraus, 2009; O'Shea et al., 2015). We also find 308 309 Toxicocalamus to be basal to other New Guinean and Australian taxa within Hydrophiinae. The basal relationships within Hydrophiinae, including the placement of *Toxicocalamus*, 310 311 have been difficult to determine due to incomplete taxon sampling, which has led to different nomenclatures for the subfamilial taxonomy. We follow most authors in defining the subfamily 312 Hydrophiinae to contain all marine and terrestrial Australasian taxa (Slowinski & Keogh, 2000; 313 Castoe et al. 2007; Metzger et al., 2010), with the basal member of this subfamily being 314 Laticauda (Fig. 2). Some authors have elevated Hydrophiinae to family status and divided it into 315 two separate subfamilies, the Laticaudinae, including only Laticauda, and the Oxyuraninae, 316 317 which includes the remaining genera (Sanders et al., 2008; Kelly et al., 2009). However, *Parapistocalamus*, a genus endemic to the Solomon Islands, has not been represented within any 318 319 molecular phylogenies, and its morphological placement in relation to *Laticauda* and the other genera is uncertain. Based on the movement of the palatine bone during swallowing McDowell 320 321 (1970) differentiated Elapids into two groups: "palatine erectors", which includes all Elapids outside Hydrophiinae, as well as Laticauda and Parapistocalamus, and "palatine draggers", 322 323 which includes the remaining hydrophiines (Deufel & Cundall, 2009). McDowell (1985) later described Laticauda and Parapistocalamus as intermediates between the two phenotypes 324 325 because they lack the palatine choanal process like other Australasian elapids. If a tissue sample can be acquired for *Parapistocalamus hedigeri* Roux, 1934, then it would be possible to test this 326 327 nomenclatural hypothesis further and determine *Parapistocalamus*' placement among the other monotypic basal genera Ogmodon, Loveridgelaps, and Salomonelaps in Melanesia. We predict 328 329 that Parapistocalamus would be the next most-basal genus after Laticauda. The complete 330 "palatine dragger" phenotype would then be a synapomorphy for the remaining hydrophiles, 331 with Ogmodon, Loveridgelaps, and Salomonelaps being the basal members with that character 332 state.

Ogmodon vitianus Peters, 1864 from Fiji, and Loveridgelaps elapoides Boulenger, 1890,
 and Salomonelaps par Boulenger, 1884 from the Solomon Islands, were initially included in
 molecular phylogenetic studies and found to be among the basal members of Hydrophiinae
 (Keogh, 1998; Keogh *et al.*, 1998). More recent studies have not included these data, preventing

a complete evolutionary understanding of this subfamily (Sanders *et al.*, 2008; Metzger *et al.*,
2010; Pyron *et al.*, 2013). Including these genera in our phylogeny, we determined that they form
a monophyletic assemblage basal to the New Guinean and Australian species (Fig. 2). This
phylogenetic arrangement supports Melanesia as the evolutionary origin of terrestrial
hydrophiines, which is further supported by the next two basal-most lineages (*Toxicocalamus*,

342 *Micropechis*) also being Melanesian.

Toxicocalamus was recovered as monophyletic and not sister to any single currently 343 recognized genus. Metzger et al. (2010) recovered a paraphyletic Toxicocalamus when using the 344 T. loriae and T. preussi sequences available on GenBank as representatives of the genus, and 345 Pyron et al. (2013) obtained the same results using the same dataset. Our results indicate that this 346 conclusion likely resulted from two things. First, few of the outgroup taxa used in this study were 347 348 also used by them. Second, they utilized two highly divergent taxa as the only representatives for Toxicocalamus. These omissions presumably led to poor resolution and long-branch attraction at 349 350 the base of the phylogeny. Previous studies had suggested *Toxicocalamus* to be closely related to Aspidomorphus, Demansia, or Micropechis (Metzger et al., 2010; Sanders et al., 2008), but our 351 352 study does not support those findings either. Rather, we found Micropechis to be basal to the remaining Hydrophiinae, followed by *Cacophis*. All of the basal terrestrial genera are cryptozoic, 353 354 spending much of their time under logs and rocks and in leaf-litter (McDowell, 1970; Zug & Ineich, 1993; Shine & Keogh, 1996), although most also forage actively on the forest floor, 355 356 either diurnally or nocturnally (McCoy, 2006; F. Kraus, pers. obs.).

These basal relationships within the Hydrophiinae are consistent with the geological 357 358 history of the region. Kelly et al. (2009) estimated the Hydrophiinae to have originated ~23MYA, and the oldest fossil elapid, interpreted as a *Laticauda*, is of the same age (Scanlon et 359 360 al., 2003). This coincides in time with the formation of island arcs in the western Pacific that include parts of what are now the Solomon Islands, Fiji, and New Guinea (Hall, 2002, 2012). 361 362 Our results suggest that the early terrestrial hydrophilines originated on these islands, which could only have been colonized by an early marine ancestor like *Laticauda*. The Solomon and Fiji 363 islands are parts of the Outer Melanesian Arc, which arose ca. 40 MYA, prior to the origin of the 364 365 Hydrophiinae (Hall, 2002, 2012; Colley, 2009; Davies, 2009). A separate and more northerly island arc formed on the margin of the Caroline Plate at approximately the same time, was 366 367 rotated into adjacency to the Outer Melanesian Arc, and continued rotating to the south and west

to accrete sequentially onto the northern margin of New Guinea 20-5 MYA (Davies et al., 1997;

Hall, 2002; Hall, 2012). Judging from the present distribution of the basal lineages in this clade,

terrestrial hydrophiines seem likely to have arisen on islands of these arc systems when they

were placed so as to form a single continuous chain ca. 30-20 MYA (cf.

372 http://searg.rhul.ac.uk/current_research/plate_tectonics/plate_tectonics_SE_Asia%200-

55Ma.html). Separation of the northern (and western) arc from the Outer Melanesian Arc and its

subsequent accretion onto New Guinea would have led to the rapid invasion and speciation of

elapids in New Guinea and Australia (the former being merely the northern portion of the latter

376 continent plus accreted islands of these former arc systems), as inferred by the very short branch

lengths among basal taxa (Fig. 2; Keogh *et al.*, 1998; Scanlon & Lee, 2004; Lukoschek &

378 Keogh, 2006).

379 The remaining phylogeny of Hydrophiinae was not fully resolved, but there was support for invasions from New Guinea to Australia and reinvasions back to New Guinea. For example, 380 381 Aspidomorphus and Demansia are well supported as sister genera. Aspidomorphus is endemic to New Guinea while *Demansia* is found in both Australia and New Guinea. The only Australian 382 383 endemic found among the basal genera was *Cacophis*, with moderate support in both our BI and ML phylogenies (Fig. 2). In previous phylogenetic analysis, *Cacophis* has been hypothesized to 384 be sister to Notechis Boulenger, 1896 (Keogh et al., 1998), sister to Aspidomorphus and/or 385 Demansia (Scanlon & Lee, 2003), related to Furina Duméril, 1853 (Sanders et al., 2008), among 386 387 the basal Hydrophiinae (Metzger et al., 2010), or among Australian taxa other than Notechis or Furina (Pyron et al., 2013). Using morphological data, Scanlon (2003) was unable to determine 388 389 its placement within Hydrophiinae. To better determine if Cacophis is related to other Australian 390 taxa or to the fossorial Melanesian taxa requires further taxon sampling within that genus.

It is important to note that two of the nomina that McDowell (1969) used as subgenera of
 Toxicocalanus are polyphyletic. The type species for *Apistocalanus* is *T. loriae*, but McDowell
 (1969) included *T. holopelturus* in that subgenus. Those taxa do not form a monophyletic clade.

394 The type species for *Toxicocalamus* is *T. longissimus*, but McDowell (1969) included *T*.

395 *stanleyanus* in that subgenus. Once again, they are not monophyletic. The third subgenus,

396 *Ultrocalamus*, included just *T. preussi* (type species) and *T. buergersi*, which were grouped by

397 McDowell (1969) based on the shared fusion of the internasal and prefrontal. We could not

398 obtain a sample of *T. buergersi*, and, therefore, we cannot test the validity of *Ultrocalamus*.

However, on the basis of our results, there is no current justification for recognizing subgenera
within *Toxicocalamus* – recognition of any two or more of them would render the others
paraphyletic (Fig. 3). Furthermore, taxonomy and species diversity within the genus remain
imperfectly known, with several species remaining to be diagnosed and the western half of New
Guinea remaining to be even modestly sampled for the genus. Thus, for a truly complete
understanding of this genus, further study, with emphasis on increased taxon sampling, will be
required.

Toxicocalamus species mostly come in two different body forms. The first are extremely 406 thin and elongate animals having narrow ventral scales; the second have a more normal snake 407 habitus and width to the ventral scales (*T. pachysomus* is an outlier of stouter habitus, cf. Kraus, 408 2009). Our results indicate that the elongate body form is ancestral within this genus (Fig. 4A). 409 410 All such species (T. holopelturus, T. longissimus, T. misimae, T. preussi, and T. stanleyanus) are placed basally in the tree, and the "normal" snake habitus is re-gained later in evolution (Fig. 411 412 4A). Scalational fusions occur in several different species within *Toxicocalamus*, and relationships are largely inconsistent with this variation (Fig. 4). Species that share particular 413 414 head-scale fusion patterns are not retrieved as monophyletic, suggesting that these features have 415 arisen multiple times (Fig. 4B,C). Also, our genetically divergent clades morphologically assigned to T. loriae make clear that morphological divergence has not mirrored all substantial 416 417 genetic divergence or speciation patterns in the complex, a pattern also evident from 418 consideration of color patterns of living animals (F. Kraus, unpubl. obs.). Some of these more derived populations have already been described, but most are currently recognized as "T. 419 *loriae*", a "species" that clearly requires taxonomic revision, as previously indicated (Kraus, 420 2009; O'Shea et al., 2015). 421

422 At minimum, our phylogenetic analyses indicate that T. loriae as currently defined 423 morphologically is polyphyletic. There is considerable genetic distance between the two most distant clades (1 and 6) based on cyt-b (0.21), ND4 (0.16), and 16S (0.10) data. Toxicocalamus 424 *loriae* Clade 1's position as part of a T. *longissimus* + T. *misimae* clade was only weakly 425 supported, and ND4 and cyt-b d trees did not support this conclusion, nor do morphological data 426 427 (McDowell, 1969; Kraus, 2009). Toxicocalamus loriae Clade 1 occurs approximately 80 km from the type locality for T. loriae on Mt. Victoria and represents our best estimate of true T. 428 429 loriae. To confirm this, re-collection on Mt. Victoria is needed so that molecular data from

individuals from that locality may be integrated into our phylogeny. *Toxicocalamus loriae* is
reported to occur throughout much of New Guinea, but it is unknown what range of genetic
variation is encompassed across this distribution because of the historical difficulty of collecting
in the western half of the island. If the trends apparent from this study apply throughout the
entirety of its range, then it is very likely that many species currently recognized as *T. loriae*represent independent lineages and require systematic revision.

Despite remaining deficiencies in taxon sampling, we have presented evidence for 436 undocumented genetic diversity within Toxicocalamus. Our best-supported phylogeny infers 437 strong evidence for at least 13 distinct clades, five of which would appear to represent currently 438 undescribed species. Moreover, much of New Guinea remains unexplored. Hydrophiinae is a 439 speciose group and represents a relatively recent rapid radiation in the Australasian region 440 441 (Slowinski & Keogh, 2000; Sanders & Lee, 2008; Sanders et al., 2008). Discerning the true evolutionary history of the genera contained within it will require extensive sampling effort 442 443 across both species and genetic markers. Understanding the relationships among the Hydrophilinae has been a challenge for decades, but resolving the phylogeny of this group may 444 445 lead to a much better understanding of the biogeographic history of the region. Future work on Toxicocalamus will lead to several species descriptions (F. Kraus, ongoing), but documentation 446 of the species distributions across New Guinea remains sorely needed. 447

- 448
- 449 450

ACKNOWLEDGEMENTS

FK thanks the PNG National Museum and Art Gallery for providing in-country collaborative 451 assistance; the PNG Department of Environment and Conservation, PNG National Research 452 453 Institute, and Central, Milne Bay, Northern, and West Sepik provincial governments for 454 permission to work in their respective provinces; and a host of local villagers for field assistance. We thank Molly Hagemann at the Bishop Museum of Natural History for providing tissue 455 samples. We are especially grateful to Scott Keogh for providing sequences not available on 456 GenBank. We thank Gregory Territo for initial sequence generation and members of the 457 458 Parkinson, Hoffman, and Savage labs as well as Tiffany Doan for helpful comments that improved the manuscript. Support for the lab work was provided by the National Science 459 460 Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM)

461	program under Award No. 0806931, Workforce Central Florida, Research and Mentoring
462	Program (RAMP) of UCF, and the UCF Office of Research and Commercialization to SC. This
463	research was also supported by National Science Foundation grants DEB 0103794 and 0743890
464	to FK.
465	
466	
467	REFERENCES
468	
469	Arevalo E, Davis SK, Sites J. 1994. Mitochondrial DNA sequence divergence and phylogenetic
470	relationships among eight chromosome races of the Sceloporus grammicus complex
471	(Phrynosomatidae) in Central Mexico. Systematic Biology 43: 387-418.
472	Bogert CM, Matalas BL. 1945. Results of the Archbold Expeditions. No. 53. A review of the
473	elapid genus Ultrocalamus of New Guinea. American Museum Novitates 1284: 1–8.
474	Boulenger GA. 1896. Description of a new genus of elapine snakes from Woodlark Island,
475	British New Guinea. Annals and Magazine of Natural History, series 6, 18: 152.
476	Boulenger GA. 1898. An account of the reptiles and batrachians collected by Dr. L. Loria in
477	British New Guinea. Annali del Museo Civico di Storia Naturale de Genova, seria 2, 18:
478	694-710.
479	Burbrink FT, Lawson R, Slowinski JB. 2000. Mitochondrial DNA phylogeography of the
480	polytypic North American rat snake (<i>Elaphe obsoleta</i>): a critique of the subspecies
481	concept. <i>Evolution</i> 54: 2107–2118.
482	Calvete JJ, Ghezellou P, Paiva O, Matainaho T, Ghassempour A, Goudarzi H, Kraus F,
483	Sanz L, Williams DJ. 2012. Snake venomics of two poorly known Hydrophiinae:
484	comparative proteomics of the venoms of terrestrial Toxicocalamus longissimus and
485	marine Hydrophis cyanocinctus. Journal of Proteomics 75: 4091–4101.
486	Castoe TA, Smith EN, Brown RM, Parkinson CL. 2007. Higher-level phylogeny of Asian and
487	American coralsnakes, their placement within the Elapidae (Squamata), and the
488	systematic affinities of the enigmatic Asian coralsnake Hemibungarus calligaster
489	(Wiegmann, 1834). Zoological Journal of the Linnean Society 151: 809–831.
490	Colley H. 2009. Fiji, geology. In: Gillespie, RG, Clague DA, eds. Encyclopedia of islands.
491	Berkeley: University of California Press, 305-309.

492 Davies HL. 2009. Solomon Islands, geology. In: Gillespie, RG, Clague DA, eds. *Encyclopedia* 493 *of islands*. Berkeley: University of California Press, 854-857.

- 494 Davies HL, Perembo RCB, Winn RD, Kengemar P. 1997. Terranes of the New Guinea
 495 Orogen. In: Hancock, G, ed., *Proceedings of the Geology Exploration and Mining* 496 *Conference, Madang.* Melbourne: Australasian Institute of Mining and Metallurgy, 61–
 497 66.
- 498 Deufel A, Cundall D. 2010. Functional morphology of the palate-maxillary apparatus in
 499 "palatine dragging" snakes (Serpentes: Elapidae: *Acanthophis, Oxyuranus*). *Journal of*500 *Morphology* 27: 73–85.
- **de Vis CW. 1905.** Reptilia. *Annals of the Queensland Museum* **6:** 46–52.
- Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high
 throughput. *Nucleic Acids Research* 32: 1792-1797.
- Goodman BA. 2010. Natural history notes: *Toxicocalamus stanleyanus*: diet. *Herpetological Review* 41: 100.
- Groth JG, Barrowclough GF. 1999. Basal divergences in birds and the phylogenetic utility of
 the nuclear RAG-1 gene. *Molecular Phylogenetics and Evolution* 12: 115–123.
- Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees.
 Bioinformatics 17: 754–755.
- Hall, R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific:
 computer-based reconstructions, models, and animations. *Journal of Asian Earth Sciences* 20: 353-431.
- Hall, R. 2012. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian
 Ocean. *Tectonophysics* 570-571: 1-41.
- Hugall AF, Foster R, Hutchinson M, Lee MSY. 2008. Phylogeny of Australasian agamid
 lizards based on nuclear and mitochondrial genes: implications for morphological
- 517 evolution and biogeography. *Biological Journal of the Linnean Society* **93:** 343–358.
- Ingram GJ. 1989. Vanapina lineata de Vis 1905 is a junior synonym of the New Guinean snake
 Toxicocalamus longissimus Boulenger, 1896. *Copeia* 1989: 753–755.

520 Kelly CMR, Barker NP, Villet MH, Broadley DG. 2009. Phylogeny, biogeography, and

521 classification of the snake superfamily Elapoidea: a rapid radiation in the late Eocene.

522 *Cladistics* **25**: 38–63.

523 Keogh JS. 1998. Molecular phylogeny of elapid snakes and a consideration of their biogeographic history. *Biological Journal of the Linnean Society* 63: 177–203. 524 Keogh JS, Shine R, Donnellan S. 1998. Phylogenetic relationships of terrestrial Australo-525 Papuan elapid snakes (subfamily Hydrophiinae) based on cytochrome b and 16S rRNA 526 sequences. *Molecular Phylogenetics and Evolution* **10:** 67–81. 527 Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC. 528 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and 529 sequencing with conserved primers. Proceedings of the National Academy of Sciences 530 86: 6196-6200. 531 Kraus F. 2009. New species of *Toxicocalamus* (Squamata: Elapidae) from Papua New Guinea. 532 Herpetologica 65: 460-467. 533 Lane A, Shine R. 2011. Phylogenetic relationships within laticaudine sea snakes (Elapidae). 534 *Molecular Phylogenetics and Evolution* **59:** 567–577. 535 Lanfear R, Calcott B, Ho SYW, Guindon S. 2012. PartitionFinder: Combined selection of 536 partitioning schemes and substitution models for phylogenetic analyses. *Molecular* 537 538 *Biology and Evolution* **29:** 1695–1701. Lönnberg E. 1900. Reptiles and batrachians collected in German New Guinea by the late Dr. 539 540 Erik Nyman. Annals and Magazine of Natural History, series 7, 6: 574–582. Lukoschek V, Keogh JS. 2006. Molecular phylogeny of sea snakes reveals a rapidly diverged 541 542 adaptive radiation. Biological Journal of the Linnean Society 89: 523-539. Lyons LA, Laughlin TF, Copeland NG, Jenkins NA, Womack JE, O'Brien SJ. 1997. 543 Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian 544 genomes. Nature Genetics 15: 47–56. 545 Matthee CA, Burzlaff JD, Taylor JF, Davis SK. 2001. Mining the mammalian genome for 546 artiodactyl systematics. Systematic Biology **50:** 367–390. 547 McCarthy CJ. 1985. Monophyly of elapid snakes (Serpentes: Elapidae): an assessment of the 548 evidence. Zoological Journal of the Linnean Society 83: 79–93. 549 McCoy M. 2006. Reptiles of the Solomon Islands. Sofia, Bulgaria: Pensoft. 550 551 McDowell SB. 1969. Toxicocalamus, a New Guinea genus of snakes of the family Elapidae. Journal of Zoology 159: 443–511. 552

553 **McDowell SB. 1970.** On the status and relationships of the Solomon Island elapid snakes.

- 554 *Journal of Zoology* **161:** 145–190.
- McDowell SB. 1985. The terrestrial Australian elapids: general summary. In: Grigg G., Shine R.,
 Ehmann H., eds. *The Biology of Australasian Frogs and Reptiles*. Sydney: Royal
 Zoological Society of New South Wales, 261–264.
- 558 Metzger GA, Kraus F, Allison A, Parkinson CL. 2010. Uncovering cryptic diversity in
 559 Aspidomorphus (Serpentes: Elapidae): evidence from mitochondrial and nuclear markers.
- 560 *Molecular Phylogenetics and Evolution* **54:** 405–416.
- 561 O'Shea MT. 1996. A guide to the snakes of Papua New Guinea. Port Moresby, Papua New
 562 Guinea: Independent Publishers.
- 563 O'Shea MT, Parker F, Kaiser H. 2015. A new species of New Guinea worm-eating snake,
- 564 genus *Toxicocalamus* (Serpentes: Elapidae), from the Star Mountains of Western
- Province, Papua New Guinea, with a revised dichotomous key to the genus. *Bulletin of the Museum of Comparative Zoology* 161: 241–264.
- 567 Pyron RA, Burbrink FT, Weins JJ. 2013. A phylogeny and updated classification of
 568 Squamata, including 4161 species of lizards and snakes. *BMC Evolutionary Biology* 13:
 569 93.
- **Rambaut A, Drummond A. 2012.** FigTree: Tree figure drawing tool. Version 1.4.2. Available
 at http://tree.bio.ed.ac.uk/software/figtree/. Accessed 20 July 2015.
- 572 **Rambaut A, Suchard M, Drummond A. 2013.** MCMC trace analysis tool. Version 1.6.0.
- 573 Available at http://tree.bio.ed.ac.uk/software/tracer/. Accessed 20 July 2015.
- **Ronquist F, Huelsenbeck JP. 2003.** MrBayes 3: Bayesian phylogenetic inference under mixed
 models. *Bioinformatics* 19: 1572–1574.
- Sanders KL, Lee MSY. 2008. Molecular evidence for a rapid late-Miocene radiation of
 Australasian venomous snakes (Elapidae, Colubroidea). *Molecular Phylogenetics and Evolution* 46: 1180–1188.
- Sanders KL, Lee MSY, Leys R, Foster R, and Keogh JS. 2008. Molecular phylogeny and
 divergence dates for Australasian elapids and sea snakes (Hydrophiinae): evidence from
 seven genes for rapid evolutionary radiations. *Journal of Evolutionary Biology* 21: 682–
 695.

583	Scanlon JD. 2003. The Australian elapid genus Cacophis: morphology and phylogeny of
584	Rainforest Crowned Snakes. Herpetological Journal 13: 1–20.
585	Scanlon JD, Lee MSY. 2004. Phylogeny of Australasian venomous snakes (Colubroidea,
586	Elapidae, Hydrophiinae) based on phenotypic and molecular evidence. Zoologica Scripta
587	33: 335–366.
588	Scanlon JD, Lee MSY, Archer M. 2003. Mid-Tertiary elapid snakes (Squamata, Colubroidea)
589	from Riversleigh, northern Australia: early steps in a continent-wide adaptive radiation.
590	<i>Geobios</i> 36: 573–601.
591	Shine R, Keogh JS. 1996. Food habits and reproductive biology of the endemic Melanesian
592	elapids: are tropical snakes really different? Journal of Herpetology 30: 238–247.
593	Slowinski JB, Keogh JS. 2000. Phylogenetic relationships of Elapid snakes based on
594	cytochrome b mtDNA sequence. Molecular Phylogenetics and Evolution 15: 157–164.
595	Slowinski JB, Knight A, Rooney AP. 1997. Inferring species trees from gene trees: a
596	phylogenetic analysis of the Elapidae (Serpentes) based on the amino acid sequences of
597	venom proteins. Molecular Phylogenetics and Evolution 8: 349–362.
598	Stamatakis A. 2014. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of
599	large phylogenies. Bioinformatics 30: 1312–1313.
600	Sternfeld R. 1913. Beiträge zur Schlangenfaunas NeuGuineas und der benachbarten
601	Inselgruppen. Sitzungsberichte der Gesellschaft naturforschender Freunde zu, Berlin
602	1913: 384–389.
603	Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in the control
604	region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and
605	<i>Evolution</i> 10: 512–526.
606	Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular
607	evolutionary genetics analysis using maximum likelihood, evolutionary distance, and
608	maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.
609	Taylor B, Goodliffe AM, Martinez F. 1999. How continents break up: insights from Papua
610	New Guinea. Journal of Geophysical Research 104: 7497-7512.
611	Reptile Database. 2015. Uetz P, Hosek J, eds. The Reptile Database. Available at
612	http://www.reptile-database.org. Accessed August 13, 2015.

- 613 Wallach V, Williams KL, Boundy J. 2014. Snakes of the world: a catalogue of living and
- 614 *extinct species*. Boca Raton: CRC Press.
- 615 Wuster W, Dumbrell AJ, Hay C, Pook CE, Williams DJ, Fry BG. 2005. Snakes across the
- 616 Strait: trans-Torresian phylogeographic relationships in three genera of Australasian
- 617 snakes (Serpentes: Elapidae: *Acanthophis, Oxyuranus*, and *Pseudechis*). *Molecular*
- 618 *Phylogenetics and Evolution* **34:** 1–14.
- **Zug GR, Ineich I. 1993.** Review of the biology and morphology of the Fijian Bola, *Ogmodon vitianus* (Elapidae). *The Snake* 25: 9–20.

anus IN N Nuth

Outgroup Species	CytB	RAG1	ND4	SPTBN1	MyHC2	Cmos	16S
Acanthophis antarcticus	AF217813	—	AY340162	—	—	—	—
Acanthophis laevis	—	—	AY340165	—	—	—	—
Acanthophis praelongus	EU547063	EU546887	AY340164	—	EU546972	EU546926	EU547161
Acanthophis pyrrhus	—	—	AY340168	—	—	—	—
Acanthophis rugosus	_	—	AY340152	—	—	—	—
Aipysurus laevis	EU547083	FJ587087	EF506638	—	EU546992	EU546945	DQ233998
Aspidomorphus lineaticollis	GQ397132	GQ397199	GQ397212	GQ397173	GQ397219	GQ397229	GQ397239
Aspidomorphus lineaticollis	GQ397131	GQ397198	GQ397205	GQ397174	GQ397217	GQ397227	GQ397237
Aspidomorphus lineaticollis	KT778527	KU128753	KU128806	KU172562	KU144949	KU128782	KT968676
FK16621							
Aspidomorphus lineaticollis	KT778529	KU128755	KU128808	KU172564	KU144951	KU128783	KT968678
FK16959							
Aspidomorphus muelleri	GQ397163	GQ397203	GQ397206	GQ397188	GQ397222	GQ397232	GQ397242
Aspidomorphus muelleri	GQ397161	GQ397202	GQ397213	GQ397187	GQ397221	GQ397231	GQ397241
Aspidomorphus muelleri	GQ397153	GQ397195	GQ397207	GQ397183	GQ397214	GQ397224	GQ397233
Aspidomorphus muelleri	AF217814	EU366434	EU546999	GQ397184	EU546950	EU366448	KF736326
Aspidomorphus muelleri	KT778522	—	—	—	—	—	—
FK14215							
Aspidomorphus muelleri	KT778525	—	—	—	—	—	—
FK16281							
Aspidomorphus schlegeli	GQ397169	GQ397200	GQ397210	GQ397189	GQ397218	GQ397228	GQ397238
Aspidomorphus schlegeli	GQ397167	GQ397196	GQ397204	GQ397190	GQ397215	GQ397223	GQ397234
Aspidomorphus schlegeli	GQ397168	—	—	GQ397191	—	—	—
Austrelaps labialis	EU547077	EU546900	EU547029	—	EU546986	EU546939	EU547175
Austrelaps superbus	EU547078	EU546901	EU547030	—	EU546987	EU546940	EU547176
Brachyurophis australis	EU547056	EU546881	EU547010	—	EU546965	—	KF736316
Brachyurophis semifasciata	EU547057	EU546882	EU547012	—	EU546966	EU546922	KF736318
Bungarus fasciatus	EU547086	JF357954	EU547037	—	—	AY058924	JN687935
Bungarus flaviceps	AJ749351	—	—	—	—	—	—
Bungarus multicinctus	AJ749327	—	—	—	—	AF435021	HM439979
Bungarus niger	AJ749304	—	—	—	—	—	—
Bungarus sindanus	AJ749346	—	—	—	—	—	—
Cacophis squamulosus	EU547052	EU366440	EU547007	—	EU546961	EU366451	EU547150
Cryptophis nigrescens	EU547070	EU546893	EU547022	—	EU546979	EU546932	EU547168
Demansia papuensis	EU547044	EU546871	EU547002	—	EU546953	EU546910	EU547142
Demansia psammophis	GQ397172	GQ397201	GQ397209	GQ397192	GQ397220	GQ397230	GQ397240
Demansia vestigiata	EU547045	EU546872	EU547003	—	EU546954	EU546911	EU547143
Denisonia devisi	EU547071	EU546894	EU547023	—	EU546980	EU546933	EU547169
Drysdalia coronoides	EU547075	EU546898	GU062856	—	—	EU546937	EU547173
Drysdalia mastersii	EU547076	EU546899	GU062869	—	EU546985	EU546938	EU547174
Echiopsis curta	EU547072	EU546895	EU547024		EU546981	EU546934	EU547170

Appendix 1. List of species and accession numbers used to generate the Hydrophiinae phylogeny in Figure 2.

Flapognathus coronata	EU547069	EU546892	EU547021		EU546978	EU546931	EU547167
Emydocephalus annulatus	EU547087	FI587094	FI593195		EU546996	EU546947	EU547185
Enhalophis arevae	IX002976	FI587095	FI593197	_		FI587173	F1587208
Epitatophis greyae	FU547053	FU546878	FU547008	_	FU546962	FU546917	FU547151
Furina ornata	EU547054	EU546879	EU547000		EU546963	EU546918	KE736324
Hemiaspis dametii	EU547073	EU546896	EU347007		L0340703	EU546935	DO233979
Hemiaspis signata	EU547074	EU546807	EU547026		EU546083	EU546036	EU547172
Honlocanhalus hitorauatus	EU547074	EU546002	EU547020	—	EU546985	EU546941	EU547172
Hudrolans daminimais	EU347079	EUJ40902	EU347031		EU546002	EU546046	E034/1/7
Hydrendps dat wintensis	10217206	FJ567096	FJ595200		EUJ40993	E0340940	DQ234047
Hydrophis brookii	DO233043	FI587110	KC014471			FI587188	DO234028
Hydrophis prooki	DQ255945	FJ507100	EI502204			FJ507100	DQ234028
Hydrophis peronu	JQ217200	FJ507102	FJ595204	_		FJ587200	KC014511
Hydrophis curtus	EU547085	FJ58/125	FJ595227	_	EU340994	FJ58/200	KJ055957
Hydrophis coggeri	JQ217207	KC014267	JQ217217	—	—	KC014295	JQ217153
Hydrophis schistosa	KC014393	JX98/181	JX98/1/1	_	_	KC014290	JX98/140
Laticauda colubrina	AF217834	EU366433	FJ606513	—	EU546949	AF544702	EU547138
Laticauda colubrina	EU547040	—	AY058977	—	—	EU366446	—
Laticauda colubrina	—	—	FJ606508	—	—	AY058932	—
Laticauda frontalis	—	FJ587080	FJ606515	—	—	FJ587157	FJ587206
Laticauda frontalis	—	EU366433	FJ593190	—	—	FJ587156	FJ587205
Laticauda guineai	_	—	FJ606516	_	—	—	—
Laticauda laticaudata	AB701327	FJ587082	FJ593192	_	_	FJ587159	FJ587203
Laticauda laticaudata	AB701328	—	FJ606532	—	—	FJ587158	FJ587204
Laticauda laticaudata	AB701325	—	FJ606537	—	—	—	—
Laticauda laticaudata	FJ587153	—	FJ606526	—	—	—	
Laticauda laticaudata	FJ587154	_	FJ606536	_	_	_	_
Laticauda saintgironsi	_	—	FJ606506	_	—	—	—
Laticauda saintgironsi	_	_	FJ606501	_	_	—	_
Laticauda semifasciata	AB701339	_	_	_	_	—	_
Laticauda semifasciata	AB701336	—	—	—	—	—	—
Loveridgelaps elapoides	S. Keogh	—	S. Keogh	_	—	—	S. Keogh
Microcephalophis gracilis	KC014419	KC014271	KC014494	—	—	KC014299	KC014341
Micropechis ikaheka	EU547042	EU366435	EU547000	—	EU546951	FJ587160	EU547140
Micropechis ikaheka	EU547042	—	—	—	—	EU366449	FJ587207
Micropechis ikaheka	GQ397171	—	GQ397208	GQ397194	—	GQ397226	GQ397236
Naja naja	EU547039	EU366432	EU546997	_	EU546948	AF435020	EU547137
Neelaps bimaculatus	EU547059	_	EU547013	_	EU546968	EU546920	KF736345
Notechis scutatus	AF217836	EU546905	AY058981	_	EU546991	EU546944	EU547180
Ogmodon vitianus	S. Keogh	_	S. Keogh	_	_	_	KF736310
Oxyuranus microlepidotus	EU547050	EU366439	EF210823	_	EU546959	EU366450	EU547148
Oxyuranus scutellatus	EU547051	EU546877	EF210826	_	EU546960	EU546916	EU547149
Parasuta monachus	EU547067	EU546890	EU547019	_	EU546976	EU546929	EU547165
Paroplocephalus atriceps	EU547080	EU546903	EU547032	_	EU546989	EU546942	EU547178
Pseudechis australis	EU547046	EU546873	AY340177	_	_	EU546912	EU547144

Pseudechis australis	AF217824	_	AY343092	_	_	_	AJ749377
Pseudechis porphyriacus	_	_	AY340170	_	_	_	_
Pseudonaja modesta	EU547049	EU546876	_	_	EU546958	EU546915	EU547147
Pseudonaja nuchalis	_	_	EF210839	_	_	_	_
Pseudonaja textilis	EU547048	EU546875	—	—	EU546957	EU546914	EU547146
Rhinoplocephalus bicolor	EU547068	EU546891	EU547020	—	EU546977	EU546930	EU547166
Salomonelaps par	S. Keogh	—	S. Keogh	—	—	—	S. Keogh
Simoselaps anomalus	EU547061	EU546885	EU547014	—	EU546970	EU546924	KF736315
Simoselaps bertholdi	EU547062	EU546886	EU547015	—	EU546971	EU546925	EU547160
Suta fasciata	EU547064	EU546888	EU547016	—	EU546973	EU546927	EU547162
Suta spectabilis	EU547065	EU546889	EU547017	—	EU546974	EU546928	EU547163
Suta suta	EU547066	EU366436	EU547018	—	EU546975	EU366452	EU547164
Tropidechis carinatus	EU547081	EU546904	EU547033	—	EU546990	EU546943	EU547179
Vermicella calonotus	EU547060	EU546884	EF210841	—	EU546969	EU546923	EU547158
Vermicella intermedia	EU547055	—	EF210842	—	—	EU546919	EU547153

Intermedia National Action of the second se

Species	Museum #	Collector #	Latitude	Longitude	C-MOS	MyHC-2	SPTBN1	RAG-1	16S rRNA	cyt-b	ND4
T. pachysomus	BPBM 15771	FK 5368	-10.3471	150.2330	_	KU144952	KU172565	KU128756	KT968679	KT778530	KU128809
T. loriae (Clade 5)	BPBM 16544	FK 6288	-9.4263	150.8015	—	KU144953	KU172566	KU128757	KT968680	KT778531	KU128810
T. loriae (Clade 5)	BPBM 16545	FK 6388	-9.4562	150.5596	_	KU144954	KU172567	KU128758	KT968681	KT778532	KU128811
T. misimae	BPBM 17231	FK 7158	-10.6703	152.7206	KU128784	KU144955	KU172568	KU128759	KT968682	KT778533	KU128812
T. loriae (Clade 6)	BPBM 17987	FK 7523	-10.0145	149.597	GQ397225	GQ397216	GQ397193	GQ397197	GQ397235	GQ397170	GQ397211
T. loriae (Clade 6)	BPBM 17988	FK 7524	-10.0145	149.597	KU128785	—	KU172569	KU128760	KT968683	KT778534	KU128813
T. loriae (Clade 6)	BPBM 17989	FK 7665	-10.0171	149.6002	KU128786	—	KU172570	KU128761	KT968684	KT778535	KU128814
T. loriae (Clade 6)	BPBM 18164	FK 7694	-10.0171	149.6002	KU128787	—	KU172571	KU128762	KT968685	KT778536	KU128815
T. loriae (Clade 6)	BPBM 18166	FK 7710	-10.0171	149.6002	KU128788	KU144956	KU172572	KU128763	KT968686	KT778537	KU128816
T. loriae (Clade 1)	BPBM 19502	FK 8808	-9.4439	147.9838	KU128789	KU144957	KU172573	KU128764	KT968687	KT778538	KU128817
T. loriae (Clade 1)	BPBM 19503	FK 8877	-9.4447	148.0092	KU128790	KU144958	KU172574	KU128765	KT968688	KT778539	KU128818
T. loriae (Clade 1)	BPBM 19504	FK 8879	-9.4447	148.0092	KU128791	KU144959	KU172575	KU128766	KT968689	KT778540	KU128819
T. loriae (Clade 1)	BPBM 19505	FK 9258	-9.4439	147.9838	KU128792	KU144960	KU172576	KU128767	KT968690	KT778541	KU128820
T. loriae (Clade 1)	BPBM 19506	FK 9259	-9.4439	147.9838	KU128793	KU144961	KU172577	KU128768	KT968691	KT778542	KU128821
T. mintoni	BPBM 20822	FK 9717	-11.4961	153.4241	—	KU144962	KU172578	KU128769	KT968692	KT778543	KU128822
T. holopelturus	BPBM 20823	FK 10125	-11.3345	154.2239	KU128772	KU144939	KU172553	KU128744	KT968666	KT778515	KU128796
T. holopelturus	BPBM 20824	FK 10153	-11.3544	154.2232	KU128773	KU144940	KU172554	KU128745	KT968667	KT778516	KU128797
T. holopelturus	BPBM 20825	FK 10210	-11.3555	154.2246	KU128774	KU144941	KU172555	KU128746	KT968668	KT778517	KU128798
T. holopelturus	BPBM 20826	FK 10249	-11.3366	154.2236	KU128775	KU144942	KU172556	KU128747	KT968669	KT778518	KU128799
T. holopelturus	BPBM 20827	FK 10276	-11.3345	154.2239	KU128776	KU144943	_	KU128748	KT968670	KT778519	KU128800
T. stanleyanus	BPBM 23455	FK 11482	-3.4246	142.5189	KU128777	KU144944	KU172557	KU128749	KT968671	KT778520	KU128801
T. preussi	BPBM 23456	FK 11611	-3.3933	142.5283	KU128778	KU144945	KU172558	KU128750	KT968672	KT778521	KU128802
T. longissimus	BPBM 39702	FK 14989	-9.0844	152.8353	KU128779	KU144946	KU172559	KU128751	KT968673	KT778523	KU128803
T. loriae (Clade 3)	BPBM 39813	FK 16147	-9.2238	149.1561	KU128780	KU144947	KU172560	—	KT968674	KT778524	KU128804
T. longissimus	BPBM 42183	FK 16362	-9.0378	152.7440	KU128781	KU144948	KU172561	KU128752	KT968675	KT778526	KU128805
T. loriae (Clade 2)	BPBM 41390	AA 21153	-7.9538	147.0567	KU128770	KU144937	KU172551	KU128742	KT968664	KT778513	KU128794
T. loriae (Clade 2)	BPBM 41391	AA 21849	-7.9289	147.0458	KU128771	KU144938	KU172552	KU128743	KT968665	KT778514	KU128795
T. loriae (Clade 4)	UMMZ 242534	FK 16711	-10.06	151.0752	—	KU144950	KU172563	KU128754	KT968677	KT778528	KU128807
T. preussi	AM 135505	SAM 40321	-3.3933	142.5283	—	—	—	—	—	AF217825	—
(Slowinski &											

Table 1. Species information and GenBank accession numbers for the loci used in this study for Toxicocalamus.

Keogh, 2000)

T. preussi (Sanders et al., 2008/Bolton	AM 136279	ABTC:50506/ SAMARFJ126	-3.3933	142.5283	EU546909	EU546952	_	EU546870	EU547141/ KF736325	EU547043	EU547001
et al., unpublished)											
Ċ											
C)										
S,)										
	5										
Ĩ											
\geq	•										
C)										
č											
\rightarrow	,										
	5										
4	1										

			Variable/Parsimony					
	سب		Temp	MgCl	Size	informative within		
Locus	Forward Primer	Reverse Primers	(°C)	(mM)	(bp)	Toxicocalamus	Model	Reference
C-MOS	G303F 5'-ATT ATG CCA TCM	G708R 5'-GCT ACA TCA GCT	53	2.5	726	25/14	GTR + G	Hugall et al. (2008)
	CCT MTT CC-3'	CTC CAR CA-3'						
MyHC-2	G240 5'-GAA CAC CAG CCT	G241 5'-TGG TGT CCT GCT CCT	55	2.5	525	64/42	HKY+I+G	Lyons et al. (1997)
	CAT CAA CC-3'	TCT TC-3'						
	G240 5'-GAA CAC CAG CCT	MyHC2R413 5'-GTC CTA AAC	50	2				Lyons et al. (1997) and This
	CAT CAA CC-3'	TCG CAG GCT AA-3'						study
	MyHC2F60 5'-TCA GAA GTG	G241 5'-TGG TGT CCT GCT CCT	50	2				This study and Lyons et al.
	GAA GAA GCT GTG CA-3'	TCT TC-3'						(1997)
SPTBN1	SPTBN1-F1 5'-TCT CAA GAC	SPTBN1-R1 5'-CTG CCA TCT	54	2	1209	93/36	GTR + G	Matthee et al. (2001)
	TAT GGC AAA CA-3'	CCC AGA AGA A-3'						
RAG-1	G396(R13) 5'-TCT GAA TGG	G397(R18) 5'-GAT GCT GCC	55	2.5	1108	69/35	GTR + G	Groth & Barrowclough (1999)
	AAA TTC AAG CTG TT-3'	TCG GTC GGC CAC CTT T-3'						
	RAG1F122 5'-CTA AAG AAA	RAG1R1054 5'-GGG CAT CTC	50	2.5				This study
	ATG TGR CAG GAT CTC-3'	AAA ACC AAA TTG T-3'						
16S rRNA	16SF 5'-CGC CTG TTT ATC	16SR 5'-CCG GTC TGA ACT	48	2.5	521	125/89	GTR + I + G	Kocher et al. (1989)
	AAA AAC AT-3'	CAG ATC ACG T-3'						
cyt-b	L14910 5'-GAC CTG TGA TMT	H16064 5'-CTT TGG TTT ACA	48	2.5	1098	513/452	GTR + I + G	Burbrink, Lawson & Slowinski
	GAA AAA CCA YCG TTG T-3'	AGA ACA ATG CTT TA-3'						(2000)
	L14910 5'-GAC CTG TGA TMT	ToxcytbR493 5'-AAG CGG GTR	55	2.5				Burbrink et al. (2000) and This
	GAA AAA CCA YCG TTG T-3'	AGG GTT GG-3'						study
	ToxcytbF380 5'-TGA GCA GCA	ToxcytbR750 5'-GGT TAA TGT	48	2.5				This study
	ACA TWA TTA CAA A-3'	GYT GTG GTG T-3'						
	ToxcytbF709 5'-TTA ACG ACC	H16064 5'-CTT TGG TTT ACA	48	2.5				This study and Burbrink et al.
	CYG AAA ACT T-3'	AGA ACA ATG CTT TA-3'						(2000)
ND4	ND4F 5'-TGA CTA CCA AAA	ND4 tRNA-Leu 5'-TAC TTT	48	2.5	656	327/298	GTR + I + G	Arevalo, Davis & Sites (1994)
[GCT CAT GTA GAA GC-3'	TACC TTG GAT TTG CAC CA-3'						
	ND4F123 5'-TAA CYT GCC	ND4R688 5'-TTG TCA AGR TCA	50	2.5				This study
	TYC AAC AAA CAG A-3'	CAG CTT GRT A-3'						

Table 2. Locus information used to infer the evolutionary history of Toxicocalamus.

This article is protected by copyright. All rights reserved

lt

