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How can basic research on mathematics instruction contribute to instructional
improvement? In our research on the practical rationality of geometry teaching we describe
existing instruction and examine how existing instruction responds to perturbations. In this
talk I consider the proposal that geometry instruction could be improved by infusing it with
activities where students use representations of figures to model their experiences with
shape and space and I show how our basic research on high school geometry instruction
informs the implementing and monitoring of such modeling perspective. I argue that for
mathematics education research on instruction to contribute to improvements that teachers
can use in their daily work our theories of teaching need to be mathematics-specific.

Introduction

What is the role that research in mathematics education can play to support efforts
toward instructional improvement? This seems like an impossibly general question and one
that admits of many answers. I use it to point to an important need in our field’s portfolio
of activity: The need to develop theories of mathematics teaching that are mathematics-
specific. I will explain what I mean by that and how such mathematics-specific theories of
mathematics teaching can be instrumental in designing and studying regimes that can
improve instruction and students’ outcomes.

For over a decade I have been working in an area that Herbst & Chazan (2003, 2011,
2012) have named the practical rationality of mathematics teaching. With that expression
we name an effort to provide the means to describe and understand the work of teaching
mathematics in school classrooms. Our effort has included the development of constructs
and methods for the study of the work of the teacher in mathematics instruction. We’ve
carried out this effort in the context of researching the teaching of proof in geometry and
the teaching of equation and word-problem solving algebra. The locations of our research
have been more than contexts, though; they have served to highlight the value of attending
to the specifics of mathematical work in theory-building research on mathematics teaching.
I will be using examples from our work in secondary geometry to illustrate how a
mathematics-specific theory and research on instruction can support the conception of
instructional improvements and applied research on such improvement.

I make three points: generic theories of teaching are insufficient to support
instructional improvement, the constructs afforded by practical rationality permit the
development of theories of teaching that are mathematics-specific, and the case of
improving the teaching of geometry from a modelling perspective illustrates how theories
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of teaching built with practical rationality constructs can support the work of instructional
improvement.

Mathematics educators and instructional improvement: Where our efforts have
been

Our scholarly community has historically contributed to improving the practice of
mathematics education. For example, researchers whose scholarship involved
understanding students’ opportunity to learn, their mathematical thinking, and their
development have also been involved in the more practical work of developing standards,
curricula, and assessments. In all of this work of research and development, our
community has shown keen attention to the mathematics at stake. When members of our
community have studied the learning of mathematics they have been more interested in
what students learn and how they use it in mathematical problem solving than in how much
they learn or in the general psychological characteristics of their thinking.

Our community’s efforts to improve practice through the development of curricula and
assessments have likewise been informed by the history and epistemology of mathematical
practice. Our community has attended carefully to mathematical issues in our contributions
to understanding students’ learning and those have also shown in the development of
curriculum materials and assessments. Current approaches to the improvement on the
curriculum from a learning trajectories perspective (see Clements & Sarama, 2014)
illustrate how this subject specificity in our studies of learning can help the work of
teachers by giving them ways of understanding where their students are in their learning of
specific ideas and tasks that can help the students grow. This is certainly one important
way in which we have contributed to instructional improvement. As I elaborate below, the
work of teaching has not been addressed from a mathematics-specific perspective in theory
and research, but it could benefit from such perspective.

Our community’s focus on students’ thinking and learning brought important attention
to the role of the teacher creating learning environments and observing students’ work. The
work of teaching includes such tasks and others that could be described in equally generic
ways. | argue that such generic descriptions are however not sufficiently helpful to support
instructional improvement: We need to attend to the role of subject matter in how we
describe and understand the work of mathematics teaching (see Romberg & Carpenter,
1986; Chazan, Herbst, & Clark, 2016). I argue that a look at the work of teaching anchored
in what is being taught and learned can be the basis for a key, unique contribution our
community alone can make to instructional improvement. This is a contribution that we
cannot expect from scholars who look at the act of teaching with the general perspectives
of research on teaching and teacher education.

How mathematics educators became interested in teaching

While mathematics educators’ interest in the work of teaching in instruction is more
recent than our interest in students’ thinking and learning, interest in the work of teaching
has been part of our community for a couple of decades. For centuries philosophers of
education have had an interest in understanding the relationship between teacher and
student as people shaping each other; in these philosophical approaches to teaching the
content of studies has been seen as part of the context, a means to an end that might
include social reproduction, individual actualization, or perhaps social justice. But these
ideas seem to have been less of a part of our mathematics education community’s concern



when our field emerged in the crucible of the new math movement in the 50s and 60s.
Those days seemed to have seen the teacher as someone who would deliver the riches of an
improved curriculum to the student; with the design of the materials as the key to the
quality of the students’ experience (Remillard, 2005). Back in the day of the new math, the
teacher was seen as somebody who had to be controlled so that the message of the
curriculum could arrive to the children without blemishes (Clarke, Clarke, & Sullivan,
1996).

After the failure of the new math reform, later reforms placed interest not only on
curriculum development but also on teacher development. The so-called “failure of the
new math” has often been identified as a moment when those who work on reform realized
the need to attend to teacher education and professional development and to the work that
teachers do implementing those reforms. The Standards-based reforms placed a lot of
attention to the quality of the tasks in which students would engage, capitalizing on
research on students’ thinking and problem solving. The notion that the success of reform
would need teacher development led to efforts to educate teachers to propose worthwhile
tasks to students, stay out of the way while students worked on those tasks, and manage
classroom discourse in which students shared their thinking (NCTM, 1991). As Smith
(1996) noted, the discourse addressed to teachers, while clear about when not to intervene,
was patently unclear about what teachers could actively do to teach, to the point that it
created a dilemma concerning teachers’ sense of efficacy.

Are generic tasks of teaching a sufficient basis for a theory of mathematics
teaching?

The professional development offered to teachers attempted to enable teachers to
support reform by developing capacity for some generic tasks of teaching such as
proposing worthwhile tasks, noticing student thinking, and managing classroom discourse.
These are generic tasks of teaching as they are, at least in principle, capable to be
combined with many mathematical ideas that could be studied in a classroom. They clearly
can be used to describe and assess at a coarse level of granularity what teachers do in
mathematics classes (e.g., Silver, Mesa, Morris, Star, & Benken, 2009); they can serve that
purpose just as much as words like lecture and recitation do. It is also possible to consider
refinements of those tasks that increase granularity while maintaining their genericity. For
example, the task of managing classroom discourse can and has been unpacked into sets of
discursive moves that a teacher can make, for example to follow up on a student’s response
(e.g., confirm, press, revoice; see Brodie, 2011). Those generic descriptors for the work of
teaching are economical in that they reduce the burden of knowledge of the observer--any
act of mathematics teaching is describable by combining a generic task of teaching and an
item of mathematical knowledge, which acts as object or argument of the task of teaching.
That approach is clearly possible to use in the study of teaching by researchers and by
novices. Those generic descriptors for the work of teaching can and have been useful to
make observations across lessons with different content (e.g., see Stein, Grover, &
Henningsen, 1996) as well as to organize the practice of teaching for initial teacher
education (e.g., see Ghousseini & Herbst, 2016). But their capacity to support instructional
improvement is limited, fundamentally because of two concerns that together amount to
the need for addressing the mathematical specificity of the work of teaching.

The first concern is epistemological. Generic tasks of teaching create an impression of
homogeneity of the practice of teaching mathematics across the different subject matter to
be taught--they maintain epistemological considerations in a black box. Yet,



epistemological considerations matter at the time of deciding whether one such task of
teaching makes sense. For example, it is relatively easy for me to envision engaging
students in a task to get them to define a mathematical concept; but I have a hard time
thinking of engaging them in a task if my goal is to introduce a convention or a name;
telling students directly what the convention or the name is seems more efficient and less
manipulative to me. Likewise, it is relatively easy for me to consider asking “why would
you say that?” when a student makes a mathematical assertion but not when a student
reminds the class what the name of a concept is. In other words, the adequacy of
application of generic tasks of teaching to mathematical objects, requires some
epistemological mediation, some analysis of the nature of the mathematical objects being
addressed, but those objects are rather unspecified in those generic tasks of teaching. Even
the apparently subject-specific task of correcting an error requires the mathematical
sophistication of the observer or of the student of teaching to decide whether an error has
been made and how important it is to correct it (Hill & Grossman, 2013).

The second concern is practical and has to do with the extent to which such generic
tasks of teaching really permit us to think of incremental improvement as a path toward
reform. The rhetoric of reform and the critique of existing practices that goes with it may
need to rely on stark contrasts as presented in slogans like “teacher-centered” versus
“student-centered” instruction or generic practices such as “lecture” versus “discussion”
(see Scheftler, 1960, pp. 36-46). But practicing teachers are in the predicament of having
to do something new while they continue to do what they are expected to: Every change
happens over a surface of background practices that remain constant. Thus they need to be
able to capitalize on what they know how to do while they handle orientations to change
and try changing specific practices; in other words, improvement needs to be incremental.
A theory of mathematics teaching that could support incremental improvements over
existing practices could also enable practicing teachers to maintain some degree of control
of the consequences of such improvement. But while generic slogans like reform teaching
and student-centered instruction may be useful to provide value orientations, we need
theories of mathematics teaching that can anchor incremental ways of improving
instruction in existing practices.

That is where the generic character of some of those tasks of teaching becomes a
liability: Practicing teachers are never engaging students in a general task nor attending to
what students are thinking or doing in generic terms; rather they engage students in doing
particular tasks with specific instructional goals and they attend to what students are
thinking or doing inasmuch as that gives them information about specific knowledge and
skills they expect students might or might not have. In other words, the work of teaching
mathematics is situated in the practice of teaching the specific content that features in a
given course of studies. In particular, the range of options that a teacher has on what to do
(for example what discursive move to use at a given moment in time) depends not only on
what are the available discursive moves that a generic theory of teaching (such as, a theory
of classroom discourse) makes available in general, but also on what their costs and
benefits are in the situation in which the teacher may choose to use them. Those costs and
benefits may vary depending on the situation. For example, to ask “why would you say
that?” to a high school geometry student who is doing a proof and just wrote that two
triangles are congruent, and to ask the same question, “why would you say that?,” to a 4th
grade student who just wrote a digit in one of the partial products of a multidigit
multiplication are not really equivalent questions, even when one could code both as press
for explanation: the question in the first situation is merely a counterpoint for what the



student is expected to do next to a statement in a proof (Herbst, Chen, Weiss, & Gonzalez,
2009) while the question in the second situation, in spite of being possibly productive, is
likely to be experienced as an interruption (Lampert, 1986).

These two concerns, epistemological and practical, invite us to inquire what else might
be possible. What would a theory of teaching look like that pays attention to the
mathematical work of the teacher in practice? In our work on the practical rationality of
mathematics teaching, we have been deliberately seeking to understand whether and how
desirable practices might be anchored in existing practices. We are interested in finding out
whether desirable practices can be seen as viable from the perspective of practitioners. To
inspect such viability, we make the hypothesis that the subject and the classroom situation
matter or that existing practice matters; and we try to anchor possible improvements in the
teaching of specific ideas in descriptive accounts of existing, specific instructional
practices. In an effort to sketch how our approach supports thinking of instructional
improvement, I describe in the following sections how constructs of contract, situation,
norm, and obligations help us get inside the work of the teacher in instruction and illustrate
them with a case in geometry instruction.

Instruction

By mathematics instruction 1 refer to the interactions among students, the teacher, and
the mathematical content designated for students to learn, that occur inside environments
such as classrooms, schools, and educational systems (Cohen, Raudenbush, & Ball, 2003).
So defined, instruction not only adds the teacher’s work to considerations of students’
mathematical learning, but it also brings attention to the contexts, societal and institutional,
in which such interactions exist. This definition of instruction highlights that instruction
realizes three-way relationships among teacher, students, and content. The concept thus
defined characterizes the role of the teacher as more than administering the curriculum to
students; it highlights the possibility that the content may be altered, shaped in and through
those interactions that purportedly serve to transact it. The definition also highlights that
those interactions happen in broader environments that might shape them. The concept of
instruction is a descriptive concept--in particular, it does not say what the role of the
teacher should be, but it rather tries to capture what the role of the teacher is. For us the
concept of instruction is the cornerstone of an approach to develop descriptive and
explanatory theories of mathematics teaching (as opposed to prescriptive theories; see
Silver & Herbst, 2007).

Cohen et al (2003) propose this view of instruction in response to earlier policy work
that allocated causality for students’ improved outcomes to having or not having resources.
Cohen et al.’s (2003) view of resources is extensive--class size and teacher knowledge are
two examples they provide; class size and teacher knowledge illustrate quite well that
resources are more than the material resources often considered (e.g., technologies,
textbooks, etc.). Cohen et al. (2003) point out, and illustrate with an analysis of class size,
that despite the quantity and quality of the resources available in classrooms (i.e., despite
the quality of material resources such as textbooks or technology, despite the amount of
teacher knowledge or the makeup of the class), the quality of students’ learning depends on
the use of those resources in instruction. Cohen’s et al.’s (2003) approach suggests to us
that generic ideas about what teaching should be like (e.g., the notions of student-centered
instruction or inquiry-based learning) are also resources; they are intellectual resources that
make possible some ways of speaking and may inspire some actions.



Those intellectual resources are just as often proclaimed as capable to intervene in
improving student outcomes as material resources are. Teaching has often been the object
of prescription and professional development, using generic ideas like inquiry based
learning and generic practices such as having students work in groups; but the relative
impact of such prescriptions seems to have been low (Fullan & Miles, 1992). Examples of
inquiry based lessons shown in professional development sessions get replicated in
practice without necessarily making an impact in the teaching of the ideas of a course of
studies, discussions may increase social engagement but at the expense of depth in the
mathematical ideas discussed (Nathan & Knuth, 2003). It seems that we cannot merely talk
about the impact of generic descriptions of kinds of teaching but rather we need to consider
how these play out when they are used in instruction. While generic ideas and practices
about teaching may be important resources to shape the disposition of teachers to work in
certain ways, the use of those generic practices, like that of any other resource happens in
the midst of interactions a teacher has with students and content in environments.

Cohen et al. (2003) speak of the need to characterize instructional regimes and to study
their gains in students’ learning. My argument that our research could contribute to
instructional improvement builds on that definition of instruction: What may need to be
improved is not only the content designated for students to learn or the design of the tasks
in which the students could learn it, but also the work teachers do when they manage the
interactions with students and content. To that end I propose that our analyses of
instruction need to start not from the resource-ideas for improvement but from the study of
the actual instructional practices where those ideas might be infused. Indeed, I contend
that we need descriptive accounts of mathematics teaching and theories that provide us
with ways of examining how the teaching that is desirable might emerge from the teaching
that exists.

A Modeling Perspective in the Teaching of Geometry

I am deeply interested in the improvement of geometry instruction in secondary
schools, particularly as it regards students’ induction into proof-based mathematics. My
interest in it comes from two sources that betray my interest in an incremental approach to
instructional improvement. First I note the contrast between, on the one hand, the ritualized
proof practices that have been observed in high school geometry (Herbst et al., 2009) and,
on the other hand, Lakatos’s (1976) description of the methodological role that informal
proof plays as a tool to find out what is true and shape definitions of mathematical ideas.
Second, I have a deep appreciation for the course of studies in geometry; at least in
American classrooms, the high school geometry course has maintained a place for
declarative statements about mathematical concepts and for proofs when those are almost
non-existent in other courses of studies. There clearly is work to do to improve geometry
instruction but the high school geometry course already is and has been a beachhead for
mathematical practice more so than any other institutionalized course of mathematical
studies in school. Diagrams are prominent among all that there is to appreciate and to
critique in the high school geometry course: Diagrams are both used to visualize ideas and
criticized in making a case for proofs; and when learning to do proofs, diagrams are again
used to suggest the statements that could be made and to caution students against
unwarranted assumptions. What might seem like a schizoid way of treating diagrams could
be improved if the geometry course was infused of a modeling perspective. I consider this
an incremental idea for change. It is a change from a way of organizing the study of
geometry that traditionally separated intuitive and demonstrative geometry (see Breslich,



1931) with the former concerned with the exploration and measurement of concrete
diagrams and the latter concern with the derivation of logical conclusions from definitions.

What do I mean by a modeling perspective? Let’s consider, as a broad definition of
what mathematics education could do for students, that mathematics education teaches us
to solve problems in our heads by making assumptions about states of affairs and engaging
those assumptions in a propositional calculus. A modeling perspective counsel us not to
expect that those states of affairs will be already formalized before we engage them in in-
the-head problem solving, but rather to assume that the percepts and pre-concepts that we
use to organize our experience, including, in particular, the diagrams we use in geometry,
may be good enough to start reasoning with. We can treat them as if they were
mathematical objects and involve them in predicting some information that can be
confirmed or dispelled by experience, thus possibly inducing questions on our
conceptualizations. A modeling perspective, inasmuch as it calls to produce new
information without the expense of trial and error, allocates value to informal proof. And to
the extent that informal proof shows limits in producing correct information, a modeling
perspective allocates value to the progressive conceptualization of percepts and pre-
concepts. This modeling perspective can give rise to a curriculum in which mathematical
concepts and theorems from geometry are introduced by way of engagement in the
prediction of information about geometric diagrams and other concrete artifacts.

A modeling perspective in geometry suggests a course that does not alienate the
students’ earlier experiences with shape and space (what Kuzniak, 2006, calls the
workspace of natural geometry), but one where students engage in the progressive
sophistication of their intellectual means to model, predict, and control geometric
representations, so that they can be reliably used in making and transacting meanings
(Herbst, Fujita, Halverscheid, & Weiss, in preparation). A modeling approach can be used
to help students transition into what Kuzniak (2006) calls the Geometry II paradigm or the
workspace of axiomatic natural geometry. A question for us as researchers is then: If this is
an improvement worth moving toward, what kind of theory of mathematics teaching can
help us anticipate and understand the difficulties a teacher may have to manage and
identify the resources he or she could use to manage those difficulties? In the next section I
use a couple of geometric examples to describe in broad strokes how the ideas of practical
rationality can help.

Practical Rationality

Practical rationality is not a theory but a set of intellectual resources that can be used to
develop theories of mathematics instruction in specific courses of studies. In general it
identifies personal and sociotechnical resources that might intervene in the decisions that a
teacher makes in particular instructional systems. Personal resources include teacher
preparation and experience, mathematical knowledge for teaching, and teacher beliefs.
Sociotechnical resources include norms of didactical contracts and instructional situations,
and the professional obligations of mathematics teaching. I introduce these sociotechnical
resources as I describe how they can help understand and implement a modeling approach
in geometry.



Identifying difficulties with a modeling approach

In some of my earlier empirical work, doing classroom teaching experiments in
collaboration with teachers, I’ve asked the question of whether we could use diagrammatic
or concrete representations of geometric concepts in the contexts of tasks that favor a use
of informal proof with which students might participate in the mathematical construction
of the concepts represented. Herbst (2003) reported one example of this modeling
perspective in the context of the notion of area: At a time when 14-year-old students only
knew (from early schooling) area formulas for plane figures, they were asked to rank order
a set of 8 cardboard triangles according to area but using the area formula as little as
possible; they were asked to justify every pairwise comparison they could make. The
triangles and the task had been designed to get students to make explicit some of the
properties that define the area function (i.e., inclusion, additivity) by provoking them to use
the area formula to represent rather than to calculate the area of a figure. The set included
two triangles (D and E; see Figure 1 below) that had been constructed so that the side of
one of them was half as long as a side of the other, and the corresponding altitude of the
first one was twice as long as the corresponding altitude of the other; yet the relationships
between those measures may not have been preserved when those shapes were cut out
from their cardboard printouts.
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Figure 1. The 8 shapes used in the ranking triangles task.
(Reproduced from the original published in Herbst, 2003,
http://aer.sagepub.com.proxy.lib.umich.edu/content/40/1/197.short)

I bring this example first to illustrate a more general point about how the way we
discuss mathematics teaching can benefit from mathematics specificity and needs to
benefit from it if we really are to improve instruction. Because in spite of how much design
went into the task and how hard the students and the teacher worked, the lesson did not
quite work out. The ranking triangles task was implemented with students who drew on
their prior knowledge and worked by themselves most of the hour, they actively discussed
with each other and as a whole group and eventually came up with a ranking for the eight
triangles. Yet an observer of the mathematics in that lesson could easily have the
impression that the class had merely engaged in work that they had done in elementary
school--measuring bases and heights and calculating—and had missed opportunities to
represent relationships among areas using the area formula as an algebraic expression



(those opportunities were made available at least by one student). If we had stopped our
analysis of the task with its design and only looked at the work of the teacher using tools
from discourse analysis, we might have missed how the moves he made to manage the
evolution of the task as students worked on it actually compromised the mathematics. My
analysis of the instruction attended to how the teacher experienced tensions managing at
the same time students’ engagement in work and the way the work embodied mathematical
meanings. These tensions were indexed by three characteristics of the task. As far as the
goal of the task, there was a tension between the goal expressed to students and the
instructional goal sought; as far as the resources for the task, there was a tension in whether
to see the cardboard triangles either as objects or as representations; and as far as
operations, there was a tension in how to treat the preference not to use the area formula. It
is clear that the teacher I was working with could have been better prepared to handle that
complexity and that some of the preparation he could have used files into what one might
call mathematical knowledge for teaching. But having or not having those resources does
not obliterate the need to address sociotechnical demands, related to the responsibility for
the teacher to engage with the mathematics and the student, indeed with the students’
mathematical work. The hypothesis that in leading instruction the teacher had to rely on
and maintain a didactical contract (Brousseau, 1997) with the students and the content at
stake served to describe what happened in terms of work complexities, regardless whether
those could have been mitigated or exacerbated by individual resources.

This takes me to a first bit of theory, which is the hypothesis (in the mathematical sense
of assumption) that mathematics instruction is possible because a didactical contract exists
that binds the teacher, the students, and the content at stake with some rights and
responsibilities. Their interactions are predicated on the existence of a content, which is at
stake for students to learn with the assistance of the teacher. The didactical contract makes
the teacher responsible to assign work for the students on behalf of the knowledge at stake,
work in which the student may develop and demonstrate their knowledge of the content at
stake; the teacher is also responsible to see, in the students’ work, evidence that they have
acquired the content at stake. Students’ engagement in mathematical work thus serves at
the very least to confirm that learning has happened, but it also plays a role in learning: If
the student has not learned the content, their work is unlikely to show evidence that they
know it; and engaging the students in solving problems that involve the knowledge at stake
has historically been at least a part of what it takes to learn the knowledge. It becomes
crucial for a teacher to organize activity and the division of labor in the classroom so that
the didactical contract can be complied with--that is, for the teacher to eventually observe
in students’ work evidence of students’ knowledge. There was a fundamental ambiguity in
the goal of the ranking triangles task--for the students, the goal was to rank all the
triangles, but for the teacher it was to get students to formulate and use particular
properties of area that would justify assertions about rankings. This ambiguity probed or
stressed what I’d call a norm of the contract in which many secondary school students in
the US are socialized--that everything the teacher asks students to do is deliberately chosen
to aim at their learning.

The didactical contract and its norms exemplify how the study of the practical
rationality of mathematics teaching aims to identify sociotechnical demands and resources
for the teacher’s action. One of the theory development tasks consists of identifying norms
of the didactical contract that might be stressed with bids for instructional improvement in
a given course of studies, such as those issued from the modeling perspective in geometry.
The goal of such theoretical research is to inventory resources and how the teacher might



use them to manage a negotiation in which the didactical contract may survive such stress.
The theory is useful for improvement because if improvement ideas hinge on stressing or
breaching norms, knowing what norms will be stressed can only help the gathering of
intelligence for robust improvement. The example of the ranking triangles task, and how it
relied on a fundamental ambiguity in its goal, highlights the need for a teacher to manage
changes in the mathematical task attending both to students’ expectations of what they are
asked to do and the teacher’s sense of what will best serve the instructional goal. In the
next example I zoom into mathematical-work-specific versions of the didactical contract,
which I call instructional situations, to illustrate how sociotechnical demands may support
instruction of specific ideas.

Norms of instructional situations

Instructional situations are work-specific varieties of the didactical contract, or
customary ways in which labor is divided for mathematical work on particular ideas. An
important emblem of an instructional situation is what might be called a problem type or a
canonical task. An example of an instructional situation in American high school geometry
courses is what I have called “doing proofs” (Herbst et al., 2009). Problems used in that
situation have some typical characteristics--they tend to include a labeled diagram and to
state the conclusion to be proved in terms of diagrammatic objects, using those labels
(Herbst, Kosko, & Dimmel, 2013). Likewise those problems rely on a normative division
of labor: While earlier in the students’ learning of a particular idea the teacher may
demonstrate to students how to do the kind of problem that mobilizes that idea,
responsibility is later relinquished to students for some of the labor in those problems while
other aspects may stay with the teacher. Each of those problem-types that put at stake an
item of knowledge is a key part of what we call an instructional situation. Instructional
situations are basically classes of mathematical work, characterized by the kind of
knowledge involved as well as by the division of labor between what the teacher and the
students are expected to do. Instruction in a course of studies can be described as the
successive induction of the students into instructional situations, which often build on each
other.

New ideas are often introduced through the teacher’s demonstration of how to
complete an instance of the instructional situations in which the new idea plays out. But it
is conceivable, of course, that new knowledge might get introduced in different ways than
by the teacher’s demonstration; in particular students might get engaged in work that is
novel, where their own adaptation to the demands of the task serves to bring to the fore the
knowledge at stake. That was the idea with the ranking triangles task described above, and
more generally with the proposition that geometric knowledge could be introduced through
engaging students in modeling. Our proposition of the notion of instructional situation
serves to scaffold the identification of more sociotechnical resources with which to create
work contexts in which new knowledge can be introduced. I explain this with another
example.

Consider the following task used by Chen and Herbst (2013). This task was designed to
introduce students to the relationships among angles formed by intersecting and parallel
lines, including the equivalence between the triangle sum theorem (which we knew they
knew from middle school) and the parallel postulate. Students were given a diagram like
the one in Figure 2 and asked to determine how many angles they would need to measure
in order to know the measures of all of the angles formed by lines in the diagram. I would
describe this task as an opportunity to engage in mathematical modeling: The task puts a
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premium on knowing before measuring, but considering that it provides no actual
information, it calls for students to make hypotheses and calculate with those hypotheses to
see whether they give them enough leverage to make knowledge claims; they can add or
subtract hypotheses to optimize their model, and they can find out ways of calculating with
those hypotheses. They can also measure to check then pretend they did not need to
measure if they are convinced their calculation is sound. I want to use this task to examine
how the mathematics specificity afforded by attending to instructional situations helps us
describe and understand what might happen with the work of teaching that can be observed

around this task.

Figure 2. The intersecting lines task
(reproduced according to Herbst & Chen, 2013,
http://link.springer.com.proxy.lib.umich.edu/article/10.1007/s10649-012-9454-2/fulltext.html)

While this task is novel, there are two instructional situations that serve as anchors for
this task. That is, there are two kinds of problems that students are likely to have been
socialized into by the time they are in high school geometry and that can serve as
background against which to inscribe this task. One is the situation of exploration of a
figure, in which students are given a diagram and various tools (e.g., rulers, protractors)
and asked to find information about the figure represented (Chazan, 1995; Herbst, 2010).
The other is the situation of geometric calculation in number (Hsu & Silver, 2014), in
which students are given some dimensions of a figure and asked to find out other
dimensions. Figures 3 and 4 show what tasks that pertain to each of those situations could
look like.

These two tasks have some similarities in the concepts they involve, such as line and
angle. They are different in the work they call for, hence how they involve those concepts.
The first one calls for knowledge of how to use a protractor to measure angles, while the
second one calls for knowledge of properties of figures. They are cases of the more general
instructional situations of exploration of a figure and calculation of a measure because
they each rely on a different normative division of labor over knowledge. In the first case,
the diagram is the mathematical object; the teacher must allow for some instruments of
measurement and the students need to use the instruments to read those diagrammatic
objects. In the second, the diagram represents objects; the teacher must provide sufficient
numbers to use in the calculation and the students need to use them to add more
information to the representation (see Herbst, 2004). Neither of these situations supports
well the notion of modeling in geometry: In the first one, angles are de facto the same as
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their representation, while in the second one a model of the geometric figure is already
imposed distinguishing the representation of an angle from its actual measure. But they
both provide anchors for the task in Figure 2.

Figure 3. What are the measures of the angles in Figure 4. What is the measure of X?
the figure?

What does it mean that these situations provide anchors for the task in Figure 27 It
means that the task associated to the diagram in Figure 2 could be seen as relying on
breaches or departures from the norms of the situations of exploration and of calculation,
and hence the teacher could count on students’ capacity to consider the resemblance
between the intersecting lines tasks and tasks that belong in those situations. The teacher
can pose the new task against the background of those situations. It is possible for the
teacher to use that familiarity to devolve to the students responsibility for the task. For
example, if students needed some help processing the question “how many angles would
you need to measure...?,” experience with the situation of exploration could suggest that
the teacher could ask “if you were to measure all the angles, how many would you need to
measure? Are these all the angles made by the lines shown in the figure?” Experience with
the situation of calculation could instead suggest the teacher to ask “what would you need
to know in order to calculate the measure of this angle?” In other words the instructional
situations of calculation and exploration provide the teacher with sociotechnical resources
that can be used to manage students’ engagement in the novel, intersecting lines task.

The norms of those situations provide specific resources for the teacher to identify
what may make the new task hard to manage and to know what specific moves might make
the task more manageable. Specifically, because in a situation of exploration it is
normative for students to use all sorts of available tools to read the diagram, the teacher
could see an option to simplify the complicated question “how many angles would you
need to measure to know them all?” into “how many angles are there to be measured?” In
other words, the norms of instructional situations are useful not only to understand how
close or how far from normative a proposed task is, but also as available resources to
manage students’ engagement in a task by way of making small changes to a task to
facilitate students’ engagement.

The instructional situations that exist in a class can thus play the interactional
equivalent of collective prior knowledge in instruction, pointing in directions for the
teacher to reduce complexity. This of course does not guarantee that the mathematical
demands of the task will be held constant: Defaulting to one of those instructional
situations could undermine the opportunity to learn. But our knowledge of those situations
provides us with means to anticipate how a task might evolve and to create resources that
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might increase robustness: For example, while the situation of exploration is available,
defaulting to it would not make this task worth its time; thus, to support the expectation
that at least some measures would be calculated as opposed to measured, when we
designed the task we drew lines that would clearly intersect but whose intersections are not
on the page (see Figure 2); thus the angles they make can be visualized and counted, but it
would take a lot of extra work to get to measure them.

I bring those examples of instructional situations and their norms to show two things.
First, in terms of theory building, the building of a theory of teaching geometry calls for
inventorying and relating the various instructional situations that enable mathematical
work and that may articulate geometry learning in existing classrooms. Second, in terms of
tools for theory building, situation and norm are key constructs that enable us to construct
theories with which we can understand the practical rationality of mathematics teaching.
To bring those two observations together, if much of the work of teaching includes
managing students’ engagement in mathematical work, situations and norms are constructs
that help us describe that mathematical work. That mathematical work can be described
either as familiar practices that instantiate situations, complying with norms, or as novel
tasks that are novel because they depart from instructional situations by way of breaching
with specific norms and therefore requiring ad hoc negotiations of the didactical contract.
Instructional situations and their norms illustrate how our approach to practical rationality
is mathematics-specific: The constructs themselves are general, but the way they are used
in building local theories with which to understand teaching requires the researcher to use
them in regard to specific mathematical conten. This content is not merely the
mathematical topic that could be found in the book, but a real blend of mathematical ideas
and mathematical work, as realized in potential interactions among teacher, students, and
content. Inasmuch as researchers strive to describe existing practice, the constructs of
contract, situation, and norm serve to describe specific patches of practice such as the
teaching of particular ideas in particular courses of study. In the practical rationality
approach, to understand mathematics teaching means to understand the instructional
situations a teacher needs to manage (as well as the mathematical knowledge for teaching
that would make a difference in how the teacher manages those situations; see Herbst &
Kosko, 2014). From this perspective, it is important for researchers to develop local
theories of the teaching of specific mathematical ideas in given contexts (e.g., courses of
study) by accounting for the instructional situations in which those ideas are at stake,
which includes identifying the norms of a situation and the natural variability of those
norms in practice. In our empirical work we have been doing this by asking teachers to
comment, rate, and engage in simulations that use scenarios that represent instructional
situations, and in which teacher and student actions vary in the extent to which they abide
by hypothesized norms (see Herbst et al., 2013).

Thus the constructs of situation and norm provide some guidance on what it means to
develop mathematics-specific accounts of mathematics teaching: As researchers we should
be interested in describing the set of instructional situations that span a course of studies,
and for each of those situations to specify the set of norms that regulate how teacher and
student divide mathematical labor. Such research is descriptive--by making such inventory
one does not necessarily subscribe to it as desirable; rather, one creates groundwork or
background over which designers and teachers can conceive desirable practices. That is,
such work specific theories can assist the design and the study of instructional regimes that
might improve student outcomes.
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The background practices specified by contracts, situations, and norms can serve
practice as a way to compare the costs of different tasks. Two alternative lessons for a
given idea might be pondered in regard to the extent to which they take teacher and
students away from instructional situations that they know how to handle. Imagine for
example that instead of providing Figure 2, we only said to students--"suppose that you
had 6 lines on the plane, how many angles would you need to measure in order to know
them all?” Inasmuch as that task requires a formal understanding of lines, angles, and
intersections, that task does not exemplify a modeling perspective; but it could also be
criticized on account of how far it is from the canonical tasks of the instructional situations
available. Which suggests the task might be hard to manage anyway. Possibly, individuals
with significant mathematical knowledge for teaching might be able to navigate a very
novel task. But a closer distance between a proposed novel task and the canonical task of
an instructional situation may support a teacher’s management of the evolution of the task.
But why would a teacher use a novel task?

Professional obligations and departures from instructional situations

Instructional situations can be seen as ways in which instructional systems satisfice (in
the sense of finding a non-optimal solution to a problem) the conditions under which a
teacher is expected to teach a given mathematical idea. Among the conditions under which
a teacher works, there are some of institutional nature that a teacher needs to contend
with—a curriculum to cover in the course of studies, a sequence of courses to feed, periods
of time during which such instruction needs to happen, tests and other accountability
mechanisms, etc. But the institutional obligation is only one of them. As a member of a
profession, a teacher of mathematics has other obligations to meet: An obligation to the
discipline of mathematics, an obligation to students as individuals, and an obligation to the
class as an interpersonal space. Each of those obligations can support a variety of
dispositions to act. For example the individual obligation can support actions to challenge
students to do problems beyond their comfort zone as well as actions to shield students
from embarrassment or frustration. The disciplinary obligation can support actions to
engage students in practices of conjecturing as well as actions to confirm the correction of
one’s notes using reputable mathematical sources. The interpersonal obligation can support
actions to ensure equitable opportunities for all students to participate and actions to
maintain a peaceful atmosphere in which everybody can study and learn. The institutional
obligation can support actions to move to a new topic of study as well as actions to spend
time preparing for an upcoming test. The obligations are four sources of justification that
Herbst and Chazan (2012; see also Chazan et al., 2016) hypothesize to be common for all
teachers of mathematics, even if under each of those obligations one could find more
specific dispositions that are ascribable to only some teachers of mathematics. These
obligations present an array of valid, though possibly contradictory, sources of justification
for teacher actions. For that reason, they can assist teachers in pondering possible
deviations from the norms of instructional situations. If the instructional situations found in
a course of studies are arrays of practices and norms that satisfice the aggregate set of
obligations, each of the obligations on its own can justify some departures from norms.
Research on the obligations is ongoing; we have been developing instruments to measure
practitioners’ recognition of the four obligations and the extent to which they use them in
justifying departures from ordinary practice (see Herbst, Dimmel, Erickson, Ko, & Kosko,
2014). As a theoretical proposition, the notion of professional obligation, serves for us to
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represent the conditions in which teachers work in a more accurate way. Teachers can also
use them to improve instruction.

The reforms that were proposed by the Standards movement and the US NCTM
Standards’ documents from 1989 and 2000 might be justified on account of the
disciplinary obligation--those reforms attempted to make school mathematics more
interesting, connected to the intellectual activities of mathematicians in problem solving
and theory building as well as to the work of applying mathematics to the real world. Other
attempts to improve instruction have emphasized the obligation of a teacher to educate
students to live in a diverse society and work for a more just society. Yet other attempts to
improve practice are justified on account to attend to (more of) the needs of individual
students. Inasmuch as it is plausible that the four obligations represent the conditions in
which teachers work, our own work promoting improvement needs to consider that all
those obligations are at play when a teacher engages in work to enact such improvements.

So, how could a teacher use the obligations to support the work of instructional
improvement? Let’s go back to the use of the task in Figure 2. Upon presentation of the
problem, the teacher may have to contend with events such as shown in Figure 5.

Hills - =
N
Are these lines parallel? 3
Do we know any of the angle

one two...three four
l—‘

. X . measures?
five...six...seven eight nine...
There are nine times four.... so L] f I ) il ]
thirty six angles to measure!! L
4 S _
That's too many. No way I'm - il -
L
' — s

inl 4

doing this!

Hey could you measure those
three? I'll do the others.

Figure 5. Possible events after the teacher present the intersecting lines task.
Graphic characters are ©2016, The Regents of the University of Michigan, used with permission.

Those events may happen at about the same time, and thus require the teacher not only
to come up with possible ways of handling each of them but also to consider how to handle
their simultaneity. The obligations can help us examine the space of possibilities facing the
teacher. I do not contend that the present analysis of these events is exhaustive or that it
provides enough for the teacher to optimize the use of time and resources. I only illustrate
how the obligations can help analyze the events and look for ways to maintain the task
alive. Let’s note first that the two students on the right represent opportunities to default to
the existing instructional situations of calculation and exploration—those students seem to
know what to do, but to be rather unclear about what the work at hand is. They present a
challenge that one could associate with the individual obligation—if the teacher lets
Epsilon and his tablemate to continue to measure, he may increase his sense that he is on
the way to completing the task; also, if the teacher leaves Delta’s question about angle
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measures unanswered, Delta may also become apathetic. How could the teacher address
these circumstances? Figures 6a and 6b present two possibilities.

Also, From what | have seen so far, Epsilon, Beta, Gamma, and Delta, you need to
read the question again. | think you have not interpreted it correctly.

whether you would absolutely need to measure all angles to know their
measures, because that seems like a lot of work. Let's see Epsilon, what is the
measure of one of the angles you measured? Could we use that measure to find
out the measures of other angles?

Alpha and all--we are not told whether any lines are parallel. ]

| see that some of you have started measuring. The question | am asking is 1

i ——

/
"9 "9 <
e e

Figures 6a and 6b. Two possible responses to the events in Figure 5.
(Graphic characters are ©2016, The Regents of the University of Michigan, used with permission.)

It seems that in making the first move (Figure 6a) the teacher is intent in letting the task
do its job by enforcing the role he had envisioned for the students in the task, while in the
second one (Figure 6b), the teacher is amenable to negotiating some of the task’s implicit
division of labor. While letting the task change in some way, the teacher is also being
proactive, accepting what students are doing and working with it. Note that in making that
move the teacher is addressing Epsilon by redirecting his drift toward exploration, the
teacher is also giving a nod to the student who thought the task was too much, and
providing a way for Delta to use what she knows. If Epsilon happened to say that one angle
is 40 degrees, the teacher would have an opportunity to address the interpersonal obligation
as well as Alpha’s earlier comment about “these lines” by asking students how they could
be more precise so that students can understand which angle (viz. which lines) they are
referring to. The student who merely counted (some of) the angles might realize she
oversimplified the task but the teacher could ask her to label the intersections as a way to
keep her engaged, which would be one way of meeting the individual obligation. Then the
teacher could ask Epsilon which one is the angle that he says measured 40 degrees and ask
the class whether they understand what angle Epsilon is referring to. The teacher could
also ask Alpha which lines are the ones he was asking whether they were parallel. The
students’ responses might give an opportunity for the teacher to attend to the disciplinary
obligation by emphasizing the value of precision embodied in referring to angles by using
three letters (viz. to lines by using two letters). To Alpha the teacher could ask back “What
if the lines were parallel? How would that help?” The teacher could also see what students
like Delta can do with the information that one angle is 40 degrees and ask after “what if
the angle was not 40 degrees but an unknown measure X?” In the first move we see the
teacher’s question as providing an opportunity for conjecturing while in the second one as
providing an opportunity for generalizing, both of which can justified on the disciplinary
obligation. Thus the obligations can help a teacher identify resources and constraints in
classroom happenstances, including in particular what students say and do in response to a
task. The obligations can also help a teacher justify or discourage ways of addressing those
happenstances. Thus the obligations can help a teacher examine what opportunities each of
those events present.
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Conclusion: Working toward Instructional improvement

My argument is that we need mathematics-specific theories of mathematics teaching in
order for our research to contribute to efforts at instructional improvement. I do not
discount practitioner-oriented efforts that try to promote generic practices such as
classroom discourse and inquiry-based learning but note that those are merely resources
available in instruction and I emphasize, with Cohen et al. (2003), that the key to their
effectiveness is on how resources are used in instruction. Theories of mathematics teaching
that attend to the specifics of mathematical work can provide ways of describing such use.
In the preceding sections I illustrate how the constructs of practical rationality, particularly
the notions of contract, situation, norm, and obligation, serve to develop theories of
teaching of specific mathematics that can serve to describe existing and innovative
teaching, including the teaching that uses generic resources such as the notion of inquiry-
based learning; the obligations can be used to describe specific moves a teacher might
make when teaching particular content. But these constructs may also be used to support
efforts at instructional improvement.

Morris and Hiebert (2011) have argued that lessons constitute the knowledge base of
teaching and proposed that to improve instruction we need to increase and improve that
knowledge base. I take it that by lessons we should mean neither solely the curriculum of
the lesson, nor a lesson plan, but rather the anticipation of all that can happen in a lesson.
Hence, a lesson in that knowledge base is not a linear narration of the best possible lesson
but an array of possibilities forking from predictable events and conceivable decisions. I
contend that a subject specific approach to mathematics instruction like what is offered by
practical rationality can help us develop capacity for scoping the space of a lesson and to
calculate piecemeal, incremental ways in which specific lessons might be improved. In the
context of our work in technology-mediated teacher education using the LessonSketch
platform (see Herbst, Chazan, Chieu, Kosko, Milewski, & Aaron, 2016) we have
developed and been using the practice of StoryCircles (see Herbst & Milewski, in review).
In this practice, groups of teachers interact with a facilitator to script the development of a
lesson and visualize it as a storyboard, using the Depict tool in the LessonSketch platform
(with which the graphics on Figures 5 and 6 were created). The approach lends itself to
creating alternative branches of a lesson and to visualize a lesson not just as one story but
as multiple possible stories. These story families can be contributed to a community of
teachers who can use it to annotate their own experiences with the lesson for future
reference. It can be noted that while such production of the many stories that could unfold
for a given lesson could be done without the scaffold of a theory, a theory of mathematics
teaching provides conceptual elements to predict possible stories including those that
might be conceivable, even though they might stretch the conventional wisdom of what is
viable to do in classrooms. An online environment where practitioners can visualize such
lessons and comment on the complexities that could be exacerbated by particular decisions
and actions can then support the creation of a professional knowledge base that can support
instructional improvement.
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