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Walking reduces sensorimotor network
connectivity compared to standing
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Abstract

Background: Considerable effort has been devoted to mapping the functional and effective connectivity of the
human brain, but these efforts have largely been limited to tasks involving stationary subjects. Recent advances
with high-density electroencephalography (EEG) and Independent Components Analysis (ICA) have enabled study
of electrocortical activity during human locomotion. The goal of this work was to measure the effective connectivity
of cortical activity during human standing and walking.

Methods: We recorded 248-channels of EEG as eight young healthy subjects stood and walked on a treadmill both
while performing a visual oddball discrimination task and not performing the task. ICA parsed underlying electrocortical,
electromyographic, and artifact sources from the EEG signals. Inverse source modeling methods and clustering
algorithms localized posterior, anterior, prefrontal, left sensorimotor, and right sensorimotor clusters of electrocortical
sources across subjects. We applied a directional measure of connectivity, conditional Granger causality, to determine
the effective connectivity between electrocortical sources.

Results: Connections involving sensorimotor clusters were weaker for walking than standing regardless of whether the
subject was performing the simultaneous cognitive task or not. This finding supports the idea that cortical involvement
during standing is greater than during walking, possibly because spinal neural networks play a greater role in locomotor
control than standing control. Conversely, effective connectivity involving non-sensorimotor areas was stronger for
walking than standing when subjects were engaged in the simultaneous cognitive task.

Conclusions: Our results suggest that standing results in greater functional connectivity between sensorimotor
cortical areas than walking does. Greater cognitive attention to standing posture than to walking control could be
one interpretation of that finding. These techniques could be applied to clinical populations during gait to better
investigate neural substrates involved in mobility disorders.
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Background
Analysis of functional and effective connectivity across
distributed brain regions can provide new insight into
how the brain functions. ‘Functional’ connectivity considers
only the correlation between signals while ‘effective’ con-
nectivity also maps the causal relationships between signals
[1]. The brain contains a highly complex collection of
neurons that interact and communicate in order to
perform motor and cognitive actions. Many studies have
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reproduction in any medium, provided the or
examined human brain connectivity using functional
Magnetic Resonance Imaging (fMRI) and Positron-
Emission Tomography (PET) by treating image voxels as
anatomical network nodes [2-6]. A drawback to these
methods is that they require subjects to remain still during
imaging, resulting in the study of constrained and some-
what artificial behaviors.
One way to study brain connectivity during more nat-

ural, whole body, behaviors is to combine high-density
electroencephalography (EEG), Independent Component
Analysis (ICA), and source localization techniques. We
have recently demonstrated that high-density electroen-
cephalography (EEG) combined with Independent Compo-
nent Analysis (ICA) enables the study of electrocortical
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activity related to locomotor control and cognition during
walking [7-9]. Clustering electrocortical sources across
subjects according to spatial and spectral properties en-
ables calculation of changes in effective connectivity be-
tween cortical regions using techniques such as Granger
causality [10].
Previous studies have demonstrated that the cortex

plays a significant role in postural control during stand-
ing [11,12] but there is much less information about cor-
tical control of human walking. Walking relies heavily
on spinal locomotor networks that are capable of gener-
ating rhythmic muscle activity [13-16]. While consider-
able evidence has documented the importance of spinal
central pattern generators in non-human vertebrates,
spinally generated locomotor activity in humans without
functional descending motor pathways has proven to
be difficult to document [13,17-19]. Transcranial mag-
netic stimulation [20-22] and functional near-infrared
spectroscopy (fNIRS) [23-27] have been used to inves-
tigate cortical connectivity during locomotion. These
approaches each have limitations in measurement area
or temporal resolution that restrict their use to assess
cortical network connectivity during gait. For example,
fNIRS is limited to measuring activity in the outer cortex
and the temporal resolution is limited to a few seconds
at best.
The purpose of this paper was to assess the relative

effective cortical connectivity in humans during walking
and standing. We examined cortical connectivity in
healthy young subjects under the following four condi-
tions: walking while performing a simple cognitive task,
walking without the concurrent task, standing while per-
forming a simple cognitive task, and standing without
the concurrent task. We hypothesized that the effective
connectivity among independent sensorimotor electro-
cortical processes would be lower during walking than
during standing. We based this hypothesis on the belief
that standing in humans is predominantly controlled by
supraspinal mechanisms and walking in human relies
substantially on spinal neural networks.The inclusion of
a concurrently performed cognitive task allowed us to
examine whether these changes were consistent in the
presence of competing attentional demands [28].

Methods
Experimental design
Eight healthy volunteers (7 males and 1 female) between
the ages of 20–31 years participated in the study. None
had any history of major lower limb injury or known
neurological or locomotor deficits. All subjects were pro-
vided with, and signed, consent forms prior to the experi-
ment. All procedures were approved by the University
of Michigan Internal Review Board and complied with
the standards defined in the Declaration of Helsinki. All
processing and analysis was performed in Matlab (The
Mathworks, Natick, MA) using scripts based on EEGLAB
(sccn.ucsd.edu/eeglab), an open source environment for
processing electrophysiological data [29] or the Granger
Causality Toolbox [30].
Subjects stood (0.0 m/s) and walked (0.8 m/s and

1.25 m/s) on a treadmill while we recorded 248-channel
electroencephalography at 512 Hz (ActiveTwo, BioSemi,
Amsterdam, The Netherlands). Before data collection,
the locations of the electrodes were measured with
respect to anatomical head reference points and elec-
trode gel was used to bring electrode impedance below
25 kΩ. Subjects participated in a visual odd-ball dis-
crimination and response task for some of the data
collection. Standard (80%) and target (20%) stimuli (vertical
or 45° rotated black crosses on a white background,
respectively) were displayed on a monitor placed at eye
level about 1 m in front of the subjects. For each move-
ment condition subjects completed one test block where
they actively responded to the target stimuli by pressing a
handheld trigger (we refer to this condition as engaged)
and one test block where they passively observed the
screen (we refer to this condition as passive). Each ses-
sion began with the standing condition (5 minutes),
followed by the walking conditions (10 minutes each) in
random order.
Identical preprocessing steps were applied across all

subjects and trials. Furthermore, data were appended for
identical subjects across sessions to compute identical
statistics and allow for identical IC/dipole comparison
between sessions. This approach also allows for robust
comparisons to be made between the session, as you will
see in the following sections. After collection, EEG data
were high-pass filtered above 1 Hz. 60 Hz line noise was
also removed. As in [7,8], EEG signals exhibiting sub-
stantial noise throughout the collection were removed
from the data in the following manner: 1) channels with
std. dev. > 1000 μV were removed, 2) any channel whose
kurtosis was more than 5 std. dev. from the mean was
removed, and 3) channels that were uncorrelated (r < 0.4)
with nearby channels for more than 1% of the time-
samples were removed.
Prior to performing ICA decomposition, time periods of

EEG with substantial artifact, as defined by z-transformed
power across all channels, across the appended subject
specific sessions, in a given 2 second time window being
larger than 0.8, were rejected using EEGLAB. An average
of 130.4 EEG channels were retained for analysis (Range -
89–164; STD - 24.6). We refer the reader to [7-9], for a
more in depth overview of this approach. These remaining
channel signals were then re-referenced to an average
reference across the scalp and mastoid external channels.
The remaining channels and epochs were input into to an
adaptive mixture ICA algorithm [AMICA] [31,32] that
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utilizes the infomax [33] approach. ICA linearly decom-
poses EEG signals into a set of maximally independent
components (ICs) [34].

Data analysis
We then estimated an anatomical source location for
each IC using DIPFIT functions within EEGLAB [35].
DIPFIT computes an equivalent current dipole model
that best explains the scalp topography of each IC using
a boundary element head model. ICs were excluded if
the projection of the equivalent current dipole to the
scalp accounted for less than 85% of the scalp map vari-
ance, or if the topography, time-course, and spectra of
the IC were reflective of eye movement or electromyo-
graphic artifact [36,37]. The remaining ICs then reflected
electrocortical sources. These sources were clustered
across subjects using EEGLAB routines that implemented
k-means clustering on vectors jointly coding differences in
equivalent dipole locations and power spectra. Prior to
clustering, the resulting joint vector was reduced to 10
principal dimensions using principal component analysis,
as in (Gwin, Gramann et al. 2011), setting the maximal
number of clusters. Clusters of electrocortical sources
existed in prefrontal (PFC)(5 sources), anterior cingulate
(AC) (9 sources), posterior parietal (PC) (13 sources), left
sensorimotor (LSM) (7 sources), and right sensorimotor
cortex (RSM) (6 sources) (Figure 1). The effective number
of sources used may have been smaller depending on the
significance/strength of connections coming from them.
We applied conditional Granger causality analysis

to each subject’s electrocortical source signals to as-
sess effective connectivity between the cortical regions.
Granger causality is a directional connectivity measure
that determines the linear causal influence of one signal
on another [30,38,39] through a statistical test of the null
hypothesis that a particular signal ‘Granger causes’ another
signal. The postulate is that each signal is a linear combin-
ation of all other signals at a previous time (i.e., the order
parameter). A full mathematical description of Granger
causality has been published previously [39,40]. In short
the linear regression is,

Xi tð Þ ¼
Xk

j¼i

AijXj t−τð Þ þ E t−τð Þ

where Xi is a signal at time t, Xj = Xi…k are all signals in
the system/network, τ is the order parameter or time
lag, and E is the residual. A signal is considered to
‘Granger cause’ another if, by adding the signal to the
system, E is sufficiently reduced.
We calculated conditional temporal Granger causal-

ity values for all intra-subject electrocortical source
signals with the aid of the freely distributed Granger
Causality Toolbox [30]. To compute Granger causality,
electrocortical source signals were divided into 10 second
epochs before being demeaned and detrended. The best
order parameter for each pair of electrocortical sources
was then computed using the Bayesian information cri-
terion and, on average, corresponded to about 20 ms,
with a low of 15 ms and high of 25 ms. Varying the order
parameter within this range, for all pairs, did not greatly
affect the connectivity values. IC/dipole time series were
checked for stationary using the Kwiatkowski-Phillips-
Schmidt-Shin test and the Augmented Dickey Fuller test,
and were not used in the connectivity analysis if they did
not pass both. Granger causality values representing
connectivity between electrocortical sources within the
same brain region were ignored. Figure 1 demonstrates
the anatomical locations of these regions, for all subjects,
while walking at 1.25 m/s. For clarity only the most sig-
nificant connections (determined by the F-statistic) are
shown.
Average Granger causality values were computed for

each intra-subject pair of electrocortical sources, within
each condition, across the 10 second epochs. We evalu-
ated the difference in connectivity strengths for each
pair of electrocortical sources between walking and
standing; cognitively engaged and cognitively passive
conditions were treated separately. In addition, dur-
ing standing we evaluated the difference in connect-
ivity strengths for each pair of electrocortical sources
between the cognitively engaged and cognitively passive
conditions. Next, pairs of sources were grouped as sen-
sorimotor if at least one of the sources in the pair was
from the left or right sensorimotor cluster and non-
sensorimotor otherwise. Connections coupling identical
regions across subjects were then grouped and averaged.
One-sample t-tests assessed whether the differences in
connectivity strengths within each group (i.e., sensori-
motor and non-sensorimotor) were significant; the p-value
threshold was 0.05.
We also analyzed the Granger Causality differences

using a second approach to ensure statistical validity. In-
stead of averaging similar region-region connections for
each subject, then averaging across subjects, all sensori-
motor and non-sensorimotor connections were binned
into respective groups, and averages were taken for each.
Then 10,000 surrogate data sets were created by taking
the same connections (calculated over 10 second epochs)
and randomly shuffling the regions they connected. The
average connectivity for the surrogate sensorimotor re-
gions and non-sensorimotor regions were then calculated
as the statistical baseline, and the standard deviation of
this surrogate distribution was used as our confidence
level. For the sensorimotor regions there were an average
of 10.5/16 connections per subject, and for the non-
sensorimotor regions there were an average of 5.5/9 con-
nections per subject.



Figure 1 Granger causality network connections for all subjects while walking at 1.25 m/s while not engaged in the visual oddball
task. Nodes shown are from statistically significant connections aggregated across all subjects. Nodes were in slightly different locations for each
subject, some subjects had multiple nodes/region some had none. The thicker the line, the stronger the Granger Causality value. Nodes are
clustered and color coated per their anatomical regions. Significant connections were determined by the F-statistic.
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Results
The Granger causality analyses identified three main
changes in connectivity among brain regions across con-
ditions (Additional file 1: Table S1). First, connections
involving the sensorimotor cortex (including both com-
munication with association areas and interhemispheric
communication within the sensorimotor cortex) were
significantly weaker during walking than during stand-
ing. This was true regardless of whether the subject was
actively engaged in the visual oddball discrimination and
response task (p < 0.03) or the subject was passively ob-
serving the screen (p < 0.001) (Figures 2a & 2b, blue
bars). Second, effective connectivities involving non-
sensorimotor areas (i.e., prefrontal, posterior, and anterior
clusters) were significantly stronger during walking than
standing only when subjects were engaged in the simultan-
eous cognitive task (p < 0.03) (Figure 2b, red bars). Third,
during standing, effective connectivities involving non-
sensorimotor areas were significantly weaker when subjects
were actively engaged in the visual oddball discrimination
and response task than when subjects passively observed
the visual stimuli (p < 0.02) (Figure 2c, red bars).
The second statistical analysis provided similar results

to the primary. Some important results are stated here



Figure 2 Grand average percentage changes in network connectivity between conditions. Connectivity during walking minus connectivity
during standing is shown for sensorimotor (blue) and non-sensorimotor (red) network nodes when subjects were not engaged in the cognitive
task (panel a) and when subjects were engaged in the cognitive task (panel b). Walking significant decreases sensorimotor network connectivity
compared to standing and, when subjects are actively engaged in the cognitive task (panel b), walking significantly increase non-sensorimotor
network connectivity. Panel c shows connectivity during active standing (actively engaged in the cognitive task) minus connectivity during passive
(not engaged in the cognitive task). Passive standing elicited greater non-sensorimotor network connectivity than active standing, demonstrating
the expected non-sensorimotor default mode network. * = p < 0.04.
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and all data are presented in Table 1. For the passive
case subjects showed an average connectivity decrease of
13.38% in sensorimotor regions for walking at 0.8 m/s
compared to standing. The surrogate sample produced
an average decrease of −7.62 ± 4.91%. Similarly, a con-
nectivity decrease of 20.64% was measured in sensori-
motor regions for walking at 1.2 m/s compared to
standing. The surrogate sample produced an average de-
crease of −9.57 ± 5.40%. For the active case subjects
showed an average connectivity decrease of 9.31% in
sensorimotor regions for walking at 0.8 m/s compared
to standing. The surrogate sample produced an average
Table 1 Connectivity differences vs. random surrogate differe

Sensorimotor differences (surrogate) 0

Passive −13.

Active −9

Non-sensorimotor differences (surrogate) 0

Passive −0.5

Active 20.

Each surrogate difference is calculated by averaging randomized connections (acro
(), are the similar for both sensorimotor and non-sensorimotor regions. The variance
smaller. Here statistical significance is indicated if any values deviate considerably f
surrogate mean (blue) and most deviate > 2 STD from the surrogate mean (green).
increase of 3.87 ± 6.16%. Similarly, a connectivity de-
crease of 7.73% was measured in sensorimotor re-
gions for walking at 1.2 m/s compared to standing.
The surrogate sample produced an average increase of
2.06 ± 5.32%.
Matrix representations of directional network connect-

ivity are shown in Figures 2, 3, and 4. In these figures,
connections are from brain areas plotted vertically to
brain areas plotted horizontally. The sensorimotor network
nodes are outlined in red and the non-sensorimotor net-
work nodes are outlined in green. Statistically significant
differences in connection strength (more than 2 standard
nces

.8 m/s – 0.0 m/s 1.2 m/s – 0.0 m/s

38% (−7.62 ± 4.91%)* −20.64% (−9.57 ± 5.40%)*

.31% (3.87 ± 6.16%) −7.73% (2.06 ± 5.32%)

.8 m/s – 0.0 m/s 1.2 m/s – 0.0 m/s

2% (−8.09 ± 2.06%) 3.67% (−9.61 ± 2.24%)

74% (4.09 ± 2.40%)* 15.63% (2.21 ± 2.11%)*

ss all regions) over 1000 iterations. This is why the surrogate connectivities, in
s are larger however, because the sample size (2 regions as opposed to 3) is
rom the surrogate average. We see that all results vary at least 1 STD from the
* indicates as significant change from 0.



Figure 3 Connectivity diagrams when subjects were not engaged in the cognitive task for (first column) walking, (second column)
standing, and (third column) the connectivity strength differences between walking and standing (i.e., walking minus standing).
Walking speeds were (first row) 0.8 m/s and (second row) 1.25 m/s. The sensorimotor network nodes (left sensorimotor (LSM) and right
sensorimotor (RSM)) are outlined in red and the non-sensorimotor network nodes (prefrontal cluster (PFC), posterior parietal cortex (PC), and
anterior cingulate (AC)) are outlined in green. Statistically significant increases or decreases in connectivity strength that are more than two standard
errors from zero are identified by gold plus signs and blue minus signs, respectively. All significant changes in connectivity strength between
walking and standing within the sensorimotor network, at both speeds, were negative (i.e., functional connectivity involving sensorimotor
areas was weaker during walking than during standing). The diagonal blocks are brown because no connectivity strengths were calculated
for connections within the same brain area. GC Connectivity Strength can range from 0–1.
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errors from 0) are indicated by gold plus signs (increases)
and blue minus sings (decreases).
Regardless of whether or not subjects were actively

engaged in the cognitive task, nearly all pairwise sig-
nificant differences in connectivity strength, between
walking at both speeds and standing, within the sen-
sorimotor network, were negative (Figures 2 & 3).
Connectivity involving sensorimotor areas was weaker
during walking than during standing independent of
the concurrent cognitive task. Note that Figure 3,
which contains connectivity diagrams for standing and
walking when subjects were not actively engaged in the
cognitive task, shows the data used to calculate the
grand averages shown in Figure 2a. Figure 4, which con-
tains connectivity diagrams for when subjects were per-
forming the visual oddball discrimination and response
task, shows the data used to calculate the grand averages
shown in Figure 2b.
When subjects were not actively engaged in the

cognitive task, there were heterogeneous changes in
the pairwise connectivity strength changes for the non-
sensorimotor network. However, connectivity strengths
between the PC and AC of electrocortical sources
tended to be greater during walking than during stand-
ing (Figure 3). When subjects were actively engaged in
the oddball discrimination task, all statistically sig-
nificant (2 standard errors) differences in connectivity
strength within the non-sensorimotor network, at both
walking speeds, were positive (Figure 4). This indicates
that walking uniformly enhanced connectivity among
non-sensorimotor network nodes for the cognitive task
condition.



Figure 4 Connectivity diagrams when subjects were actively engaged in the cognitive task for (first column) walking, (second column)
standing, and (third column) the connectivity strength differences between walking and standing (i.e., walking minus standing).
Walking speeds were (first row) 0.8 m/s and (second row) 1.25 m/s. The sensorimotor network nodes (left sensorimotor (LSM) and right
sensorimotor (RSM)) are outlined in red and the non-sensorimotor network nodes (prefrontal (PF), posterior parietal cortex (PC), and anterior
cingulate (AC)) are outlined in green. Statistically significant increases or decreases in connectivity strength that are more than two standard errors
from zero are identified by gold plus signs and blue minus signs, respectively. Nearly all significant changes in connectivity strength between
walking and standing within the sensorimotor network, at both speeds, were negative (i.e., functional connectivity involving sensorimotor areas
was weaker during walking than during standing). All significant changes in connectivity strength within the non-sensorimotor network, at both
speeds, were positive (i.e., when actively engaged in a cognitive task, walking enhances connectivity among non-sensorimotor network nodes).
The diagonal blocks are brown because no connectivity strengths were calculated for connections within the same brain area.
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When comparing the no cognitive task standing to
the cognitive task standing, all statistically significant
differences in connectivity strength within the non-
sensorimotor network were negative (Figure 5). Specific-
ally, statistically significant weakening occurred for the
prefrontal to/from PC cluster connections (bi-directionally)
and for the AC to prefrontal cluster connection (uni-
directionally). Note that Figure 5, which contains con-
nectivity diagrams during standing with the cognitive task
and without the cognitive task, shows the data used for the
grand averages shown in Figure 2c.

Discussion
We found a distinct, homogeneous, weakening in electro-
cortical sensorimotor network connectivity for walking
compared to standing. While not all connectivity changed
reached significance, all that did showed a sensorimotor
weakening linked to walking (except for the PC-RSM
conenction between 0.8 m/s and 0.0 m/s while cogni-
tively engaged). Conversely, while engaged, the subjects
showed a uniform increase in non-sensorimotor activity
when walking. The most likely explanation for this find-
ing is that standing requires considerable active cortical
control for maintaining balance and posture [11,12],
while walking relies more on spinal neural networks for
producing the dominant muscle activation patterns. Given
that locomotion requires less coordinated input from the
brain than standing, it is not surprising that there is a
measurable decrease in connectivity in sensorimotor net-
works during walking. Although there have been several



Figure 5 Connectivity diagrams during standing (first column) when subjects were actively engaged in the cognitive task, (second
column) when not actively engaged in the cognitive task, and (third column) the connectivity strength differences between active
engagement and passive observation (i.e., cognitively active minus cognitively passive). The sensorimotor network nodes (left sensorimotor
(LSM) and right sensorimotor (RSM)) are outlined in red and the non-sensorimotor network nodes (prefrontal cortex(PFC), posterior parietal cortex (PC),
and anterior cingulate (AC)) are outlined in green. Statistically significant increases or decreases in connectivity strength that are more than two standard
errors from zero are identified by gold plus signs and blue minus signs, respectively. All significant changes in connectivity strength within the
non-sensorimotor network were negative (i.e., the cognitive network was suppressed when subjects actively engaged in the cognitive task). The diagonal
blocks are brown because no connectivity strengths were calculated for connections within the same brain area.
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studies using functional near-infrared spectroscopy to
document changes in cortical activation during human
locomotion [23-27,41] and during active balancing [42],
there are no studies that have compared cortical activation
during standing and walking. An important difference
between the results presented here and previous studies
analyzing cortical activation during walking with functional
near-infrared spectroscopy is that our analyses focused
on effective connectivity rather than just overall activity
assessed through cerebral blood flow. The two approaches
are not identical and are likely to result in some differences
due to their measurements.
An important point to highlight is that there are many

supraspinal neural substrates involved in the control of
human locomotion other than just cortical areas. The
brain stem, cerebellum, hippocampus, and basal ganglia
also play a substantial role in the control of human
walking and running [43-46]. Our study is limited in
only being able to document cortical areas with spectral
power synchronized with the gait cycle [7]. Future re-
search that includes subject-specific head models for
source localization and more advanced blind source
separation algorithms might have more success in iden-
tifying other supraspinal sources involved in human
locomotor control [47].
Another significant finding of this study was the in-

crease in non-sensorimotor network connectivity strength
during dual-task walking (i.e., walking while performing a
cognitive task) compared to dual-task standing (i.e.,
standing while performing a cognitive task). This suggests
that when engaged in a cognitive task, the act of walking
increases the connectivity of the non-sensorimotor net-
work while reducing the connectivity in the sensorimotor
network. The data presented here do not allow us to probe
the neurophysiological underpinnings of this observation.
However, prior research leads to two possible interpreta-
tions. First, locomotion may enhance the performance and
integration of brain regions associated with cognitive pro-
cessing. Brisswalter et al. recently reviewed the evidence
for acute exercise effects on cognitive performance and
concluded that exercise improves non-motor perform-
ance [48]. Second, increased non-sensorimotor network
connectivity may reflect the additional processing and
communication needed for dual tasking. Walking at a
controlled treadmill speed, where position on the tread-
mill must be continually monitored to prevent drifting
off the belt, in addition to the cognitive demands of the
oddball discrimination task may have required additional
information processing in the non-sensorimotor network
compared to standing while dual tasking [28].
In this study, we did not find consistent network dif-

ferences between the two cognitive loading levels during
walking. One possibility is that the connectivity effects
of walking dominate over the effect of the simple cogni-
tive task we employed. Another limitation of the study
was the inability to assess the effect of walking speed
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given that only two walking speeds were evaluated. Fu-
ture studies should examine a wider range of walking
speeds and additional types of cognitive loading.
Unfortunately, our current approach does not allow

for robust network analysis and graph theoretical ap-
proaches because of the limited number of nodes (elec-
trocortical sources) that are extracted from EEG using
ICA. If more electrocortical sources could be extracted
then the non-sensorimotor network could likely be
broken down into multiple other brain networks (e.g.,
default-mode and attentional networks). Additionally, in-
tegration across small and large time scales, as well as
short and long distances, may provide valuable insights
into the distributed processing of brain networks.
It is important to note the effect ICA has on the

Granger causality measures. Although ICA extracts max-
imally independent signals, these signals are maximally
simultaneously independent. On the other hand, Granger
causality measures the contribution of one signal to an-
other at time lags (1–20 ms in our case). Granger Causality
is, therefore, well-suited for identifying causal relations be-
tween independent electrocortical source signals. In fact,
Granger causality is susceptible to volume conduction in
EEG measurements [49] but ICA can effectively remove
instantaneous correlations due to volume conduction [50].
In contrast, the effects of the ICA transforms, coupled with
other standard processing techniques like the removal of
nearby uncorrelated channels may account for the overall
low GC strengths (Figure 2) of ~ 0.01. It is likely that these
techniques, along with the consideration of only a few spe-
cific anatomical regions, limits our computation of the
complete causal network map.
It is also important to note that the amount of activity

in a particular cortical region may not be correlated with
the effective connectivity of that region. Therefore,
increased effective connectivity does not necessarily in-
dicate increased cortical activation. While previous cog-
nitive studies show both increased network connectivity
and increased overall activity [51-53], we have only dem-
onstrated increased connectivity of the sensorimotor
networks for standing compared to walking.
GC is also susceptible to detecting indirect connec-

tions between sources. Future work should investigate
measures such as direct Directed Transfer Function
(dDTF) and partial Directed Coherence (PDC). However
the limited number of sources in this analysis would
likely create extremely sparse networks. GC therefore is
optimal for detecting closely coupled sources of activity
(either directly or an open triplet). We believe that both
cases are important for the experiment presented here.

Conclusions
In summary, we found that effective sensorimotor con-
nectivity was reduced during walking compared to
standing, and that when humans are engaged in a cognitive
task walking increased the effective connectivity of non-
sensorimotor brain regions. These findings provide insight
into how cortical regions interact during human gait and
demonstrate the potential for future research studies to
examine cortical connectivity in other mobile tasks. In par-
ticular, we have considerable optimism for applying these
techniques to clinical populations with gait impairments
such as ataxia and freezing gait.

Additional file

Additional file 1: Table S1. Individual subject region-region GC
connectivity values. The individual connectivity values for each subject
from region to region are presented for each condition. The * represents
the lack of a connectivity value because a single node (or both nodes) did
not exist for that subject over those regions. A superscript indicates the
number of connections averaged for that value. While there are significant
differences in baseline connectivity values across subjects, the changes
across conditions are much more uniform.
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