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Abstract

Background: The use of neuraminidase-inhibiting anti-viral medication to treat influenza is relatively infrequent.
Rapid, cost-effective methods for diagnosing influenza are needed to enable appropriate prescribing. Multi-viral
respiratory panels using reverse transcription polymerase chain reaction (PCR) assays to diagnose influenza are
accurate but expensive and more time-consuming than low sensitivity rapid influenza tests. Influenza clinical
decision algorithms are both rapid and inexpensive, but most are based on regression analyses that do not account
for higher order interactions. This study used classification and regression trees (CART) modeling to estimate
probabilities of influenza.

Methods: Eligible enrollees ≥ 5 years old (n = 4,173) who presented at ambulatory centers for treatment of acute
respiratory illness (≤7 days) with cough or fever in 2011–2012, provided nasal and pharyngeal swabs for PCR testing
for influenza, information on demographics, symptoms, personal characteristics and self-reported influenza
vaccination status.

Results: Antiviral medication was prescribed for just 15 % of those with PCR-confirmed influenza. An algorithm that
included fever, cough, and fatigue had sensitivity of 84 %, specificity of 48 %, positive predictive value (PPV) of 23 %
and negative predictive value (NPV) of 94 % for the development sample.

Conclusions: The CART algorithm has good sensitivity and high NPV, but low PPV for identifying influenza among
outpatients ≥5 years. Thus, it is good at identifying a group who do not need testing or antivirals and had fair to
good predictive performance for influenza. Further testing of the algorithm in other influenza seasons would help
to optimize decisions for lab testing or treatment.
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Background
Influenza and other respiratory viruses cause an
enormous healthcare burden in the U.S. Each year, influ-
enza alone is responsible for 226,000 (54,000–431,000)
hospitalizations [1] and 31.4 million outpatient visits [2].
Appropriate diagnosis and cost-effective treatment are
dependent upon timely presentation for care, accurate

and reasonably priced testing with short turnaround time,
when appropriate. The U.S. Centers for Disease Control
and Prevention (CDC) recommends antiviral treatment
with a neuraminidase inhibitor for all outpatients with
suspected or confirmed influenza who are at higher risk
for influenza complications because of age or underlying
medical conditions, when treatment can be started within
48 h of illness onset. Treatment also can be considered on
the basis of clinical judgment, for outpatients with uncom-
plicated, suspected influenza who are not at increased risk
for developing complicated illness, if antiviral treatment
can be initiated within 48 h of illness onset.
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Use of antiviral medications, specifically neuraminidase
inhibitors, within 2 days of illness onset, has been shown to
reduce the time to alleviation of symptoms by about half a
day to a day, depending on the authority cited [3–5], and
the risk of secondary complications of influenza such
as clinically diagnosed pneumonia in some meta ana-
lyses [6, 7], but not in others [3, 4]. Prescribing of
antiviral medications among primary care clinicians for
treatment of outpatient acute respiratory infections (ARI)
is infrequent [8, 9], perhaps because of cost and/or side ef-
fects associated with neuraminidase inhibitors [3, 4, 6].
Because these medications are effective only against in-

fluenza, they should only be prescribed to patients with
suspected or confirmed influenza. Without respiratory
viral testing, differentiating influenza from other viral re-
spiratory infections can be difficult. Although molecular
multi-viral respiratory panel testing can accurately distin-
guish possible causes of ARI, these tests are relatively new
and expensive. Rapid influenza tests, in contrast, are inex-
pensive but lack sensitivity [10]. Moreover, clinical experi-
ence suggests that the use of respiratory viral testing
increases as influenza circulation increases in the commu-
nity, but is ordered less frequently at the beginning and
end of the influenza season.
Clinicians use medical clinical decision algorithms,

based on a series of decision rules, to determine risk for
a range of medical conditions [11]. The availability of a
clinical decision algorithm for determining influenza
would benefit patients and potentially minimize costs to
the healthcare system by providing the opportunity to
diagnose influenza with reasonable accuracy and poten-
tially treat patients with antiviral medication.
This study was designed to determine if an algorithm de-

veloped using recursive partitioning resulted in reasonable
estimates of the likelihood of ARI being due to influenza in-
fection. Classification and regression trees have been used to
analyze mortality in persons with influenza A (H5N1) virus
[12] and the likelihood of seasonal influenza [13, 14]. In one
study of seasonal influenza, the presence of influenza was
most accurately predicted by a model that assigned scores
to symptoms; it included fever plus cough, myalgia, duration
<48 h and chills or sweats [13]. Using the same data set, but
grouping specific symptoms into dichotomous variables
(present/absent), a model was developed in which the pres-
ence of both temperature >37.3 °C and chills or sweats pre-
dicted high risk of influenza [14]. Absence of both
symptoms predicted low risk, and presence of only
temperature >37.3 °C predicted moderate risk. In the
present study, the Classification and Regression Trees [15]
(CART) methodology was used to estimate the likelihood of
influenza among individuals presenting for outpatient care
for ARI in 2011–2012 who were enrolled in the U.S. Influ-
enza Vaccine Effectiveness Network (US Flu VE Network)
study.

Methods
Enrollment
Details of the US Flu VE Network design, sites, and en-
rollment procedures have been described previously
[16]. Briefly, during the 2011–2012 influenza season, pa-
tients aged ≥6 months seeking outpatient medical care
for an ARI with fever or cough were recruited at out-
patient clinics in Marshfield, Wisconsin; southeastern
Michigan (Ann Arbor and Detroit); Temple-Belton,
Texas; Seattle, Washington; and Pittsburgh, Pennsylva-
nia. Patients meeting the symptom criteria were eligible
if duration of illness was ≤7 days and they had not re-
ceived antiviral medication prior to enrollment. Recruit-
ment and sample collection were performed by study
personnel at each site and not influenced by the diagno-
sis of the treating physician. Consenting patients or their
parents/guardians completed an enrollment interview to
ascertain patient demographic characteristics, symptoms
(fever, cough, fatigue, sore throat, nasal congestion,
shortness of breath, wheezing), onset date, and subject-
ive assessments of general health, current health status
and self-reported influenza vaccination status.
Nasal and throat swabs (nasal only for children age

<2 years) were collected and combined for influenza test-
ing at network laboratories. This technique was selected
because it is easier to collect and less uncomfortable for
the patient and has been found to be as effective as naso-
pharyngeal swabs [17]. Presence of influenza was tested
using real-time reverse transcription polymerase chain re-
action (PCR) as previously described [16]. The parent
study used a test-negative case-control design [18–20].

Selection of study sample
Individuals enrolled in 2011–2012 from all 5 sites during pe-
riods of influenza circulation at each site were included in
the analyses. That is, influenza circulation at each site was
determined to be the time between date on which the first
influenza positive case was enrolled and the last influenza-
positive case was enrolled. Although participants may have
reported onset of symptoms before or after this period;
they were excluded from analysis. The total sample
for all sites was 5,147. Some individuals were enrolled
multiple times; all of those visits except the first en-
rollment were excluded (N = 71) reducing the sample
to 5,076. Because symptoms of influenza vary between
young children and older individuals, the primary
analysis sample was restricted to enrollees ≥5 years of
age, resulting in a final sample size of 4,173. Second-
ary analyses included children <5 years of age.

CART analysis
Classification and Regression Trees (CART) [15] software
was used to develop models that can classify subjects into
various risk categories. Recursive partitioning, a non-
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parametric statistical method for multivariable data, uses a
series of dichotomous splits, e.g., presence or absence of
symptoms and other demographic variables, to create a
decision tree, with the goal of correctly classifying mem-
bers of the population, in this case, laboratory-confirmed
influenza cases. Each independent variable is examined
and a split is made to maximize the sensitivity and specifi-
city of the classification, resulting in a decision tree. The
objective of pruning is to develop a tree with the best size
and lowest misclassification rate [15].
The CART method is able determine the complex in-

teractions among variables in the final tree, in contrast
to identifying and defining the interactions in a multivar-
iable logistic regression model.
To begin the CART analysis, simple random sampling

without replacement was used to split the sample into
equal sized (50 %–50 %) developmental and validation
samples. CART was applied first on a developmental
sample then on a validation sample to assess the model’s
generalizability and to evaluate the over fitting of the
model to the developmental sample.
Several sets of candidate predictors were used to build the

classification trees. Using several iterations, CART models
were used to determine a clinically logical fit, based on sen-
sitivity and specificity; the variables included those that were
potentially related to risk of influenza such as, symptoms,
self-reported vaccination status, personal and demographic
variables and presence of chronic disease. The primary de-
velopmental and validation models were constructed for all
participants ≥5 years, using self-reported vaccination status,
household smoking status, and symptoms reported at en-
rollment: cough, fever, fatigue, wheezing, sore throat, nasal
congestion, shortness of breath. The variables smoking sta-
tus, age and presence of other high risk conditions were not
included in this model.
The Gini Index method was used to split off the lar-

gest category into a separate group, with the default split
size set to enable growing the tree. When the final tree
was built, the tree was pruned, deleting the variables that
did not further classify subjects, based on the variable
importance score and the sensitivity, into an influenza
group or no influenza group. Once a clinically meaning-
ful structure on the CART evolved, pruning was
discontinued. Hosmer-Lemeshow goodness of fit test
confirmed the suitability of the trees.
Secondary analyses were constructed that included: 1)

children 6–59 months of age, presenting within 2 days of
onset of symptoms and included PCR-confirmed influenza
status, self-reported vaccination status, household smoking
status, and symptoms reported at enrollment: cough, fever,
fatigue, wheezing, sore throat, nasal congestion, shortness of
breath; and 2) adults ≥65 years old and individuals 5–64
years old with a high risk condition, presenting within 2 days
of onset of symptoms and included PCR-confirmed

influenza status, self-reported vaccination status, household
smoking status, symptoms reported at enrollment: cough,
fever, fatigue, wheezing, sore throat, nasal congestion, short-
ness of breath, and asthma diagnosis.
Receiver Operating Characteristics (ROC) curves and

the area under the curve (AUC), sensitivity, specificity,
positive and negative predictive values which were esti-
mated using CART software were used to assess the per-
formance of the CART model for the developmental and
validation samples. The sensitivity from the CART
model was determined using the final influenza positive
terminal node and specificity was determined using the
previous influenza negative terminal nodes.

Additional analyses
In addition to the CART analyses, descriptive statistics
were calculated as percentages for discrete variables and
as means and standard deviations for continuous vari-
ables. Chi-square statistics were used to compare the
distribution of symptoms and other discrete measures
and Student’s t-tests were used to compare the continu-
ous measures (i.e., age) between those with and without
laboratory-confirmed influenza.
To support the CART findings, sensitivity analyses were

conducted using multivariable regression analyses with a
full model method, using the same set of variables used in
the CART analysis for both developmental and validation
samples, and for the full sample with all individuals
≥5 years of age. Positive and negative predictive values
were calculated using sensitivity and specificity values
from the CART model across a hypothetical range of in-
fluenza prevalence values (1–40 %) to reflect influenza
seasons of varying severity (Table 3). The sensitivity and
specificity, calculated using the predicted probability from
the multivariable logistic regression for both developmen-
tal, validation and the full sample with the true classifica-
tion of influenza, were obtained and are presented.
Statistical significance was defined as a two-sided p value

<0.05. Data were analyzed using SAS v9.2 (SAS Institute,
Inc., Cary, NC) and CART for the decision trees (Predictive
Modeler) Software version 7.0.0.470 (Salford Systems, San
Diego, CA).

Results
Distributions of demographic variables for all enrollees with
PCR-confirmed influenza or no influenza are shown in
Table 1 and for the final developmental and validation sam-
ples are shown in Appendix 1: Table 4. All variables used in
the tested models are shown. Individuals with PCR-
confirmed influenza were more likely to report fever, cough
and fatigue at enrollment and less likely to report household
smoking, asthma diagnosis and were younger than those
without influenza. In this cohort, antiviral use was low. Only
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185 of 4173 enrollees (4.4 %) were prescribed an antiviral
medication (15 % of cases vs. 6 % of non-cases were
prescribed antivirals; Chi square P < 0.001). The use
of antiviral medication among those ≥5 years old with
a positive PCR test was 22 % (n = 40).

Primary CART analyses
Figures 1 and 2 show the CART decision trees for the
developmental and validation samples, respectively
showing the conditions that would need to be present
to predict influenza with maximum certainty for this
sample. For the developmental sample, the sensitivity
was 84 % and the specificity was 48 %. Positive

predictive value (PPV) was 23 % and negative predictive
value (NPV) was 94 % (Fig. 1). For the validation sample
that examined the other half of the sample, the sensitiv-
ity was 84 % and the specificity was 49 % with a PPV of
23 % and NPV of 95 % (Fig. 2). The receiver operating
characteristic (ROC) curves for the developmental and
validation decision trees are shown in Fig. 3a, b, respect-
ively, with area under the curve (AUC) =0.68 for the de-
velopmental sample and AUC = 0.69 for the validation
sample. The misclassification rates for developmental
and validation CART models were 16 % and 15 %, re-
spectively. When the subjects were restricted to those
who were enrolled within 2 days of illness onset, the

Table 1 Sociodemographic characteristics and symptoms of enrollees ≥ 5 years of age reported at enrollment, by Polymerase Chain
Reaction (PCR)-confirmed Influenza status

Overall Developmental sample Validation sample

Characteristics PCR-negative for influenza PCR-confirmed influenza P valuea

Total n = 3531 n = 642 Total Total

N = 4173 (84.6 %) (15.4 %) (N = 2087) (N = 2086)

N (%) n (%) n (%) N (%) N (%)

Vaccinated by self-report 354 (8.7) 311 (87.8) 43 (12.2) 0.08 173 (8.5) 181 (8.9)

Unvaccinated 3714 (91.3) 3131 (84.3) 583 (15.7)

Smokerb 436 (15.6) 386 (88.5) 50 (11.5) 0.07 215 (15.2) 221 (16)

Non-smoker 2358 (84.4) 2010 (85.2) 348 (14.8)

Smoker in the household 481 (11.6) 428 (89.0) 53 (11.0) 0.004 223 (10.7) 258 (12.4)

No smoker in the household 3667 (88.4) 3081 (84.0) 586 (16.0)

Asthma diagnosis 1098 (26.8) 949 (86.4) 149 (13.6) 0.04 543 (26.4) 555 (27.1)

No asthma diagnosis 3007 (73.3) 2521 (83.8) 486 (16.2)

Any high risk condition 1147 (85.0) 1004 (87.5) 143 (12.5) 0.14 569 (84.4) 578 (85.5)

No high risk condition 203 (15.0) 170 (83.7) 33 (16.3)

Symptoms reported at enrollment

Fever 2910 (69.7) 2327 (80.0) 583 (20.0) <.001 1461 (70) 1449 (69.5)

No fever 1263 (30.3) 1204 (95.3) 59 (4.7)

Cough 3818 (91.5) 3189 (83.5) 629 (16.5) <.001 1912 (91.6) 1906 (91.4)

No cough 355 (8.5) 342 (96.3) 13 (3.7)

Fatigue 3610 (86.5) 3003 (83.2) 607 (16.8) <.001 1795 (86) 1815 (87)

No fatigue 563 (13.5) 528 (93.8) 35 (6.2)

Wheezing 1550 (37.1) 1292 (83.3) 258 (16.7) 0.08 773 (37) 777 (37.2)

No wheezing 2623 (62.9) 2239 (85.4) 384 (14.6)

Sore throat 3105 (74.4) 2639 (85.0) 466 (15.0) 0.25 1543 (73.9) 1562 (74.9)

No sore throat 1068 (25.6) 892 (83.5) 176 (16.5)

Nasal Congestion 3351 (80.3) 2823 (84.2) 528 (15.8) 0.18 1690 (81) 1661 (79.6)

No nasal congestion 821 (19.7) 707 (86.1) 114 (13.9)

Shortness of breath 1899 (45.5) 1598 (84.2) 301 (15.8) 0.45 911 (43.7) 988 (47.4)

No shortness of breath 2272 (54.5) 1931 (85.0) 341 (15.0)

Age, years, Mean (SD) 34.1 (22.2) 34.5 (22.2) 31.9 (21.8) 0.007 34.8 (22.3) 33.5 (22)
aFor difference between influenza cases and controls
bAsked of those ≥18 years only
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model included fever and cough with a sensitivity of
89 % and a specificity of 50 %.

Antiviral candidate analyses
For the model including only children <5 years old, the
pruned CART decision tree (Appendix 2: Figure 4) con-
tained fever, cough and fatigue with a sensitivity of 84 %,
specificity of 48 %, PPV of 11 %, NPV of 97 % and an
AUC =0.69. For the high risk model including individ-
uals 5–64 years with a high risk condition and those
≥65 years, the CART decision tree (Appendix 3: Figure
5) contained fever and cough with a sensitivity of 86 %,
specificity of 47 %, PPV of 27 %, NPV of 95 % and an

AUC = 0.67. The average log-likelihoods to test the
goodness of fit are shown in Appendix 4: Table 5.

Comparison of CART with multivariable logistic
regression
For comparison of CART with traditional multivariable
logistic regression analyses, Table 2 shows the odds
ratios (ORs) and 95 % confidence intervals (CIs); fever,
cough and fatigue significantly increased the likelihood
of PCR-confirmed influenza while exposure to house-
hold smoking decreased the likelihood of influenza.
Shortness of breath, wheezing, sore throat and nasal
congestion were not related to influenza. For the full
nine-variable logistic regression equation for the

Fig. 1 CART decision tree for the developmental sample for all enrollees ≥5 years for the outcome RT-PCR-confirmed Influenza
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observed prevalence of influenza of 15.4 %, the resultant
values from the predicted probability were 82 % sensitiv-
ity, 52 % specificity, 24 % PPV, 94 % NPV and c-statistic
(AUC) = 0.70. The multivariable stepwise logistic regres-
sion model resulted in the same significance of those
four variables from the full model. The c-statistic = 0.69
for the step-wise selection model.

Impact of varying prevalence
The prevalence of influenza during 2011–2012 influenza
season among enrollees ranged from <3 % in January to
a peak of 23 % in March, indicating a late and relatively
light season. Therefore, we compared PPV across a
range of influenza prevalence values to determine the

value of the decision aid in milder or more severe sea-
sons. Using consistent values of 84 % sensitivity and
48 % specificity, PPV ranged from 1.6 to 51.9 % and
NPV ranged from 99.7 to 81.8 % when prevalence was
varied from 1 to 40 % (Table 3).

Discussion
Eighty-five percent of influenza positive cases in this study
were not prescribed an antiviral medication; whereas,
94 % of influenza negative cases were not prescribed an
antiviral medication. While empiric treatment of certain
patients is recommended, influenza prediction tools may
be a useful adjunctive approach to improving appropriate
use of antiviral medication.

Fig. 2 CART decision tree for the validation sample for all enrollees ≥5 years for the outcome RT-PCR-confirmed influenza
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A range of techniques, including clinical judgment
[21], clinical decision rules [13, 22, 23], and CART [14],
has been used to predict the likelihood of seasonal influ-
enza among individuals presenting for outpatient treat-
ment of an ARI. In multivariable regression analyses,
Monto et al. found that presence of fever and cough in

adults and adolescents in ambulatory settings best pre-
dicted influenza confirmed by cultures, 4-fold increase
in antibody titer, immunofluorescence, or PCR [21].
These findings were confirmed among children ≥5 years
of age [23]. Subsequent work by Stein et al. [22], also
using multivariable regression analyses and PCR to con-
firm influenza, found no improvement over clinical
judgment of either rapid testing or a clinical prediction
rule in which specific symptoms were assigned scores.
The advantages of CART are that recursive partition-

ing does not make any distributional assumptions about
the modeled variables, and that it accounts for multi-
level interactions among variables. We found a similar
area under the curve with CART and logistic regression,
but CART used fewer variables.
Afonso et al. used CART to develop a model predict-

ing low and high risk of influenza among 459 patients
combining data from two studies from different coun-
tries [14]. Their model included temperature >37.3 °C
and presence of chills or sweating and produced an
AUC of .75-.76. In comparison, we report a decision tree
using four symptoms (fever, cough, fatigue and shortness
of breath) and presence of household smoke with an
AUC of .68–.69. We did not ask about chills/sweating.
Our model had a PPV of 23 % and NPV of 95 %. Testing
the sensitivity of 81 % and specificity of 52 % of the
CART model across a range of prevalence values indi-
cated that, in a more typical influenza season with a
hypothetical prevalence of 25 %, the PPV increased to
36 % with a 91 % NPV.
In a review of clinical decision rules for diagnosis of in-

fluenza, Ebell and Afonso [24] presented suggestions for
future studies of this topic, of which the present study ad-
dresses several. For example, the authors suggested using

Fig. 3 Receiver operating curve for CART algorithm on developmental
sample for the outcome RT-PCR-confirmed Influenza. a Sensitivity = 278/
330 = 84.2 %; Specificity = sum of all non-influenza subjects with
negative symptoms in the terminal nodes/total non-influenza subjects,
i.e. (93 + 160 + 594)/1757 = 48.2 %; Area under the Curve = 0.68. b
Sensitivity = 84 %; Specificity = 49 %; Area under the Curve = 0.69

Table 2 Likelihood of Polymerase Chain Reaction (PCR)-confirmed
Influenza by logistic regression among 4,173 enrollees ≥5 years of
age

Variable Logit Model

Odds Ratio 95 % CI

Vaccinated by self-report 0.73 0.52–1.03

Smoker in the household 0.62 0.45–0.85

Symptoms reported at enrollment

Fever 5.33 4.01–7.10

Cough 7.32 4.14–12.9

Fatigue 2.32 1.58–3.41

Wheezing 0.99 0.81–1.21

Sore throat 0.84 0.69–1.03

Nasal congestion 1.06 0.84–1.35

Shortness of breath 0.86 0.71–1.05

Table 3 Positive Predictive Values (PPV) and Negative Predictive
Values (NPV) across a range of influenza prevalence using the
Sensitivity (84 %) and Specificity (48 %) of the diagnostic model
based on CART analyses

Prevalencea PPV, % NPV, %

Hypothetical ranges of
influenza prevalence

1.0 1.61 99.7

10.0 15.2 96.4

15.0 22.2 94.4

20.0 28.8 92.3

25.0 35.0 90.0

30.0 40.9 87.5

35.0 46.5 84.8

40.0 51.9 81.8

2011–2012 influenza prevalence
in US Influenza Vaccine Effectiveness
Network

15.4 22.7 94.3

Note: CART classification and regression trees
aPer one hundred
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PCR as the reference standard for the detection of influ-
enza, an adequate sample size, and a broad range of pa-
tients. PCR was used exclusively for confirmation of
influenza in this study of 4,173 patients ≥5 years of age
from across the U.S., thus addressing some of these condi-
tions. The value of this analysis is the ability to identify,
from among a group of patients with ARI and onset of
fever or cough within 7 days, those patients with fever,
cough, fatigue, as having influenza with 84 % sensitivity.
Thus, the algorithm is good at identifying a group who do
not need testing or antivirals (i.e., algorithm negative);
however, among those “positive” by the algorithm, labora-
tory testing or treatment based on clinical judgement is
indicated. Our additional analyses that limited the popula-
tion to those whose onset of symptoms was 2 or fewer
days before presentation, with a high risk condition or
high risk age group, could be used to develop guidance for
prescribing antivirals based on symptoms alone. CART
analyses support previous studies using multivariable re-
gression to predict influenza from symptoms [21–23], but
CART offers the advantage of requiring fewer variables
for input into a clinical decision tool.
Determining a low-risk group in whom neither testing

nor antivirals is warranted could save resources and avoid
inappropriate antiviral prescribing and concomitant con-
cerns about the development of viral resistance. A thresh-
old approach to clinical decision-making was advocated
by Pauker and Kassirer [25], with one threshold for testing
and another for treating. For influenza, these testing and
treatment thresholds vary by country and are lower for US
compared to Swiss physicians [26]. We consider the 95 %
NPV sufficiently good to rule-out influenza and avoid test-
ing in this group. In light of the findings that use of anti-
viral medication among patients with influenza is low
[27], and the cost of PCR testing is high [28, 29], a clinical
decision aid based on symptoms offers the opportunity to
promote appropriate testing during the times when it is
most cost-effective, and increase antiviral medication use
among those most likely to benefit, while avoiding a large
increase in use in those who will not benefit.

Limitations and strengths
The limitations of this study are that the data are from a
single year, in which influenza circulated later than usual
and was less prevalent than normal. Moreover, influenza
vaccine uptake and effectiveness may affect the model’s
predictive validity. CART does not provide a p-value to
test significance. Conversely, an advantage of CART is
its ability to examine complex higher order interactions
among variables. The analysis is strengthened by the in-
clusion of data from a large sample of outpatients from
five sites spanning the U.S. However, it did not include
developing countries or tropical regions with differing
etiologies of infectious diseases.

Conclusions
Although CDC recommends empiric use of antivirals,
their use remains low. Recursive partitioning using CART
analyses to establish a clinical decision algorithm for influ-
enza has good sensitivity and NPV, but limited PPV. Thus,
it is good at identifying a group who do not need testing
or antivirals; however, among those “positive” by the algo-
rithm, laboratory testing or treatment based on clinical
judgment is indicated. Further testing during additional
influenza seasons may help to determine how this algo-
rithm could be used to optimize decisions on laboratory
testing and antiviral use in patients with ARI.

Appendix 1

Appendix 2

Table 4 Sociodemographic characteristics and symptoms of
enrollees≥ 5 years of age reported at enrollment for
developmental and validation samples

Developmental sample
Total (N = 2087)

Validation sample
Total (N = 2086)

Characteristics N (%) N (%)

Vaccinated by self-report 173 (8.5) 181 (8.9)

Smoker 215 (15.2) 221 (16)

Smoker in the household 223 (10.7) 258 (12.4)

Asthma diagnosis 543 (26.4) 555 (27.1)

Any high risk condition 569 (84.4) 578 (85.5)

Symptoms reported at enrollment

Fever 1461 (70) 1449 (69.5)

Cough 1912 (91.6) 1906 (91.4)

Fatigue 1795 (86) 1815 (87)

Wheezing 773 (37) 777 (37.2)

Sore throat 1543 (73.9) 1562 (74.9)

Nasal Congestion 1690 (81) 1661 (79.6)

Shortness of breath 911 (43.7) 988 (47.4)

Age, years, Mean (SD) 34.8 (22.3) 33.5 (22)

Table 5 Tests of goodness of fit of each CART model using
log-likelihood

Tree with
risk factor

Average log
likelihood

Sensitivity Specificity Hosmer-Lemeshow
Statistic p value

Fever −0.421 90 34 1

Fever, Cough −0.406 88 43 1

Fever, Cough,
Fatigue

−0.403 84 48 1

Fever, Cough,
Fatigue, Household
smoke, smoking,
shortness of breath

−0.401 81 52 0.99
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Appendix 3

Fig. 4 CART decision tree for those < 5 years old and presenting ≤2 days after onset of symptoms
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