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We investigated a new approach to feature selection, and demonstrated its application in the task of
differentiating regions of interest (ROIs) on mammograms as either mass or normal tissue. The
classifier included a genetic algorithm (GA) for image feature selection, and a linear discriminant
classifier or a backpropagation neural network (BPN) for formulation of the classifier outputs. The
GA-based feature selection was guided by higher probabilities of survival for fitter combinations of
features, where the fitness measure was the area A, under the receiver operating characteristic
(ROC) curve. We studied the effect of different GA parameters on classification accuracy, and
compared the results to those obtained with stepwise feature selection. The data set used in this
study consisted of 168 ROIs containing biopsy-proven masses and 504 ROIs containing normal
tissue. From each ROI, a total of 587 features were extracted, of which 572 were texture features
and 15 were morphological features. The GA was trained and tested with several different parti-
tionings of the ROIs into training and testing sets. With the best combination of the GA parameters,
the average test A, value using a linear discriminant classifier reached 0.90, as compared to 0.89 for
stepwise feature selection. Test A, values with a BPN classifier and a more limited feature pool
were 0.90 with GA-based feature selection, and 0.89 for stepwise feature selection. The use of a GA
in tailoring classifiers with specific design characteristics was also discussed. This study indicates
that a GA can provide versatility in the design of linear or nonlinear classifiers without a trade-off
in the effectiveness of the selected features. © 1996 American Association of Physicists in Medi-

cine.

Key words: mammography, computer-aided diagnosis, genetic algorithms, feature selection

I. INTRODUCTION

Computer-aided diagnosis (CAD) for detection and classifi-
cation of breast abnormalities on mammograms is an active
area of research.! Clinical studies have shown that 10% to
30% of breast cancers visible on mammograms in retrospec-
tive studies were initially missed by radiologists,> and that
only 15% to 30% of the patients who have undergone biopsy
due to a suspicious finding on mammograms are found to
have breast cancer.*> CAD methods have the potential of
reducing the false-negative rate while improving the positive
predictive values of the mammographic abnormalities.

Masses are important indicators of malignancy on mam-
mograms. In recent years, considerable effort has been de-
voted to the development of computerized methods for de-
tection and classification of masses."'? In all of these
investigations, the detection or classification task relies on
the use of features extracted from the digitized mammo-
grams. The extracted features represent properties of pixels
(or groups of pixels) which contain characteristic informa-
tion of the masses. In this paper, we report our development
of a computerized method for classification of regions of
interest (ROIs) on mammograms as either masses or normal
tissue, with particular emphasis on a genetic algorithm for
feature selection.

Feature selection is a very important step in
classification,*'®!1"13-16 pecause the inclusion of inappropri-
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ate features often adversely affects classifier performance,
especially when the training set is not sufficiently large. The
methods employed for feature selection vary. In some
approaches,””’ very few features were used, and the process
of feature selection was not clearly described. It is reasonable
to assume that the features were selected on the basis of
some prior knowledge from clinical experience. Wu et al.!?
selected 14 features from a total of 43 for classification of
malignant and benign masses, and observed an improvement
in classification accuracy when the reduced feature space
was used instead of the entire feature space. The criterion for
selection was the difference of the average values of indi-
vidual features between the two classes. Goldberg er al.'
first selected five features from a total of 26 based on the
ability of the individual features to discriminate between ma-
lignant and benign masses. Subsequently, based on their
pairwise discriminatory ability, three final features were se-
lected from the remaining five features. In the study by Chi-
tre et al.,"” the criterion for texture feature selection was the
combination of a classification error and a clustering tech-
nique using individual features independently. In our previ-
ous studies, we employed a stepwise feature selection proce-
dure in linear discriminant analysis (LDA),'®!! in which a
feature is included or excluded at each step based on a cho-
sen statistical criterion. The LDA takes into account the cor-
relation between the features and the joint probability distri-
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bution of the feature vectors in the multidimensional feature
space.

Many feature selection methods have been explored in
CAD. However, the best method which can provide the high-
est accuracy for a given application is still in question. This
is partly because feature selection is theoretically a difficult
problem.|7 It is well known, for example, that the two inde-
pendent features that yield the highest classification accuracy
in a feature set may not constitute the best pair of features
together.'® In the training process in CAD, the classifier can
be designed so that the probability of training error will not
increase when the number of selected features increases.
However, when both training and testing are desired, the
problem becomes more complicated due to overfitting. Test
results can deteriorate when the number of selected features
increases,' especially when the number of training cases is
small. It is imperative to select a smaller subset of features to
overcome the so-called ‘‘curse of dimensionality””'*% (de-
crease in classification accuracy of the test set with an in-
creasing number of features) if the ratio of the number of
training cases to the number of available features is not suf-
ficiently large. Several recipes for feature selection are men-
tioned in the literature,'®?! but none of these, except for an
exhaustive search procedure, is optimal.

Genetic algorithms (GAs), first introduced by Holland in
the early seventies,”” are becoming increasingly popular in
solving optimization and machine learning problems.?*
The fundamental principle underlying GAs is based on natu-
ral selection. To solve an optimization task, a GA maintains
a population of bit strings, which are referred to as chromo-
somes. Each chromosome corresponds to a possible solution
of the problem. In each generation of the GA, the population
is probabilistically modified, generating new chromosomes
which may have a better chance of solving the optimization
problem. GAs have been applied to complex optimization
problems such as the control of a gas-pipeline system,” de-
sign of jet engine turbines,*® training of a backpropagation
neural network,27 feature selection for an artificial neural
network,” and automated detection of lung nodules.”> GAs
usually yield nonoptimal, but near-optimal solutions. They
are thus well-suited for feature selection problems in large
feature spaces, where the optimal solution is practically im-
possible to compute, and a near-optimal solution is the best
alternative.

In this paper, we studied the ability of a GA to select
features from a large feature space. Our goal was to intro-
duce a more effective and versatile feature selection mecha-
nism. The effectiveness and the versatility of the GA was
demonstrated by its application to the problem of classifica-
tion of masses and normal tissue on mammograms. The fea-
ture space included local and global multiresolution texture
features®® as well as morphological features.>' The rest of the
paper is organized as follows. In the next section, we briefly
discuss important components of a GA. In Sec. III, we de-
scribe our image database, background correction method,
extraction of texture and morphological features, and the GA
implementation for feature selection. In Sec. IV, we evaluate
the dependence of the classification results on different GA
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parameters. Section V contains a discussion of these results.
Finally, Sec. VI concludes the investigation and provides a
scope for further research.

Il. GENETIC ALGORITHMS

In natural evolution, the basic problem of each population
1s to find beneficial adaptations to a complex environment.
The characteristics that each individual has gained or inher-
ited are carried in its chromosomes and each individual re-
produces more or less in proportion to its fitness within the
environment. Crossover and mutation provide the possibility
of evolution toward better-fit individuals.

Genetic algorithms?>~>* apply the principles of natural se-
lection to machine learning. To solve an optimization prob-
lem, a GA requires five components, which are analogous to
components of natural selection. These components are de-
scribed below.

A. Encoding

Encoding is a way of representing the decision variables
of the optimization problem in a string of binary digits called
chromosomes. If there are v decision variables in an optimi-
zation problem and each decision variable is encoded as an
n-digit binary number, then a chromosome is a string of
nXv binary digits. Each chromosome is a possible solution
to the optimization problem.

B. Initial population

The initial population is a set of chromosomes offered as
an initial solution or as a starting point in the search for
better chromosomes. The initial population must be large and
diverse enough to allow evolution toward better individuals.
In general, the population is initialized at random to a bit
string of 0’s and 1’s. However, more directed methods for
finding the initial population can sometimes be used to im-
prove convergence time.

C. Fitness function

The fitness function rates chromosomes (i.e., possible so-
lutions) in terms of how good they are in solving the optimi-
zation problem. It thus plays the role of the environment.
The fitness function returns a single value for each chromo-
some, which is then used to determine the probability that
this chromosome will be selected as a parent to generate new
chromosomes. The fitness function is the primary GA com-
ponent in which a traditional GA is tailored to a specific
problem.

D. Genetic operators

Genetic operators are applied probabilistically to chromo-
somes of a generation to produce a new generation of chro-
mosomes. Three basic operators are parent selection, cross-
over, and mutation. The parent selection operation mimics
the natural selection process by selecting which chromo-
somes will be used to create a new generation, where the
fittest chromosomes reproduce most often. The crossover op-



1673 Sahiner et al.: Feature selection by genetic algorithm

eration refers to the exchange of substrings of two chromo-
somes to generate two new offspring. After parents are se-
lected, and crossover generates two new chromosomes, the
operation of mutation is applied to each bit in the string.
Mutation simply alters the binary value of the bit when a
random value generated for the bit is less than a predefined
mutation rate.

E. Working parameters

A set of parameters, which includes the number of chro-
mosomes in each generation, the crossover rate, the mutation
rate, and the stopping criterion, is predefined to guide the
GA. The crossover and mutation rates, assigned as real num-
bers between 0 and 1, are used as thresholds to determine
whether the operators will be applied or not. The stopping
criterion is predefined as the number of generations the al-
gorithm is to be run or as a tolerance value for the fitness
function.

Two forces, exploration and exploitation, interact in the
search for better-fit chromosomes. Exploitation occurs in the
form of parent selection. Chromosomes with higher fitness
exploit this fitness by reproducing more often. Exploration
occurs in the form of mutation and crossover, which allow
the offspring to achieve a higher fitness than their parents.
Crossover is the key to exploration, whereas mutation pro-
vides background variation and occasionally introduces ben-
eficial genes into the chromosomes. For a successful GA,
exploration and exploitation have to be in good balance.
With too much exploitation, the GA may be stuck with cop-
ies of the same chromosome after a few generations, whereas
with too much exploration, good genes may never be able to
accumulate in the genetic pool.

GAss are ideal for sampling large search spaces and locat-
ing the regions of enhanced opportunity. Although GAs yield
near-optimal solutions rather than optimal ones, obtaining
such near-optimal solutions are usually the best that one can
do in many complex optimization problems involving large
numbers of parameters.

lil. METHODS
A. Data set

The mammograms used in this study were randomly se-
lected from the files of patients who had undergone biopsy in
the Department of Radiology at the University of Michigan.
The criterion for inclusion of a mammogram in the data set
was that the mammogram contained a biopsy-proven mass.
To avoid the effect of repetitive grid lines on the image tex-
ture, mammograms that contained these grid lines caused by
the stationary grid of some older mammographic units were
excluded. The data set included 168 mammograms, with a
mixture of benign (»=85) and malignant (n=83) masses.
The visibility of the masses was ranked by an experienced
breast radiologist on a scale of 1 to 10, where a ranking of 1
corresponded to the most visible category. The distribution
of the visibility ranking of the masses is shown in Fig. 1. It
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F1G. 1. The distribution of the visibility ranking of the masses in the data set.

can be observed that the visibility of the masses in our data
set ranged from subtle to obvious.

The mammograms were digitized with a LUMISYS DIS-
1000 laser scanner at a pixel resolution of 100 xmXx100 um
and 4096 gray levels. The digitizer was calibrated so that
gray level values were linearly and inversely proportional to
the optical density (OD) within the range of 0.1- to 2.8-OD
units, with a slope of —0.001-OD/pixel value. Outside this
range, the slope of the calibration curve decreased gradually.
The OD range of the digitizer was 0 to 3.5.

Four different ROIs, each with 256X256 pixels, were se-
lected from each mammogram. One of the selected ROIs
contained the true mass as identified by an experienced radi-
ologist and verified by biopsy. In addition to the ROI that
contained the true mass location, the radiologist in the study
was asked to select three presumably normal ROIs from the
mammogram. The first of these three ROIs contained prima-
rily dense tissue which could mimic a mass lesion, the sec-
ond ROI contained mixed dense/fatty tissue, and the third
contained mainly fatty tissue. An example of each of these
ROIs is shown in Fig. 2.

B. Background correction

Breast masses are superimposed on structured background
tissue in the ROIs. In most cases, this background tissue is
not uniform over our 256 X256 pixel ROI. For example, one
side of the ROI may contain denser tissue than the other side,
or, when the mass is close to the outer edge of the breast, one
corner of the ROI may contain a nonbreast region. This non-
uniformity may affect texture and morphological features
that are extracted from the ROIL To reduce this effect, we
developed a correction method that estimated the low-
frequency background level based on the image intensities in
a band of pixels surrounding the ROI. The background level
at each pixel on the edge of the ROI was first estimated by
gray-level averaging in a rectangular region surrounding the
pixel. The background level of a pixel inside the ROI was
then estimated by interpolation using the background pixel
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FiG. 2. An example of the mass and normal ROIs selected from one of the mammograms used in this study. The four ROIs are upper left—mass; upper
right—mixed dense/fatty tissue; lower left—dense tissue; lower right—fatty tissue.

values on the edges. A more detailed description of this
background correction method can be found in the
literature.!%-3

C. Feature extraction

1. Texture features

The texture features used in this study were calculated
from spatial gray-level dependence (SGLD) matrices. The
(7,7)th element of an SGLD matrix is the joint probability
that gray levels i and j occur in a direction # at a distance of
d pixels apart in an image. We computed global texture fea-
tures, which represent the average texture measures through-
out the entire ROI, and local texture features, which repre-
sent (i) the texture measure of a denser subregion inside the
ROI which is likely to contain the mass, and (ii) the texture
difference between this subregion and other peripheral re-
gions in the ROI which contain normal breast tissue. The
method used for the computation of SGLD matrices and
multiresolution texture analysis are explained in full detail
elsewhere.’® A brief description is given below.

Wavelet transform™ using the four-coefficient Dau-
bechies wavelet filter was applied to each ROI to decompose
the image into a low-pass image and three high-pass subband
images. For extracting global multiresolution texture fea-
tures, we used the original image (scale=1) and the low-pass
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images at scales 2 and 4 to formulate SGLD matrices at d =1
in the transformed images. The distance of d=1 at these
scales was equivalent to distances of 1, 2, and 4 in the origi-
nal image. The wavelet coefficients at scale 8 were obtained
with wavelet filtering but without down-sampling. The coef-
ficients at scale 8 were used to formulate SGLD matrices at
d=1273,4,...,12. Since no down-sampling was used at scale 8,
these distances between pixel pairs were equivalent to dis-
tances of §,12,16,...,48 in the original image. Thus a total of
14 distances were used. At each distance, four SGLD matri-
ces at #=0°, 45°, 90°, and 135° were determined. Thirteen
texture features were calculated from each SGLD matrix.
The features at #=0°, 90° and at §=45°, 135° were averaged
separately. Thus 26 texture features were computed for each
d, resulting in a total of 364 global features.

For extracting local texture features, five subregions were
automatically identified in the background-corrected ROI: a
90X 90 pixel object subregion that contained the suspicious
dense tissue or the mass, and four 64X64 pixel peripheral
subregions that were located in the four corners of the ROL
The suspicious object subregion was automatically detected
by searching for the highest average gray-level inside the
ROI using a 90X90 moving box. For a given d, an SGLD
matrix was derived from the object subregion, and a back-
ground SGLD matrix was derived from the pixel pairs in the
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FIG. 3. A schematic of the clustering algorithm.

four peripheral subregions. The SGLD matrices were com-
puted at d=1,2,4, and 8. Analogous to the global texture
feature extraction, for a given d, 26 features were computed
from the object SGLD matrix, and 26 features were com-
puted from the background SGLD matrix. The local texture
feature space therefore consisted of 104 features extracted
from the object subregion, and 104 features calculated as the
differences between the corresponding features extracted
from the object and peripheral subregions. This resulted in a
total of 208 local texture features.

The detail images in the wavelet transform can be ex-
pected to contain useful information for texture-based clas-
sification of a large class of images. However, in our previ-
ous studies, we found that using the SGLD texture features
based on the detail images in the wavelet transform domain
did not result in proper classification of breast masses and
normal breast tissue.!! Since this study focused on the fea-
ture selection aspect of classification, we did not attempt to
search for new texture features that are presumably present
in the detail images.

2. Morphological features

We have developed an automated algorithm for segmen-
tation of an ROI into an object region and background
tissue.>! The morphological features are extracted automati-
cally from the object region after the segmentation is per-
formed.

We used a pixel-by-pixel clustering algorithm followed
by binary object detection for ROI segmentation. Pixel-by-
pixel clustering algorithms have found widespread use in
segmentation of remote sensing data,>* where multispectral
and/or multisource data are obtained for each pixel in the
image. Data points for each pixel are regarded as compo-
nents of a multidimensional feature vector, and pixels with
feature vectors of similar characteristics are assigned to the
same class using a clustering algorithm. Our data set con-
tains a single data point (the gray level) for each pixel. We
derived several filtered images from this single image, and
used the original and filtered pixel values as the components
of the feature vectors in the clustering algorithm. Inclusion
of the filtered images makes it possible to incorporate neigh-
borhood information into the classification of each pixel.

Our clustering algorithm, depicted in Fig. 3, is very simi-
lar to the migrating means algorithm.>* The goal is to
classify pixel p; as either an object or a background pixel.
This is achieved by clustering with feature vector
Fi=[f(1),....f(L)] of length L, where L is the total number
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of images used in clustering. The algorithm starts by choos-
ing initial cluster center vectors, for the object and the back-
ground, as described below. Let C,=[c,(1),...,c,(L)] and
Cp=I[cp(1),...,c,(L)] denote these cluster center vectors,
respectively. Let d,(i) denote the Euclidean distance be-
tween F; and C,,d,(i) denote the Euclidean distance be-
tween F; and C,, and R denote a constant distance ratio. If
d,(i)y/d (i)>R, the pixel p; is temporarily classified as an
object pixel; otherwise, it is classified as a background pixel.
If R=1, the algorithm becomes identical to the migrating
means algorithm. After this temporary classification, two
new cluster center vectors are computed. The /th component
of the new object and background center vectors are the av-
erages of the /th components for pixels temporarily classified
as object and background pixels, respectively. If the new
cluster centers are different from the previous ones, the pro-
cedure of temporary classification is repeated, otherwise, the
clustering is completed. In this paper, we used R=3.75 so
that F; had to be much closer to C, than to C, to be classi-
fied as an object pixel. This conservative criterion reduces
the chance that a mass region merges with adjacent tissue.
However, it also slightly underestimates the mass size so that
the detected edge is often within the margin of the mass. The
initial center vectors were chosen such that each component
of the initial object center vector is 1.1 times the average of
that component over the entire ROI, and each component of
the initial background center vector is 0.9 times the same
average.

After clustering, the ROI may contain several discon-
nected objects. To obtain a single suspected mass object, we
selected the largest connected object among all detected ob-
jects. We finally applied region growing to a small region
outside the boundary of the suspected object to get a better
definition of its borders. To achieve this, we thresholded the
original image pixels that were within ten pixels of the object
border. The threshold value was chosen experimentally to be
the difference between the mean of the pixel values inside
the object and half of their standard deviation. Figure 4
shows an example of the result of our segmentation
algorithm.

In this paper, we used three filtered images along with the
original image to form the feature vectors. The first filtered
image was obtained by median filtering with a 5X5 kernel.
The second and third filtered images were edge-enhanced
images at different resolutions.?! Each filtered image, as well
as the original image was linearly normalized between 0 and
S;, where S;, I=1...L is a scaling factor. The scaling factors
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(a)

(b)

FiG. 4. (a) An ROI with an ill-defined mass, (b) mass object extracted automatically by the clustering algorithm and superimposed on the background-

corrected ROIL.

S, were chosen experimentally to be §,=S5,= 1400 for the
original image and the median filtered image, and
S§3=S5,=770 for the edge-enhanced images. Therefore, the
original image and the median filtered image were weighted
approximately twice as much as the edge-enhanced images
in the clustering algorithm. This bias in favor of the weights
of the original image and the median filtered image was nec-
essary because the algorithm showed a tendency to segment
only disconnected edges if all images were equally weighted.
After detection of a single suspicious object within each
ROI, features were extracted from the object and its margins.
We extracted eleven shape features from each object, and
four features from the margins of each object. The shape
features included the number of edge pixels, area, circularity,
rectangularity, contrast, the ratio of the number of edge pix-
els to the area, and five normalized radial length features. A
detailed discussion of the shape features used in this study
can be found in Ref. 35. The margin features were computed
as follows. First, the mean and the standard deviation of the
pixel values inside the object were computed. Next, pixels in
a boundary region outside the object but within a distance of
15 pixels from the object border were thresholded. The val-
ues of the thresholds were chosen to be the mean minus 0.5,
1, 1.5, and 2 times the standard deviation. The number of
pixels in the boundary region which were above the thresh-
olds was defined as the margin features. Thus a total of 15
morphological features were extracted from each ROL

D. Classifiers

In this paper, we investigated GA-based feature selection
for two kinds of classifiers, namely (i) a linear classifier
based on Fisher’s linear discriminant:*° and (ii) a multilayer
backpropagation neural network (BPN).*® For each ROI,
both classifiers produced a scalar, termed the classifier out-
put, which indicated the likelihood that the ROI contained a
real mass.
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Fisher’s linear discriminant is based on a linear projection
of the feature space onto the real line such that the ratio of
the between-class sum of squares to within-class sum of
squares is maximized after the projection.”® In our two-class
problem, the statistical procedure for formulation of the lin-
ear discriminant function is equivalent to multiple linear
regression.”’ Fisher’s linear discriminant is the optimal clas-
sifier if the features are distributed as multivariate Gaussian
random variables with equal covariance matrices under each
class.”!

The BPN used in this study consisted of an input layer, an
output layer, and a single hidden layer. Each layer in the
BPN contained a number of nodes, which were connected to
previous and subsequent layers by trainable weights. A
single feature was applied to each node in the input layer.
The net input to each node in the hidden layer and the output
layer was a weighted sum of the node outputs from the pre-
vious layer. The output of a node was related to its net input
by a sigmoidal function. The output layer contained a single
node, whose output indicated the likelihood that the ROI
contained breast mass tissue. The BPN was trained using
batch processing and the delta-bar-delta rule for improved
rate of convergence and stability.*

Since our purpose in this study is to design a feature se-
lection algorithm, we did not compare BPN and linear dis-
criminant classifiers. Instead, we compared the classification
accuracy obtained by using different feature selection meth-
ods, with a fixed classifier for each comparison.

E. GA-based feature selection

In this paper, we used a GA to select features for discrimi-
nation of mass and nonmass ROIs. In our GA, the number of
bits in a chromosome was equal to the total number of avail-
able features, and each bit corresponded to an individual fea-
ture extracted from the ROIs. A feature was termed
““present’” in a chromosome if the value of the bit corre-
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sponding to that feature was 1. The population was initial-
ized at random, with a small probability P;,; of having a 1 at
each bit location. This allowed the GA to start with a few
selected features and grow to a reasonable number of fea-
tures as the population evolved. The total number of chro-
mosomes at each generation was kept constant at M =250.

At each run of the GA, the image data set of 672 ROIs
was divided into a training and a test set, with ROIs belong-
ing to the same film grouped into the same set. The training
set was used in the GA for feature selection. After feature
selection, a classifier was trained using only the GA-selected
features of the training set. The classification accuracy of the
procedure was evaluated by applying the classifier to the
same set of features of the test group, as described below.
For studying the effect of GA parameters on the classifica-
tion accuracy with the linear discriminant classifier, ten ran-
dom partitionings of training and test sets were obtained for
each set of different GA parameters, and the results were
averaged in order to reduce the effect of case selection. For
experiments with the BPN, 50 random partitionings were
used. For both experiments, the number of mass and non-
mass ROIs in each training set was 126 and 378 (3 of the
total), respectively, while the number of mass and nonmass
ROIs in each test set was 42 and 126 (3 of the total),
respectively.

Inside the GA, the training set was equally divided into
two groups, S1 and S2. For each chromosome, two classifi-
ers were trained, with §1 and S2 as the training groups,
respectively. Only the features present in the chromosome
were used as features in classifier training. The classifier
trained on group S1 was applied to the group S2, and vice
versa, for calculation of two sets of pseudotest classifier out-
puts. The accuracy of the pseudotest classifier outputs, and
the number of selected features were then used to define the
fitness of the individual chromosome. This process was re-
peated for each of the M chromosomes in each generation.

The main component of the fitness function was the area
A, under the receiver operating characteristic (ROC) curve
of the pseudotest sets. A widely accepted procedure for com-
puting the ROC curve assumes that the classifier output fol-
lows a normal distribution for each class, and fits the ROC
curve to the classifier output using maximum likelihood
estimation.”® We adopted this approach when we studied and
compared the classification accuracy of our classifiers with
the selected feature sets. However, it is computationally ex-
pensive to use this approach in the fitness function calcula-
tion inside the GA, because it is required for each chromo-
some in each generation. Instead, we chose to estimate the
ROC curve by varying the decision threshold, and determin-
ing the true-positive fraction (TPF) as a function of the false-
positive fraction (FPF). The A, value was estimated by nu-
merical integration using the trapezoidal rule. Since the
estimation of the A, was internal to the GA, it did not affect
the A, values reported in the Sec. IV for a set of selected
features. Internal to the GA, the fitness ranking of the chro-
mosomes might be slightly different from that obtained by
using the maximum likelihood ROC curve. However, the
effect on the final selected feature set should be small, be-
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cause this slight difference did not completely eliminate the
lower-ranking chromosomes. A slightly lower-ranking chro-
mosome was assigned a slightly lower probability of being a
parent, but it could still be competitive after mutation and
crossover if it contained effective features. This minor inac-
curacy in the fitness function computation was a trade-off in
order to execute the computation in a reasonable amount of
time while using the A, value in the feature selection
procedure.

A second component of the fitness function was a penalty
term, analogous to Brill’s utility term,”® which was linearly
proportional to the number of features present in the chro-
mosome. The purpose of this penalty term was to control the
number of selected features and to prevent overfitting in the
test stage of classifier design. In other words, the penalty
term was designed to improve the classification accuracy,
and not for accelerating the computational speed. The func-
tion of the penalty term was comparable to those of the F-to-
enter and F-to-remove thresholds in the stepwise feature se-
lection method, described in the next subsection. Similar to
these corresponding parameters in stepwise feature selection,
increasing the penalty term decreased the number of selected
features. We studied the effect of the presence of this penalty
term on the test results.

In a given generation, the fitness function f(m) for a
chromosome m was computed as follows. First, the two
pseudotest A, values, corresponding to pseudotest sets S1
and $2, were averaged to yield A,(m). Next, a fitness func-
tion f(m) was computed as

flm)y=A,(m)-

where N(m) was the number of 1’s (present features) in
chromosome m and a was the penalty constant. After f(m)
was determined for all chromosomes, the maximum fmax and
the minimum fmm of f(m) over the population of M chro-
mosomes were calculated. Finally, f(m) was normalized us-
ing fmax and fmln to yield the fitness function f(m),

Flm) fmm)

max fmm

aN(m), ()

flm)= ( 1=m<M. (2)

The genetic operators were applied as follows. First, par-
ent selection was performed using roulette wheel selection.?
In this method, each chromosome in a generation occupies
an area

f(m)

Alm)= 2%=1 f(m)

€)
proportional to its fitness, on a roulette wheel. A parent is
selected by spinning the roulette wheel, i.e., by generating a
random number ¥;€(0,1] and determining the chromosome
m; that satisfies

m;—1

2 A(m)<y;< EA(m) i=12. | (4)

After two parents m, and m, were selected for generating
two offspring, a probabilistic decision was made as to
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whether crossover should be applied or not. A random num-
ber 8 with uniform distribution in the interval (0,1] was gen-
erated and compared to P, the probability of crossover. If
[B>P., then no crossover was applied, and m; and m, were
accepted into the new generation. Otherwise, a random
crossover site was selected inside the chromosomes, and
each of the parent chromosomes were split into left and right
strings at this location. Crossover was completed by combin-
ing the left string of m | with the right string of m,, and vice
versa.

Finally, mutation was applied to each bit of the chromo-
somes in the new generation. Again, a random number with
uniform distribution in the interval (0,1] was generated, and
compared to P,,, the probability of mutation. If P,, was
higher, then the bit was complemented. Otherwise, it was left
unchanged. We studied the effects of P, and P, on the final
classification accuracy.

The GA was permitted to evolve for a fixed number of
generations. After the evolution was completed, the chromo-
some with the highest fitness value provided the set of se-
lected features. The entire training set S1US2 was then used
in the final multiple linear regression to determine the weight
of each selected feature in the classifier. During testing, the
values of the selected features of each ROI in the test set
were applied as inputs to the trained classifier to calculate the
classifier output for that ROL

To evaluate the classification performance, the classifier
output was used as the decision variable, and a test ROC
curve was estimated using the LABROC1 program.*® The
LABROCI program assumes binormal distributions of the
decision variable for the normal and abnormal cases, and fits
the ROC curve based on maximum likelihood estimation.
The area under the fitted ROC curve, A_, was used as an
index of classification accuracy.

F. Stepwise feature selection

For the purpose of comparison with GA-based feature se-
lection, we also studied the classification accuracy of the
same classifiers using a well-established feature selection
method, called feature selection with stepwise linear dis-
criminant analysis,? or stepwise feature selection in short %0
At each step of the stepwise selection procedure, one feature
is entered into or removed from the selected feature pool by
analyzing its effect on a selection criterion. In this study, we
employed the Wilks’ lambda as our selection criterion,
which is defined as the ratio of the within-group sum of
squares to the total sum of squares of the two classes.’” The
number of features selected by this method are controlled by
two parameters, called F-to-enter and F-to-remove. At each
step, the stepwise feature selection algorithm first determines
the significance of the change, based on F statistics, in
Wilks” lambda when a variable is entered into the selected
feature pool. If the significance is above the threshold deter-
mined by the F-to-enter parameter, then the selected feature
pool is augmented with the most significant variable. Next,
the algorithm computes the significance of the change in
Wilks® lambda when each variable is removed from the se-
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lected feature pool. If the significance is below the threshold
determined by the F-to-remove parameter, then the least sig-
nificant variable is removed from the selected feature pool.
Increasing either the F-to-enter or the F-to-remove value
decreases the number of selected features. Similar to GA-
based feature selection, stepwise feature selection is a heu-
ristic procedure. For this reason, the optimal values of F-to-
enter and F-to-remove parameters are not known in advance.
One has to experiment with these parameters and increase or
decrease the number of selected features to obtain the best
test performance. A detailed description of the stepwise fea-
ture selection procedure and 1its application to our
problems'®'! can be found in the literature.>'*

IV. RESULTS

In the next two subsections, we present the results for
evaluation of the effects of various parameters, and for clas-
sification with GA-based feature selection using linear dis-
criminant and BPN classifiers, respectively. Since training a
linear discriminant classifier was considerably faster than
training a BPN, the effects of GA parameters were studied
with a linear discriminant classifier. Feature selection for a
BPN classifier was performed on a subset of the entire fea-
ture set to accelerate training. For both classifiers, a compari-
son with stepwise feature selection was provided.

A. Feature selection for a linear discriminant classifier

1. Effect of penalty term and number of
generations

To determine a reasonable number of generations for the
GA to evolve, we selected several combinations of crossover
probability (P_.) and mutation probability (P,,), and moni-
tored the growth of the number of selected features. The
initial probability of feature presence was fixed at
P;,ii=0.002. The GA was allowed to evolve with two differ-
ent « values of the penalty term in the fitness function of Eq.
(1). We observed that the crossover probability P, did not
have a major effect on the number of selected features. How-
ever, both « in the penalty term and the mutation probability
P, affected the number of selected features. Figures 5 and 6
plot the average number of selected features over ten training
sets versus the generation number for «=0 and «=1/2000,
respectively. The average number of selected features is plot-
ted for P,,=0.001 and P,,=0.003 in each figure. The cross-
over probability is kept constant at P.=0.7. The test A_
value obtained up to a given generation is plotted against the
generation number in Figs. 7 and 8 for the same conditions
(=0 and a=1/2000), respectively. The average A, value
over ten test sets is shown.

It is observed that while the average test A, value does not
increase after the 25th generation, the number of selected
features keeps increasing beyond the 60th generation for all
combinations of GA parameters studied. Since the main
component of the fitness function in the GA is the A, value
rather than the number of features, more features may be
added into the selected feature pool as long as the area under
the ROC curve does not deteriorate. Comparing Figs. 5 and
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6, it can be observed that the penalty term suppressed the
number of selected features. The number of selected features
eventually leveled off at about the 80th generation when the
penalty term was nonzero (Fig. 6).

The average test A, values at the end of 100 generations
were (.89 for the combinations studied in Fig. 8, and 0.88 for
the combinations studied in Fig. 7. The maximum and mini-
mum values of individual test scores for the ten partitions
studied were 0.92 and 0.86 for Fig. 8, and 0.92 and 0.85 for
Fig. 7. The standard deviation of the individual A, values, as
determined by the LABROC1 program, varied between 0.02
and 0.04.

Since our goal is to select a small number of features
while maintaining a high classification accuracy, we per-
formed subsequent GA experiments with a=1/2000. Due to
computation time constraints, we set the maximum number
of generations to be 25 in the following experiments.
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2. Effect of initial probability of feature presence

Pini)

We evaluated the effect of P;,; on feature selection when
the crossover probability P, and the mutation probability P,
were held constant. The average test A, values for P.=0.9
and P, =0.001 are tabulated in Table I. It is observed that
the performance of the GA reaches a broad maximum when
P, 18 in the range of 0.0005 to 0.020, i.e., when the average
number of features in the initial chromosomes is approxi-
mately in the range of 0.3 to 12. When P, is out of this
range, the average test A, decreases slightly.

3. Effect of probability of mutation and crossover

The effects of the crossover probability P, and the muta-
tion probability P,, on the classification accuracy are sum-
marized in Tables II and 1II, respectively. In Table II, the
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TaBLE L. The effect of P;,; on GA performance for P,,=0.001, P.=0.9.
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TabLE III. The effect of P,, on GA performance for P,,;=0.002, P.=0.9.

Average test Avg. Num. Average Test Avg. Num.
P i A, of features P, A. of features
0 0.88 18.5 0.0005 0.89 16.0
0.0005 0.89 17.2 0.001 0.90 20.1
0.001 0.88 20.8 0.003 0.89 323
0.002 0.90 20.1 0.005 0.88 331
0.005 0.89 18.0 0.007 0.89 334
0.010 0.89 23.2 0.009 0.88 339
0.020 0.89 229
0.050 0.88 327
For comparison with these two near-optimal feature selec-
control parameters were fixed at P =0.002, and  (jon methods, we performed multiple linear regression train-
P,=0.001, while in Table III, they were fixed at ing and testing on 20 randomly selected features out of the

P;ni=0.002, and P,.=0.9. For fixed values of P, and P,,,
the average test A, appears to increase with increasing P,
while the number of selected features remains relatively con-
stant. On the other hand, for fixed values of P;,; and P, the
average test A, increases initially with increasing P, , reach-
ing a maximum at P,,=0.001, and then decreases slightly as
P, increases beyond 0.003.. Although the variation of the
classification accuracy with respect to P, is not significant,
it appears that a reasonable range of choice for P, is such
that the average number of mutations per chromosome per
generation is less than 1.5 (0.003X the number of genes per
chromosome). Within the range studied, the number of se-
lected features increases with increasing P,,, which may be
the reason for the slight deterioration in performance for
large P, .

4. Comparison with LDA classifier and random
feature selection

We used a commercial statistics package, SPSS,40 for
LDA classification. The feature selection and formulation of
the discriminant function were performed on each of the ten
training sets, and the discriminant functions were tested on
the corresponding test sets. Using minimization of Wilks’
lambda as the feature selection criterion, we varied the two
threshold values for F statistics (F-to-enter and F-to-
remove) in the SPSS package so that the average test A,
value over the ten partitionings was maximized. The number
of selected features and the test results for the ten partition-
ings are tabulated in Table IV. We chose the best GA clas-
sification results (the last line in Table IT) for comparison
with those of the LDA. The corresponding test A, values and
the number of selected features for each partitioning of the
data set are tabulated in Table IV.

TaBLE 1. The effect of P, on GA performance for P;;=0.002, P, =0.00i.

Average test Avg. Num.
P, A, of features
0.1 0.87 18.4
0.3 0.89 18.6
0.5 0.89 17.8
0.7 0.89 18.3
0.9 0.90 20.1
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available 587 features. The test A, values based on these 20
randomly selected features are also given in Table IV.

B. Feature selection for BPN

Since training a BPN is considerably slower than training
a linear discriminant classifier, we modified our training
strategy for this classifier. The basic differences between the
experiments in this subsection on BPN and the previous sub-
section on linear discriminant classifier were: (1) In order to
handle a smaller feature pool with BPN, we used a single
distance for texture features. Based on our previous study of
the effects of pixel distance on classiﬁcation,lo we selected a
pixel distance of d=20. The global texture features com-
puted at this pixel distance, plus the morphological features
previously described in Sec. III C, constituted the feature
pool in this subsection. Therefore, there were a total of 41
features (26 texture and 15 morphological) for the feature
selection algorithms to choose from. (2) In order not to re-
peat the feature selection process several times with several
different training sets, the entire data set was used in the
feature selection step of the classification procedure. After
feature selection was completed, the classifier was trained
and tested with 50 different partitionings of the data set into
training and test groups. As in the case of linear discriminant
classifier, the number of mass and nonmass ROIs in each
training set was 126 and 378 (3 of the total), respectively,
while the number of mass and nonmass ROIs in each test set
was 42 and 126 (; of the total), respectively.

The parameters of the BPN and the GA used in this sub-
section were as follows. The BPN had a variable number of
input nodes, four hidden layer nodes, and a single output
node. The BPN was trained for 400 iterations for each chro-
mosome in each generation. The GA was allowed to evolve
for a total number of 75 generations. Results of the previous
subsections suggest that there is a wide range of choice for
the parameters P, and P, . It appears that a reasonable
choice for Py, is such that the average number of selected
features at generation O is in the range of 0.3 to 12, and a
reasonable choice for P, is such that the average number of
mutations per chromosome per generation is less than 1.5.
For this reason, these parameters of the GA were selected as
P, =0.02, and P;,;,=0.02. Since a large probability of cross-
over seemed to result in the selection of more effective fea-
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FiG. 9. The distribution of the test A, values for the linear classifier with
stepwise feature selection, BPN classifier with stepwise feature selection,
and BPN classifier with GA feature selection.

tures in the previous subsections, the value of P_. was chosen
as 0.9. A penalty term was applied to the fitness function
with a=1/2000. ,

The final GA-selected pool of variables contained 16 fea-
tures. After feature selection using the GA, the performance
of the BPN classifier with the selected features was tested
with 50 training and test groups as described above. The
average training and test A, values over 50 partitionings
were 0.92 and 0.90, respectively.

To compare our GA-based feature selection method for a
BPN, we also used the same data set and the 41 features
described above with stepwise feature selection. The entire
data set was used for feature selection. The final selected
pool of variables contained 19 features. The same 50 parti-
tionings used for the GA experiments were used to train and
test both a linear discriminant classifier and a BPN with the
stepwise-selected features. The average training and test A,
values over 50 partitionings were 0.92 and 0.89 with the
linear classifier, and 0.92 and 0.89 with the BPN classifier.
The distribution of the test A, values for the linear classifier,
as well as the BPN classifier with features selected using
stepwise and the GA-based feature selection are shown in
Fig. 9. The distribution of the pairwise difference of the test
A, of the BPN classifiers with stepwise and GA-based fea-
ture selection methods is shown in Fig. 10.

V. DISCUSSION

Our goal in this paper was the development of an effec-
tive feature selection algorithm given a large number of fea-
tures extracted from an image data set. Table IV and Figs. 9
and 10 indicate that GA feature selection might be a viable
alternative to stepwise feature selection.

The average number of features selected by stepwise and
GA-based feature selection methods for a linear discriminant
classifier were 19.3 and 20.1, respectively, in Table IV. In
the same table, we compared these methods to random fea-
ture selection with the number of selected features equal to
20. Both methods performed better than random feature se-
lection. The difference between the average A, obtained by
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FiG. 10. The distribution of the pairwise difference of the test A, values of
the BPN classifiers with GA and stepwise feature selection.

GA-based feature selection and random feature selection was
more than two times the standard deviation of each A, dis-
tribution.

We observed that each time the GA was trained with a
different training set, a different set of features was selected.
This was also true for stepwise feature selection. The basic
reason for this was the limited size of the data set. If training
sets that could represent the entire population were available,
the selected set of features could be expected to be more
consistent among different training sets. With the limited
data set used in this study, each time a set of cases was left
out as the test data, the statistical characteristics of the train-
ing feature set changed. Furthermore, many of the features
were highly correlated, with correlation coefficients close to
1 or —1. Therefore, these correlated features could be inter-
changed. Only ten features were selected three or more times
for the experiments in Table IV. Out of these ten features, six
were texture and four were morphological features. This in-
dicates that morphological and texture features are both im-
portant for the classification of the ROIs.

The high correlation between the features in the feature
space used in this study is probably a cause of the surpris-
ingly good classification result (A,=0.82) obtained with the
randomly selected features. This may also indicate that many
of the features in the feature space are very effective for this

TaBLE IV. Test A, values of a linear discriminant classifier using stepwise
LDA, GA-based feature selection, and 20 randomly selected features.

Stepwise LDA GA Random
Test group A, Num. of features A, Num. of features A,
1 0.87 19 0.90 20 0.80
2 0.91 15 0.89 24 0.86
3 0.92 25 0.93 24 0.86
4 0.88 22 0.88 20 0.81
5 0.86 23 0.84 23 0.78
6 0.92 19 0.93 20 0.83
7 0.92 15 091 17 0.87
8 0.84 21 0.88 19 0.75
9 0.86 14 0.88 18 0.77
10 0.88 20 0.92 16 0.82
Average 0.89 19.3 0.90 20.1 0.82
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classification task. Therefore, even when only 20 features are
randomly drawn, we have a high probability of drawing ef-
fective features and obtaining a classification result that is
much higher than that would be obtained by chance.

Our results indicate that the classification results with
GA-based feature selection are better than their counterparts
with stepwise feature selection. This is most easily seen from
Fig. 9, which compares the distribution of the A, values for a
BPN classifier with GA-based feature selection to that with
stepwise feature selection. It can be observed that the two
distributions are shifted with respect to each other, with the
distribution using GA-based feature selection exhibiting
higher A, values. However, we could not perform a paired
t-test to evaluate the statistical significance of the differences
for the results listed in Table IV or those shown in Fig. 9.
The paired t-test requires independence among the samples
whereas our test (or training) sets in the different partition-
ings overlapped with each other. We have used the CLA-
BROC program*! to test the statistical significance of the
difference between the corresponding pair of ROC curves for
each partitioning. The difference did not achieve statistical
significance for the individual pairs because the number of
cases in each partitioned data set is small and thus the stan-
dard deviation of A, is large (0.02 to 0.04). However, it
should be noted that the improvement in A, with GA-based
feature selection, although small, is consistently observed
over the different partitionings of the data set, over both the
linear discriminant classifier (Table IV) and the BPN classi-
fier (Figs. 9 and 10), as well as over different data sets.*? The
small improvement in A, may be attributed to two causes:
(1) For the linear discriminant classifier, the stepwise feature
selection procedure is already near optimal. It is actually
somewhat unexpected that the GA-based feature selection
can still provide an observable improvement in A,. (2) It is
well known that BPN performance may not reach the global
maximum if there are insufficient training samples. For the
BPN classifier in this study, the number of weights to be
trained was large compared with the number of input training
samples. Therefore, it probably did not reach its optimum
when it was used in a GA for feature selection. Again, a
consistent improvement in A, demonstrates that the GA can
select more effective features for BPN classifiers.

The main advantage of GA-based feature selection is its
flexibility. GA-based feature selection can be applied to any
classifier and the fitness function can be tailored to select
features with specific characteristics. An example of the
former application is to select features for a nonlinear clas-
sifier such as a BPN as discussed above. An example of the
latter application is to select features for development of a
highly sensitive classifier* described next.

In both breast cancer detection and classification, the cost
of missing a malignant lesion is very high. For this reason,
an important measure of classification accuracy is the FPF at
high true-positive classification. Since the design of the fit-
ness function of a GA is very flexible, one can target to
maximize the partial area above a specified TPF in order to
optimize the classifier performance in this region. In a pre-
liminary study with our data set,’ we designed a GA-based
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feature selection algorithm in which the fitness of a chromo-
some was defined as the partial area above a TPF of 0.95.
We then compared the FPF at TPFs of 100% and 96% using
GA-based and stepwise feature selection for a linear dis-
criminant classifier. At a TFP of 100%, the average FPF over
the ten partitionings used in this study were 0.44 for GA-
based feature selection, and 0.68 for stepwise feature selec-
tion. At a TFP of 96%, the average FPFs were 0.33 for
GA-based feature selection, and 0.38 for stepwise feature
selection. These encouraging results demonstrate the poten-
tial of a GA-based approach to designing classifiers for a
wide range of practical problems, which cannot be achieved
with a conventional method such as stepwise discriminant
analysis.

Stepwise feature selection is computationally faster than
GA-based feature selection. For example, in the present
study, the stepwise feature selection required 64-s CPU time
for each partition (Table IV) on a 90-MHz Pentium-based
personal computer. The GA-based feature selection required
519-s CPU time for each partition (Table IV) on a 133-MHz
alpha-based workstation, when the evolution involved a total
of 250 chromosomes. However, a GA is highly paralleliz-
able. In principle, the fitness of each chromosome can be
evaluated on a different processor and the computation time
can be improved up to a factor equal to the number of chro-
mosomes. The choice between GA-based or stepwise feature
selection will depend on the application. For a linear dis-
criminant classifier, the stepwise feature selection may be
near optimal so that the advantage of using a GA may be
small. However, for other classifiers, a GA may be more
effective because the selected feature set will be optimized to
the specific classifier used.

A GA was previously used for the task of feature selec-
tion in a classification problem with 30 features and 150
cases.”® The GA fitness criterion in this application was de-
signed to be a function of the correct classification rate with
a nearest-neighbor classifier. After the features were se-
lected, a neural network was employed for final classifica-
tion. Our approach has two advantages over this application.
First, we used a more sophisticated classifier in the fitness
function computation stage, hence GA training is more effi-
cient. Second, we used the same classifier at the final classi-
fication stage, therefore our results are expected to be more
consistent. Our results are also expected to be less biased
since we divided our data set into independent training and
test groups for GA evaluation, whereas the entire data set
was used for training in the other study.”®

VI. CONCLUSION

We investigated the use of a GA for feature selection, and
demonstrated its application by classifying ROIs on mammo-
grams as either containing mass or normal tissue. By com-
paring stepwise feature selection and GA-based feature se-
lection for two different classifiers (the linear discriminant
classifier and the BPN), and by examining the problem of
designing classifiers biased to have high sensitivity perfor-
mance, we have demonstrated the versatility offered by a GA
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in the design of classifiers for a variety of classification tasks
without a trade-off in the effectiveness of the selected fea-
tures. Future work in this area includes application of GA-
based feature selection to different classification tasks such
as differentiation of malignant and benign tissue, and a de-
tailed investigation of the formulation of different fitness
measures, such as the partial area at the high-TPF region of
the ROC curve, for the design of classifiers in different ap-
plications.
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