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The purpose of this study was to investigate the number of intermediate states required to ad-
equately approximate the clinically relevant cumulative dose to deforming/moving thoracic
anatomy in four-dimensional �4D� conformal radiotherapy that uses 6 MV photons to target tumors.
Four patients were involved in this study. For the first three patients, computed tomography images
acquired at exhale and inhale were available; they were registered using B-spline deformation
model and the computed transformation was further used to simulate intermediate states between
exhale and inhale. For the fourth patient, 4D-acquired, phase-sorted datasets were available and
each dataset was registered with the exhale dataset. The exhale-inhale transformation was also used
to simulate intermediate states in order to compare the cumulative doses computed using the actual
and the simulated datasets. Doses to each state were calculated using the Dose Planning Method
�DPM� Monte Carlo code and dose was accumulated for scoring on the exhale anatomy via the
transformation matrices for each state and time weighting factors. Cumulative doses were estimated
using increasing numbers of intermediate states and compared to simpler scenarios such as a
“2-state” model which used only the exhale and inhale datasets or the dose received during the
average phase of the breathing cycle. Dose distributions for each modeled state as well as the
cumulative doses were assessed using dose volume histograms and several treatment evaluation
metrics such as mean lung dose, normal tissue complication probability, and generalized uniform
dose. Although significant “point dose” differences can exist between each breathing state, the
differences decrease when cumulative doses are considered, and can become less significant yet in
terms of evaluation metrics depending upon the clinical end point. This study suggests that for
certain “clinical” end points of importance for lung cancer, satisfactory predictions of accumulated
total dose to be received by the distorting anatomy can be achieved by calculating the dose to but
a few �or even simply the average� phases of the breathing cycle. © 2007 American Association of
Physicists in Medicine. �DOI: 10.1118/1.2400624�
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I. INTRODUCTION

Breathing motion and organ deformation may lead to geo-
metric misses that have the potential of underdosing tumor
and overdosing healthy tissue, when conformal radiation
therapy is used to treat tumors located in thorax. Historically,
the three-dimensional �3D� anatomical description of the pa-
tient used for treatment planning was acquired during free
breathing computed tomography �CT� scanning, and thus
was affected by motion artifacts.1–3 This, in turn, made target
definition prone to errors and inaccuracies, as was the esti-
mation of the dose to be received by the patient. The next
natural step was to add a temporal component to the imaging
process. Simple voluntary breath hold techniques or more
sophisticated ones such as active breathing control3,4 and
deep inspiration breath hold,5–7 improved the quality of the

CT images, but usually limited the geometrical information

233 Med. Phys. 34 „1…, January 2007 0094-2405/2007/34„1
to just one phase of the breathing cycle. As a result, the
subsequent delivery of the radiation only during a selected
phase or portion of the breathing cycle significantly reduced
the duty cycle.

In the past few years, the development of the four-
dimensional �4D� CT scanning technology made possible the
generation of sequential image datasets for multiple phases
of the breathing cycle.8–10 Integration of similar concepts and
tools into radiation therapy has led to 4D radiotherapy, de-
fined, for example,11 as the “explicit inclusion of the tempo-
ral changes of anatomy during the imaging, planning and
delivery of radiotherapy.” Within such a regimen, tumor mo-
tion could be accommodated, for example, by tracking tu-
mors in real time and by adjusting the beam delivery accord-
ingly based on plans individually designed for each available

instance of the patient anatomy encountered during a respi-
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ratory cycle. Unfortunately, the practicality of this adaptive
approach may be limited due to difficulties associated with
the prediction of the future target positions and the reposi-
tioning of the beam in a timely manner.12,13 On the other
hand, even if all the technical considerations were dealt with,
such techniques would still require patients that are capable
of complying and are involved actively in the treatment pro-
cess; a situation that may not be the case, especially in lung
cancer treatment. Therefore, treating a freely breathing pa-
tient nonadaptively in the real-time sense aforementioned is
still an appealing option, the radiation therapy in this case
being truly 4D only at the time of imaging.

Even a simplified delivery process would still benefit
from the time dependent information acquired during imag-
ing in order to better predict the doses to be received by a
deforming anatomy in the presence of the intra-fraction res-
piratory motion. For these studies, out of all datasets avail-
able after simulation, one is chosen as the planning �“static”�
dataset and is used to design a treatment plan. This plan �i.e.,
beam arrangement and intensities� is then used for dose cal-
culations on the other datasets and finally, the doses from all
datasets are scored on the planning dataset, with the appro-
priate time weighting coefficients.

The purpose of this study was to investigate how many
�or rather few� 4D scan phases are required in order to ad-
equately estimate, in the planning process, the clinically rel-
evant cumulative dose to be received by a deforming/moving
thoracic anatomy during free breathing radiation delivery.
The cumulative doses, estimated in several scenarios, using a
decreasing number of datasets, were compared through their
impact on treatment evaluation metrics widely employed in
lung cancer treatment planning, such as the tumor equivalent
uniform dose, mean lung dose, and normal lung tissue com-
plication probability.

The accuracy of the cumulative dose depends on the ac-
curacy of the registration process between various scans
available. Therefore, in order to avoid bias due to even small
registration errors, the use of simulated datasets between ex-
hale and inhale was preferred. In addition to that, one case
was analyzed using actual phase-sorted 4D data, as well as
simulated data. Here the intents were also: �a� to compare the
cumulative dose based on actual and simulated data; �b� to
investigate if the cumulative dose in the presence of
breathing-induced hysteresis could be predicted with a suffi-
cient degree of accuracy by assuming a linear trajectory be-
tween exhale and inhale.

II. METHODS AND MATERIALS

A. Patient data

For three patients—referred to as Patients A, B, and C
throughout the paper—the treatment planning data used in
this study were obtained from patients diagnosed with inop-
erable nonsmall cell lung cancer, under a protocol approved
by the Internal Review Board at the University of Michigan.
Input data consisted of CT scans acquired sequentially in the
same session at normal exhale and inhale states during

coached voluntary breath hold. No breathing pattern infor-
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mation was available for these patients, and therefore we
have assumed the analytical breathing function:14 z�t�=z0

−b cos2n� �t
�

�, with z0 the exhale coordinate, b the breathing
amplitude, � the breathing period and n a fitting parameter
describing the asymmetry of the respiratory pattern. The sub-
sequent analyses were performed for both n=1 and n=3,
describing symmetrical and asymmetrical �biased toward ex-
hale� breathing cycles, respectively.

For the fourth patient, referred to as Patient D, a 4D
dataset was acquired using a multislice CT scanner �Discov-
ery ST, General Electric Healthcare systems, Wausheka, WI�,
as part of a routine protocol for lung cancer patients, in place
at University of Texas M.D. Anderson Cancer Center. The
4D data were sorted in ten datasets between exhale and in-
hale, using the phase of respiratory cycle as recorded by a
real-time positioning system �Varian Medical Systems, Palo
Alto, CA�.8 Phases were assigned as illustrated in Fig. 1,
such that each dataset was comprised of images acquired at
and around a given time during a breathing period. These
phase-sorted datasets were assumed to be free of artifacts.

The patients were selected such that they had different,
representative tumor locations and larger motion amplitudes,
as indicated in Table I. The breathing-induced tumor motion
amplitudes were determined based on the displacement of
the center of the mass of the tumor between the exhale and
inhale datasets.

B. Image registration

For this study, the exhale dataset was chosen to be the
reference dataset. As such, for dose accumulation, all other
datasets were registered with the exhale dataset using a
B-spline technique.15–17 This methodology is believed to be
appropriate for describing nonrigid changes due to its ability
to deal with local deformations, such as those encountered in
lungs as a result of respiration. The registration process
started by placing a regular coarse grid of control points
�knots� across the thorax in both datasets and then a gradient
descent algorithm18 was used to vary the cubic B-spline’s
coefficients until the registration metric �average sum of
squared differences of the intensities between two dataset
images� was minimized. After initial convergence, the knot
grid spacing was subdivided by two and the process contin-
ued and then reiterated until the knot spacing fell below a
predefined threshold.16,17 The registration process is “local,”
in the sense that perturbing the position of any point only
affects the transformation in the neighborhood of that point;
a direct consequence of the limited domain over which the
basis functions of a B-spline transformation are defined.16

C. Intermediate states data simulation

For Patients A, B, and C, datasets for intermediate states
between inhale �0%� and exhale �50%� were simulated—
from 5% to 45% in excursion away from the inhale state, in
5% increments—by using the transformation provided by the
registration between the real exhale and inhale datasets and
assuming linear displacements along that path �see Fig. 1�.

The data simulated by assuming linear displacements mimic
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actual data that would be sorted by amplitude.19,20 By assum-
ing linear displacements between exhale and inhale we im-
plicitly assumed no hysteresis, that is, no difference between
the exhalation and inhalation tumor trajectory. Therefore, the
5%–45% states from the inhalation segment of the breathing
cycle also represent the 95%–55% states from the exhalation.
The feasibility of using B-spline nonrigid registration to gen-
erate the intermediate phases by interpolating between two
sets of 3D CT images acquired at different phases has been
also reported recently by Schreibmann, Chen, and Xing.21 In
order to avoid bias due to any exhale/inhale registration er-
rors and to assess the quality of the initial exhale-inhale dis-
torted image transformation fit, we also simulated the inhale
dataset and compared it to the real, imaged inhale dataset.
For dose calculation the lungs were contoured on all simu-
lated images and the mean relative electron densities were
scaled accordingly, such that the mass of the each lung was
conserved.

The same procedure was used to generate intermediate
states for Patient D as well.

TABLE I. Patient information regarding tumor position and motion amplitud

Patient Tumor location

A Apical
B Medial, embedded in normal lung
C Near diaphragm
D Medial

FIG. 1. Phase labeling in 4D: �a� by time—breathing period is divided into e
assigned to each time interval; �b� by amplitude—breathing excursion is div
amplitude is assigned to each amplitude interval.
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D. Monte Carlo treatment planning

The treatment plans were designed on the exhale dataset
�planning dataset� and consisted of 6 MV anterior, lateral
and oblique fields, combined with segmental fields directed
from the same angles to produce a dose distribution within
the planning target volume �PTV� of 100% ±5% of the pre-
scription dose. For this study, the PTVs were generated by
uniformly expanding the target by 1 cm. The number of
beam segments per plan was five for Patient A, seven for
Patients B and C, and eight for Patient D, with no preferen-
tial relative orientation of the beams with respect to the tu-
mor direction of motion. Dose distributions were calculated
using the Dose Planning Method �DPM� Monte Carlo
code,22,23 available within our in-house treatment planning
system �UMPlan�. We used a 2 mm step size, and low energy
electron and photon cutoff values of 200 and 50 keV, respec-
tively. For each treatment plan, 1.5 billion histories per plan
were simulated, resulting in 1−� statistics of better than
0.5% on average within the PTV.24 All plans were normal-
ized to 100% at the isocenter. These conformal plans �beam

Dominant direction
of motion with

respect to exhale Motion amplitude

Superior 1.0 cm
Anterior 0.7 cm
Inferior 2.0 cm
Inferior 0.7 cm

intervals and a phase that represents a percentage of the breathing period is
nto equal intervals and a phase that represents a percentage of the breathing
e.
qual
ided i
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directions, weights, apertures and number of monitor units�
designed on the planning dataset were also used for the cal-
culation of the dose distribution on all simulated datasets at
the same dose grid resolution. The dose grid size in all di-
mensions was 3.5 mm.25

E. Dose accumulation

The accumulation of doses from the intermediate datasets
to the exhale planning dataset was performed as described
elsewhere.25 In brief, the volume associated with each exhale
voxel is first subdivided into octants, the center of each oc-
tant is mapped to locations on the intermediate state dose
grid, doses at the tracked locations are estimated by trilinear
interpolation and their average values are scored at the origi-
nal exhale dose grid point locations.

In cases where simulated data were used, the doses from
intermediate states were mapped back onto the exhale dataset
based on the exhale-inhale transformation, assuming that for
each simulated state the displacement was the corresponding
fraction of the exhale-inhale excursion, much like the ap-
proach used to simulate the data. In the case of Patient D,
when the actual 4D data were used, the dose from each phase
was mapped onto the exhale dataset using the transformation
provided by the registration between each intermediate
dataset and exhale.

The accumulation of doses in the deforming anatomy was
performed by applying time weighting factors: Drec�i�

TABLE II. Time-weighting coefficients for the simulated and actual data. Fo
distribution function for n=1 and n=3. For the actual data, all phases are e

Simulated data

n=1

“2-
states”
model

“10-
states”
model

“20-
states”
model

“
sta
mo

w0 0.5 0.205 0.144 0
w5 0.055
w10 0.082 0.04
w15 0.035
w20 0.0665 0.0325
w25 0.032
w30 0.0665 0.0325
w35 0.035
w40 0.082 0.04
w45 0.055
w50 0.5 0.205 0.144 0
w55 0.055
w60 0.082 0.04
w65 0.035
w70 0.0665 0.0325
w75 0.032
w80 0.0665 0.0325
w85 0.035
w90 0.082 0.04
w95 0.055
=�kwk ·Dk�i�, where Drec�i� is the cumulative dose in the
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exhale voxel i, k the breathing phase, Dk�i� the dose received
by deformed exhale voxel i at the breathing phase k, wk the
time weighting coefficient at breathing stage k. The corre-
sponding time weighting coefficients used in the dose recon-
struction are presented in Table II. For the simulated data, the
coefficients were derived from the breathing probability dis-
tribution function14 for n=1 and n=3. For the actual data, all
phases are equally weighted in time, since that is the very
nature of the phase-based data sorting.

The cumulative doses, reported on the exhale planning
CT, were estimated in several scenarios using different num-
bers of intermediate states, with corresponding adjustment of
the associated time weighting coefficients used in the dose
reconstruction:

�1� by considering only the exhale and inhale geometries
�“2-state dose”�;

�2� by considering only the geometries at the time-weighted
average breathing phases from the first and the second
halves of the time interval between exhale and inhale
�“2-ave state dose”�. Based on the abovementioned
breathing function14 these average positions, during the
inhalation segment, were found to be �10% and �45%
from the inhale position for n=3, and �10% and �40%
for n=1, and their symmetrical values with respect to
the 50% state during exhalation;

�3� by including exhale, inhale and the 10%–90% geom-

simulated data, the coefficients are derived from the breathing probability
y weighted. The subscripts indicate the breathing phase.

Actual data

n=3

“10-
states”
model

“20-
states”
model

“2-
states”
model

“10-
states”
model

0.119 0.083 0.5 0.1
0.032

0.049 0.024 0.1
0.0215

0.0415 0.0205 0.1
0.021

0.045 0.0225 0.1
0.0255

0.0665 0.032 0.1
0.0525

0.477 0.415 0.5 0.1
0.0525

0.0665 0.032 0.1
0.0255

0.045 0.0225 0.1
0.021

0.0415 0.0205 0.1
0.0215

0.049 0.024 0.1
0.032
r the
quall

2-
tes”
del

.3

.7
etries �“10-state dose”�;
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�4� by including exhale, inhale and the 5%–95% geometries
�“20-state dose”�;

�5� by using only the geometry associated with the time-
weighted average phase over the complete breathing
cycle �“ave-state” dose�. For the breathing model as-
sumed in this study these average states were found to
be �for the inhalation� at �35% from the inhale position
for n=3 and at 25% for n=1, and their symmetrical
values with respect to the 50% state during exhalation.

All scenarios are summarized in Table III, where the
crosses indicate states that were used in any given scenario.
For the actual 4D data �Patient D�, the phase indicates time
equi-spaced datasets over the breathing period. For the simu-
lated data �Patients A–D�, the phase indicates spatially
evenly distributed datasets over the breathing amplitude.

The cumulative doses compiled in all scenarios were
compared through dose difference displays in order to esti-
mate point dose differences, through dose volume histograms
�DVHs� for the structure of interest and through clinical out-
come metrics such as generalized uniform dose26 �gEUD� for
the targets, mean lung dose �MLD� and normal tissue com-
plication probabilities �NTCPs�. The tumor gEUDs were
evaluated using an “a” parameter value of −10, which as-
sumes a moderately aggressive tumor. NTCP was calculated

27

TABLE III. Scenarios used to estimate cumulative doses. The crosses indicat
the phase indicates time equi-spaced datasets over a breathing period. For th
datasets over the breathing amplitude. n=1 and n=3 describe symmetrical

Patients A, B, C

Phase
“20

states”
“10

states”
“2

states”

“2-ave
states”

n�1 n�

0% �Inhale� x x x
5% x
10% x x x
15% x
20% x x
25% x
30% x x
35% x
40% x x x
45% x
50% �Exhale� x x x
55% x
60% x x x
65% x
70% x x
75% x
80% x x
85% x
90% x x x
95% x
using the Lyman model based on the effective volume
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DVH reduction methodology described by Kutcher and
Burman.28 The NTCP model parameters for the normal lung:
TD�50�=30.8 Gy at 2.0 Gy per fraction, m=0.99, and n
=0.37, were acquired from a previous study.29

III. RESULTS

A. Registration assessment

The exhale-inhale B-spline registration results, as as-
sessed by visual inspection, were found to be satisfactory for
all patients. The example shown in Fig. 2 illustrates for Pa-
tient C, who underwent the largest tumor motion excursion,
the results of an inhale coronal image aligned without defor-
mation to the corresponding exhale reference image, and
then registered with deformation. The appropriateness of us-
ing the simulated images was also assessed by comparing the
tumor and normal lung DVHs for dose distributions com-
puted on both the real and simulated inhale datasets, for
which both types of data were available. The cumulative
DVHs were found �data not shown here� to be nearly iden-
tical for each of the patients.

For Patient D, the top row in Fig. 3 displays coronal cuts
generated from the 4D datasets through the same plane in the
room coordinate reference system. The bottom row in the

es that were used in any given scenario. For the actual 4D data �Patient D�,
ulated data �Patients A–D�, the phase indicates spatially evenly distributed

symmetrical �biased toward exhale� breathing cycles, respectively.

Patient D

Scenarios

“Ave
state” Actual data Simulated data

n�1 n�3
“10

states”
”2

states”
“10

states”
“2

states”

x x x x

x x

x x
x

x x
x

x x

x x x x

x x
x

x x
x

x x

x x
e stat
e sim

and a

3

x

x

x

x

same figure displays the coronal cuts generated from the
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simulated datasets. Although the actual 4D data represent
phase-sorted images, whereas the simulated data correspond
to amplitude binned data, the similarity and consistency of
the simulated images and the actual images is obvious. The
displacement of the top of the tumor was less evident in the
simulated datasets, due to an imperfect registration in that
region, attributed to the more diffuse tumor extent; the mis-
alignment in that region, although not considered severe, was
identified visually when the exhale and the deformed inhale
datasets for this patient were displayed together after regis-
tration.

B. Comparison of cumulative doses in various
scenarios

As stated in the Methods section, the distorted B-spline
transformation resulting from the exhale-inhale registration
was subsequently used to simulate distorted geometries for
various other, intermediate phases of the breathing cycle on
which the dose distribution was recomputed. The transforma-
tions were then used together with the time-weighting factors
to compile the cumulative dose received over the breathing
cycle �computed on each simulated “nonexhale” dataset�

FIG. 2. B-spline registration results for Patient C shown for an example
coronal cut: �A� exhale image; �B� inhale image; �C� inhale distorted to form
the corresponding exhale image; �D� exhale and inhale shown together be-
fore registration; �E� exhale and distorted inhale shown together after regis-
tration. The lighter regions in D and E correspond to registration mismatches
between exhale and distorted inhale.
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back onto the original exhale dataset. As expected �e.g., for
Patient A in Fig. 4�, dose difference maps between each state
simulated during inhalation scored back onto the exhale
scan, and the original planning exhale dose exhibit increas-
ing magnitudes of change from the original exhale dose cal-
culation as the simulated states get further away from the
exhale position �get nearer to inhale�. These changes range
from a few percent for CT45 �the 5% geometric change from
exhale state� to �40% for the inhale state.

Figure 5 shows, for Patient C and for n=3, dose differ-
ence displays between the “20-state” cumulative dose, that
is, the most accurate reproduction of the cumulative dose in
our investigation, and the other cumulative dose
distributions—“10 state,” the “2 state,” the “2-ave state,” and
the “ave state” �CT35 in this case� doses—all scored back
onto the original exhale state. The differences between the
inhale state and the exhale state, and the “20-state” cumula-
tive dose and the exhale planned state are also displayed to
illustrate the magnitude of the observed differences. The
DVHs for the intermediate state dose distributions mapped
back onto the exhale state, shown in Fig. 6, spread between
the exhale and transformed inhale DVHs. However, as it can
be seen in the insets, the DVHs for the cumulative dose
distributions are close together, with no clear separation, ir-
respective of the method used for the prediction of the cu-
mulative dose.

The trends described above were observed for Patients A,
B, and C for both n=1 and n=3. A summary of tumor EUDs
and mean lung doses �for all patients� and esophagus NTCPs
�only an issue for patient A� for all dose accumulation sce-
narios are presented in Table IV.

For Patient D, displayed in Fig. 7 are dose differences
between doses computed on each dataset from the 4D scan
�mapped back onto the exhale dataset� and the exhale dose,
as well as dose differences between doses calculated on the
simulated intermediate states �mapped also back onto the
exhale dataset� and the exhale dose. In the latter case, only
differences corresponding to datasets simulated for the inha-
lation part of the respiratory cycle are shown, as the simu-
lated datasets are identical for both inhalation and exhalation.
For the actual 4D data analysis, it can be noticed that, while
the changes in dose from the exhale values during inhalation/

FIG. 3. Patient D. Example of coronal
cuts generated from the actual 4D
datasets �top row� and from the simu-
lated datasets �bottom row� through
the same plane in the room coordinate
reference system. For the actual
dataset, the numbers represent time-
based phase over a breathing period,
while for the simulated datasets, the
numbers indicate amplitude-based
phase, as indicated in Fig. 1.
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exhalation are consistent with the magnitude of the anatomi-
cal changes undergone during respiration, the location of the
hot and cold spots that characterize the motion/deformation
effects is somewhat different during inhalation as compared
to exhalation—a dosimetric illustration of the respiratory
hysteresis effect.

Shown in Fig. 8 are dose differences between cumulative
doses estimated in two scenarios �“10 state” and “2 state”�
and the static exhale dose, for both the actual 4D data and the
simulated data, again for Patient D. In all cases, similar
differences—with respect to their magnitude and location—
between cumulative doses and the static exhale dose were
found. The differences between the “10 state” and “2 state”
doses �not shown here� were less than 2% between any sce-
nario.

The clinical target volume �CTV� and normal lung DHVs
for Patient D are illustrated in Fig. 9 for the intermediate
state doses scored onto the exhale dataset and cumulative
doses, for the actual data and for the simulated data. Just as
for Patients A–C, the cumulative dose DVHs are similar to
each other, regardless of the number of intermediate states
used for dose reconstruction. The treatment metrics evalu-
ated for all these dose distributions �gEUD, MLD, NTCP�

FIG. 5. Patient C, n=3: dose difference maps between: cumulative doses esti
The numbers indicate maximum point dose differences inside the lung. Red

Fig. 4�.
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are reported on the bar plots shown in Fig. 10. Again, the
treatment metrics are almost identical for the “10 state” and
“2 state” scenarios. Moreover, the metrics associated with
the actual dataset compare favorably to those derived for the
simulated datasets.

IV. DISCUSSION

The goal of this study was to investigate the number of
respiratory phases needed to estimate, before the onset of the
treatment, the clinically relevant cumulative doses to thorax
that would be received by a patient if the treatment was
delivered during free breathing. The patients involved in the
study were selected such that they were representative in
terms of tumor location and motion amplitude. The use of
simulated data to describe intermediate breathing phases was
preferred in order to eliminate any bias in the cumulative
dose due to registration errors, given that to date there is no
complete, rigorous way to fully assess the registration accu-
racy. The images derived by interpolation, however, offered a
good description of the respiratory induced anatomical
changes, as it was seen for Patient D. As a figure of merit, the
simulated data provided a finer sampling of the various ge-

FIG. 4. Patient A: difference maps be-
tween doses in each simulated state
during inhalation �scored at exhale�
and the planning exhale dose. Inhale
and exhale are the 0% and 50% phases
respectively. The numbers indicate
maximum point dose differences in-
side the lung. Red/blue spots indicate
positive/negative differences.

in various scenarios; inhale and exhale doses; cumulative and exhale doses.
spots indicate positive/negative differences �same color code as shown in
mated
/blue
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ometries between exhale and inhale, as opposed to the actual
4D phase-sorted images. By following the most inferior
guideline in Fig. 3, it can be noticed that the datasets sorted
from the actual 4D data comprised several exhale-like
datasets �i.e., 30%, 40%, 50%, 60%� and several inhale-like
datasets �i.e., 0%, 10%, 90%�, whereas the simulated data
captured better the gradual progression of the diaphragm
from the exhale to the inhale configuration. This is not un-
expected: a phase-based data sorting procedure will sample
more states in the vicinity of exhale and inhale as more time
is usually spent at and around these phases during the respi-
ratory cycle, as illustrated in Fig. 1 as well. Similar conclu-
sions regarding the goodness of modeling intermediate states
through interpolation has also been pointed out by Schreib-
mann, Chen, and Xing.21

The major drawback of generating interpolated images is
that the issues associated with the tumor motion hysteresis
effects during breathing, that have been shown to exist in
some patients,30 are completely ignored. The hysteresis ef-
fect pertains to the tumor, not the entire thorax, which pre-
vented us from modeling image data for such scenarios, al-
though local effects of this nature could certainly exist within
the lung. Despite that, for Patient D, where hysteresis was

TABLE IV. Treatment metrics for all scenarios used to estimate the cumulati

Patient A

Fit Method MLD�Gy� gEUD�Gy�
Esop
NTC

n=1 “20 state” 4.33 109.7 6.
“10 state” 4.32 109.5 5.
“2 state” 4.33 109.4 5.

“2-ave state” 4.32 109.7 6.
CT25�ave� 4.31 109.3 5.

n=3 “20 state” 4.06 109.5 5.
“10 state” 4.06 109.4 5.
“2 state” 4.05 109.2 5.

“2 ave state” 4.05 109.4 5.
CT35�ave� 4.00 109.6 5.
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present, the analysis of the cumulative doses using both the
actual and the simulated data suggests that assuming a linear
trajectory between exhale and inhale—essentially splitting
the difference between the exhale to inhale path and the in-
hale to exhale return path—could generate sufficiently accu-
rate predictions for clinically relevant metrics derived from
the cumulative doses.

While the reason for why cumulative doses evaluated in
various scenarios are similar is not immediately obvious, we
believe that the effects are a consequence of the fact that the
dose received by each anatomical unit as it progresses
through each breathing phase changes in time in a somewhat
linear fashion. Assuming that a patient’s respiratory pattern is
such that a breathing function

f = F�t� �1�

exists, where f =
z0−z�t�

b is the fractional distance away from
the z0 exhale coordinate, b the breathing amplitude, and z�t�
the excursion at time t, then, the breathing probability distri-
bution function p�f� can be defined by

p�f�df =
dt

�
, �2�

se, for n=1 and n=3.

Patient B Patient C

MLD�Gy� gEUD�Gy� MLD�Gy� gEUD�Gy�

12.62 95.8 7.76 69.1
12.60 95.6 7.75 69.0
12.60 95.5 7.72 69.1
12.61 95.6 7.76 68.9
12.57 95.5 7.75 68.9
12.74 96.2 7.57 69.1
12.73 96.1 7.56 69.0
12.71 95.9 7.54 69.1
12.74 96.2 7.56 68.8
12.74 96.3 7.58 69.1

FIG. 6. Patient C, n=3: cumulative
DVHs for tumor and normal lung tis-
sue with insets showing details.
ve do

hagus
P�%�

07
87
78
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meaning that the probability that a point lies within df around
f away from exhale is proportional to the amount of time dt
spent around that position relative to the breathing period �
�half period for no hysteresis�. If the dose received by an
anatomical voxel at each breathing phase is proportional to
the fraction away from exhale,

Df = f · �DE − DI� + DE =
notation

kf + k0, �3�

then the cumulative dose at a given “cell” �in our case exhale
voxel� over the breathing cycle, when an infinite number of
intermediate states are considered �D��, equals the dose re-
ceived at the time-averaged phase of the breathing cycle
�Dfave

�. This is independent of the specific form of the breath-
ing pattern �if reproducible�; however, an explicit breathing
function is needed to determine the average position during
the breathing cycle.

FIG. 7. Patient D: dose differences between doses in each actual or simul
minimum point dose differences inside the lung. Red/blue spots indicate po

FIG. 8. Patient D: dose differences between cumulative doses and the static �e
and the “2-state” scenarios were used for the cumulative dose evaluation. T

Red/blue spots indicate positive/negative differences.
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The assumption of a linear change in dose distribution
shape between breathing states technically would hold true if
a “point” moved in a “dose cloud” of transient charged par-
ticle equilibrium �TCPE� within the dose distribution of a
homogeneous media. However, this is never the case: the
patient’s anatomy is heterogeneous and, aside from the lack
of TCPE in the buildup region of the depth dose curve, the
linearity of the dose in space is violated in the vicinity of any
interface between different media. Despite this, the cases
analyzed in the current study suggest that although devia-
tions from nonlinearity exist, the changes in doses received
by voxels undergoing motion could in many cases be fit
fairly well with linear dose change assumptions computed on
a limited number of intermediate states. For the example
patients investigated, the cumulative doses predicted by ac-
cumulating the doses from the “10-state,” “2-ave state” and

dataset and the exhale planning dataset. The numbers indicate maximum/
/negative differences.

� dose, estimated using the actual and the simulated datasets. The “10-state”
mbers indicate maximum/minimum point dose differences inside the lung.
ated
sitive
xhale
he nu
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even the “2-state” models are in very good agreement with
the more precise “20-state” model results. It should be noted
though that the “20-state” model is in reality an over sam-
pling of the data since the dose grid size used in the study
was 3.5 mm, while the maximum breathing amplitude ob-
served for these patients was 2 cm, translating into a 2.0 mm
step size per 10% displacement away from exhale breathing
phase. The agreements with the “20-state” results are also
quite good when only the average states over the breathing
function are used to predict the cumulative doses.

The actual impact of any nonlinearities in dose change in
patients may be smaller than first thought for a variety of
reasons. At interfaces, densities do not always change as
abruptly as they might in phantom-designed experiments; for
example, at the tumor margin the cell density most likely
decreases gradually. Also, the use of multiple beams may
lead to competing effects at a given point. Beyond these
considerations, for parallel organs, especially of large vol-
ume such as lungs, any severe perturbations of the dose from

FIG. 9. Patient D: cumulative DVHs for tumor and normal lung tissue, for do
a linear behavior likely occur in small regions and thus the
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effect of these perturbations on the total organ dose response
may be too small to produce clinically significant changes.
The variation in the esophagus NTCPs among the various
scenarios used to estimate the cumulative dose appear to be
somewhat larger than what was seen for lung. This is be-
cause the esophagus is a serial organ whose response to ra-
diation is more sensitive to changes in the maximum
dose—in other words, small changes in higher dose regions
can produce larger NTCP variations for serial organs. Such
changes do occur in the case of Patient A due to the fact that
the esophagus was in the vicinity of the beam edge. How-
ever, even in this case, the prescription dose would change
less than 0.5 Gy in an iso-NTCP protocol if the “ave-state”
esophagus NTCP were adjusted to match the “20-state”
esophagus NTCP.

The current study investigated the problem of the number
of breathing phases that need to be considered for accurate
clinically relevant cumulative dose estimation for conformal
treatment plans and 6 MV photon beams. For higher beam

lculated using the actual and the simulated data, with insets showing details.
ses ca
energies, motion effects are not significantly larger, as shown
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in a recent study,31 and therefore it is highly unlikely that the
accuracy of estimating cumulative dose by using fewer
breathing phases would be significantly impacted by the use
of more energetic beams. The topic has been recently ad-
dressed for intensity modulated radiation therapy �IMRT� as
well. Flampouri et al.32 have found that when using three-
phase cumulative doses, less than 2.5% of the CTV sees
doses that differ with more than 3% from doses calculated
using ten phases.

As already mentioned, the average phase of the respira-
tory cycle can describe fairly well the cumulative dose re-
ceived during a full cycle �if the scored dose changes in a
somewhat linear fashion� regardless of the specific shape of
the breathing time-position probability pattern. However, a
breathing pattern is needed in order to determine either what
the average state actually is, or what the appropriate time
weighting coefficients would be if exhale and inhale are to
be used for the estimation of the cumulative dose. Therefore
the reproducibility of the breathing pattern over the course of
the treatment is important, though it is not yet well estab-
lished how much reproducibility is good enough from a
clinical standpoint. Engelsman et al.33 have shown, in a
phantom study, that it is the systematic setup error rather
than the random component of the setup uncertainty or the
ventilatory motion that appears to have a dominant effect on
the cumulative dose to targets. Lujan, Balter, and Ten

34
Haken suggested that a large deviation in the motion am-
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plitude between planning and delivery is a cause of concern,
whereas in cases when the motion excursion varies around
some nominal value it is unlikely that such variations would
lead to clinically significant changes in the prescription
doses. The same study34 pointed out that changes in the de-
gree of asymmetry are likely to be significant only in worse
case scenarios—for example, when the patient would not
breathe freely during the delivery of the treatment, but would
instead hold the breath at a respiratory phase far away from
the one for which the treatment was designed. This finding is
supported by the case of Patient D presented in this paper. As
described in the previous section �Table II�, the “2-state”
scenario for the simulated data assumed time weights of 0.7
and 0.3, respectively, for exhale and inhale, as calculated
from the assumed breathing probability distribution function
for n=3, whereas for the real data equal weights were used
for exhale and inhale, a situation that technically would de-
scribe a symmetrical breathing cycle �n=1�. Despite that, the
dose difference displays, the DVHs and the treatment metrics
from Figs. 8–10 indicate similar results for essentially two
different breathing asymmetries, reinforcing conclusions
from prior work that moderate variations in the breathing
pattern are unlikely to impact significantly the metrics cus-
tomarily used to assess treatment plans.

To date there is evidence30,35,36 that important changes can
occur in the mean tumor position during treatment. This,

FIG. 10. Patient D: CTV EUD�Gy�,
MLD�Gy� and lung NTCP�%� calcu-
lated for all intermediate states �from
the actual and simulated datasets� and
for cumulative doses.
however, does not invalidate our findings. Instead, if a care-
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ful monitoring of the respiration indicates a change in the
average tumor position that is believed to be clinically im-
portant, the cumulative dose to date and the predicted total
dose for the full treatment can be reevaluated based on either
the dose received at the new average respiratory phase or by
adjusting correspondingly the weighting coefficients for the
exhale and inhale geometries.

It should also be noted that designing a treatment at the
breathing phase that corresponds to the mean target
position—in cases where it is possible to obtain that time-
weighted average state, for example, from a 4D dataset—
appears to offer the advantage of minimizing the size of the
CTV-PTV expansion,37–40 which is the ultimate goal of any
attempt to deal with breathing induced motion. When it is
not feasible to obtain the average state, use of only exhale
and inhale scans from a patient could suffice, and this may
be a more simply implemented data gathering method. This
would still require the ability to perform distorted image reg-
istration between the inhale and exhale datasets and knowl-
edge of an appropriate breathing function, both to be used to
either simulate and then plan with and compute dose on an
average breathing state, or use weighting factors to score
dose on �e.g.� the exhale dataset if the patient is to be treated
while breathing freely.
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