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Purpose: In fractionated radiation therapy, image guidance with daily tomographic imaging

becomes more and more clinical routine. In principle, this allows for daily computation of the

delivered dose and for accumulation of these daily dose distributions to determine the actually

delivered total dose to the patient. However, uncertainties in the mapping of the images can trans-

late into errors of the accumulated total dose, depending on the dose gradient. In this work, an

approach to estimate the uncertainty of mapping between medical images is proposed that identifies

areas bearing a significant risk of inaccurate dose accumulation.

Methods: This method accounts for the geometric uncertainty of image registration and the hetero-

geneity of the dose distribution, which is to be mapped. Its performance is demonstrated in context

of dose mapping based on b-spline registration. It is based on evaluation of the sensitivity of dose

mapping to variations of the b-spline coefficients combined with evaluation of the sensitivity of the

registration metric with respect to the variations of the coefficients. It was evaluated based on

patient data that was deformed based on a breathing model, where the ground truth of the deforma-

tion, and hence the actual true dose mapping error, is known.

Results: The proposed approach has the potential to distinguish areas of the image where dose

mapping is likely to be accurate from other areas of the same image, where a larger uncertainty

must be expected.

Conclusions: An approach to identify areas where dose mapping is likely to be inaccurate was

developed and implemented. This method was tested for dose mapping, but it may be applied in

context of other mapping tasks as well. VC 2012 American Association of Physicists in Medicine.

[http://dx.doi.org/10.1118/1.3697524]
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I. INTRODUCTION

The transfer of any spatially distributed quantity from one

coordinate system to another can be called mapping and

requires knowledge of the underlying geometric transforma-

tion between both coordinate systems. One possible applica-

tion is the mapping of dose between computed tomography

(CT) images that are acquired before each treatment in frac-

tioned radiation therapy. Dose distributions may be calcu-

lated based on these different CT images, and the process of

mapping all the distributions to one CT image and of sum-

ming up over the contributions of the different fractions to

each voxel of this image is called “dose accumulation.”

Mapping of dose between medical images has been applied

in research on image guided radiation therapy (IGRT) in

context of dose accumulation in the past,1 and there is a strong

need to minimize and characterize the uncertainty of dose

accumulation.2 Since mapping requires knowledge of the geo-

metric transformation between the coordinate systems of

images, correct estimation of this transformation is essential,

and in case, if it is obtained by image registration, uncertain-

ties of image registration affect the accuracy of dose accumu-

lation, especially in those areas with steep dose gradients, i.e.,

where the distribution is heterogeneous.

The uncertainty of image registration has extensively been

discussed.3–21 However, more work needs to be done to inves-

tigate its influence on the dose mapping uncertainty, which

does not only depend on geometric uncertainties but also

depend on properties of the dose distribution such as dose gra-

dients. The approach proposed here accounts for both issues.
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Recently, a new method was introduced to estimate the

dose mapping uncertainty based on the consistency of trans-

formations, resulting from multiple consecutive registrations

in reverse directions.22 It has successfully been applied with

a thin plate spline algorithm and different patient data. How-

ever, parameterized deformable registration algorithms, such

as b-spline registration, are likely to create smooth and in-

vertible deformation fields provided that the number of

degrees of freedom is not chosen too high. In this case, regis-

tration errors may be obtained in a very consistent way. So,

the transformation may be incorrect—and still the algorithm

may persistently end up with the same incorrect result. So,

the approach proposed in Ref. 22 does not yet account for all

sources of uncertainty.

Dose mapping uncertainties in context of nonparameter-

ized image registration have been discussed in Ref. 23. This

approach has successfully been applied in context of the

demons algorithm and can be applied on other registration

methods as well. However, it may not perform well with par-

ameterized methods, such as b-spline registration, since it is

based on evaluation of the physical fidelity of the deforma-

tion field. Compared to nonparameterized image registration

algorithms, b-spline registration is smooth by nature and so

it is more likely to run into problems with a potential model

mismatch than into problems with the physical fidelity of the

deformation field in case the number of knots is not chosen

too high. So, this means that the correct deformation (ground

truth) may be a deformation that cannot be described by the

b-spline model that is applied, in case the number of b-spline

knots is chosen too low. Only a very high number of knots

may lead to problems with the physical fidelity of the defor-

mation field while a potential model mismatch becomes less

likely. Another source of error that is more likely to affect

parameterized registration than problems with the physical

fidelity of the deformation field is missing structure within

the images. This means that, in case, if intensity gradients

are missing in some region of the image, then information is

missing, which would be needed to guide the deformation

process and thus the registration accuracy becomes low.

Therefore, an approach to estimate its uncertainty must

account for model mismatch and missing structure. These

issues are likely to affect parameterized registration methods

and need to be taken into account when uncertainty of map-

ping is estimated rather than problems with the physical fi-

delity. Therefore, an approach to estimate the dose mapping

uncertainty that is tailored toward parameterized image

registration is needed and proposed in this work.

In a previous paper, we proposed a stochastic approach to

estimate the uncertainty of b-spline image registration.24

Here, we suggest an extension of this method to address the

uncertainty of dose mapping.

II. METHODS AND MATERIALS

II.A. Dose mapping and its dependence on image
registration

Dose mapping requires knowledge of the geometric cor-

respondence between the coordinate systems of both images.

Image registration is the process of determining the geomet-

ric correspondence between these systems, and thus it can

supply a dose mapping algorithm with the required informa-

tion, for example, represented as a displacement vector field

(DVF) resulting from b-spline deformable registration.

II.B. B-spline registration and its geometric
uncertainty

In b-spline registration, the DVF is represented as a

superposition of weighted b-spline basis functions. The

weights are called coefficients and are obtained by optimiz-

ing a similarity measure. See Refs. 5 and 24 for details. In

Ref. 24, we have shown that the local sensitivity of the simi-

larity measure to variations of the b-spline coefficients can

be regarded as a measure of registration uncertainty in

b-spline registration. Major sources of uncertainty in b-spline

registration are missing image structure and thus homogene-

ous regions, imperfect optimization as well as a potential mis-

match of the b-spline model.24 Obviously, any mapping

between medical images based on registration may be affected

by these uncertainties.

II.C. Uncertainties in b-spline based dose mapping

In this section, two main sources of error in mapping of

medical images are considered.

II.C.1. Fundamental anatomical changes

Since anatomy may change over time, images acquired at

different times may reflect these changes. In case tissue is

not conserved, registration, and thus mapping, is an ill posed

problem, since it is generally impossible to correctly map

dose that was applied to tissue that is present in only one of

the images. The uncertainty due to this issue can probably

not be estimated by any algorithm, and the method proposed

here does not aim to solve this problem but should be

applied in a context where tissue is preserved.

II.C.2. Uncertainties in image registration

The second major source of error is the geometric uncer-

tainty of the image registration. It affects dose mapping if the

mapped distribution is not homogeneous, which is generally

the case. The dose mapping uncertainty DDðx; y; zÞ is given by:

DDðx; y; zÞ ¼ grad
��!

Dðx; y; zÞ � Reg
��!

errðx; y; zÞ;
where grad

��!
Dðx; y; zÞ is the gradient of the dose distribution

and Regerrðx; y; zÞ is the error of the image registration.

So, any approach that aims to estimate dose mapping uncer-

tainties needs to account for both: the spatial gradient of the dis-

tribution as well as an estimate of the registration uncertainty.

II.D. The proposed algorithm to estimate dose
mapping uncertainty

II.D.1. Concept

II.D.1.a. Estimating registration uncertainty. In our pre-

vious paper, an algorithm to estimate the uncertainty of
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parameterized image registration was proposed.24 As it is

essential for this work, we briefly summarize the results

here. The registration algorithm that was applied in this and

the previous study is driven by the decent gradient of the

sum-of-square-differences (SSD) metric. If the result of the

registration was nonambiguous and did represent the under-

lying deformation correctly, globally, as well as locally, the

SSD should increase with any modification of the resulting

deformation.

The approach presented here is motivated by considera-

tions about the consequence of adding a small additional ran-

dom deformation to the deformation that resulted from the

b-spline registration. In this context, one might regard a

small subpart of the image and evaluate the change of the

SSD in this local area. The local SSD is the SSD calculated

from this small area, as opposed to the global SSD, which is

calculated from the whole image.

There are three possibilities how the local SSD can be

affected by the additional random deformation, which was

added to the result of the b-spline registration:

1. The local SSD may increase. This is the case if the image

does contain sufficient structure in this local area and if this

structure reached alignment during the process of image

registration. In that case, any additional deformation

increases the SSD. In this situation, the alignment is likely

to be correct. So, this does not indicate the presence of

uncertainty within the regarded subpart of the image, rather

the registration is likely to be correct in this specific area.

2. The local SSD may stay unchanged or does not change

significantly. This is the case if there is no structure in the

local subregion of the image, i.e., if there is a homogene-

ous brightness within the regarded area. However, struc-

tural information is needed to guide the deformation

process; so, this indicates uncertainty of the local result.

3. The local SSD may decrease. This is the case if the regis-

tration was imperfect within the considered subpart of the

image. One reason may be imperfect optimization. In that

case, the algorithm has not resulted in a deformation that

represents the global minimum of the metric. Another rea-

son may be a mismatch of the b-spline model. In that case

the algorithm may have ended up in the global minimum

of the SSD metric, but with the given spline model it is

impossible to correctly describe the deformation. Please

note, that in this case the local decrease of the SSD metric

must be accompanied by a global increase. So the local

improvement means a deterioration of the global align-

ment of the whole image. However, since here we are

regarding a local sub-section of the image, a local

decrease of the SSD may be possible in case of a model

miss match.

So, in any position where an additional random deforma-

tion does not increase the local SSD, it is not possible to dis-

tinguish whether the modified or the initial deformation field

is the better estimate. We do not assume that the deformation

with the lower local SSD is the better estimate, but it is just

impossible to distinguish which one is better. This indicates

the presence of uncertainty.

So, the basic idea of this approach is to calculate the local

SSD from a small area around each voxel after registration

(initial local SSD). The change of the local SSD by ran-

domly performed modifications of the deformation field is

monitored for each of these small areas surrounding each

voxel. The spatial deviation between the deformation that

resulted from the registration (initial deformation) and each

of the randomly modified deformations (modified deforma-

tions) is calculated in each voxel for different random modi-

fications of the deformation. The largest spatial deviation

that was found for any of those modified deformations,

which turned out not to increase the local SSD in the

regarded local area, is stored. This spatial deviation is the

quantity that we regard as a local measure of uncertainty of

image registration.24 Note that solely the local SSD is

regarded here, which is calculated from a small environment

of each voxel (see Sec. II D 2 for details).

II.D.1.b. Concept of the enhancement to address dose
mapping. To estimate the uncertainty of dose mapping, the

approach as in Sec. II D 1 a can be extended. The deforma-

tion that resulted from the b-spline registration is randomly

modified, and for each random modification, the local SSD

is recalculated and compared to the initial local SSD. Again,

solely, those modified deformations that do not increase the

local SSD are further regarded. The modification to address

dose mapping is that, among those modified deformations,

which do not increase the local SSD, the largest deviation of

the mapped dose from the dose mapped to the same location

by the initial deformation is determined (please note that the

actual spatial deviation between the initial deformation and

the modified deformation is not relevant here). The maxi-

mum deviation of the mapped dose that was found among

those random modifications that did not increase the local

SSD is stored as a measure of uncertainty for dose mapping.

We call it Dosemax since it is the maximum deviation of

the mapped dose that resulted from any of all the applied

random deformations, which did not increase the SSD. Since

the deformation corresponding to Dosemax is not associated

with a higher local SSD than the initial result of the registra-

tion, it is not possible to tell which deformation is the better

local estimate, the recent deformation or the initial deforma-

tion. Therefore, the recent dose, mapped to the respective

location by the recent modification of the deformation is as

likely the correct mapping as the dose that gets mapped to

this location by the initial result of the b-spline registration.

So, a large deviation between both indicates a large

uncertainty.

Note that only the magnitude of the deviation of the dose

is regarded; so, Dosemax is always positive, and we do not

distinguish whether the corresponding additional random de-

formation increases or decreases the dose that gets mapped

to the respective voxel. The reason is that the maximum pos-

itive deviation may be of similar magnitude as compared to

the maximum negative deviation found at a specific voxel.

As Dosemax describes only the potential presence of dose

mapping errors rather than the true actual dose mapping

error, the sign does not provide any additional relevant infor-

mation for the clinician.
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Section II D 2 describes the algorithm to calculate this

measure of uncertainty iteratively.

II.D.2. The algorithm to estimate the local uncertainty

II.D.2.a. First step: initial registration. In this study, the

“test image” is a CT image, which is supposed to be warped to

match another CT image, which is called “reference image.” A

dose distribution is associated with this test image and warped,

too. The initial deformation field that is needed for this process

is obtained by b-spline registration. After b-spline registration,

the test image and the dose distribution are mapped to the ref-

erence image based on the transformation that was obtained.

After this process, the warped dose and the intensity of the

warped test image are known in each voxel of the reference

image. The local SSD metric is then calculated from a small

volume of 3� 3� 3 voxels around each voxel, and this value

is stored for each voxel as the “initial local SSD.”

II.D.2.b. Second step: variation. The variation algorithm

proposed here aims to calculate a local measure of uncer-

tainty for each voxel, which we call Dosemax. It is calculated

iteratively and set to zero for each voxel at the beginning.

In the first iteration, each coefficient is modified by adding

a random number between �9 and þ9 mm, since registration

errors are likely to have a magnitude below 1 cm, while on

average, the registration errors are smaller as shown in Refs.

16 and 17. The random numbers are equally distributed. After

this modification, the displacement vector field is recalcu-

lated and the test image is redeformed. Then, the local metric

is recalculated for each voxel from the same small environ-

ment, like in step one, and the difference between the actual

and the initial local metric is calculated. The dose distribution

is redeformed as well, and the magnitude of the difference

between the recently and the initially mapped dose is calcu-

lated for the centre of each voxel. In case the recent local

SSD is smaller than or equal to the initial one, the magnitude

of the difference between the actual and the initially mapped

dose is stored for each voxel. In case the local metric has

increased, Dosemax remains unchanged.

This variation of the b-spline coefficients is then repeated

400 times, and in each iteration, Dosemax is replaced only if

the local SSD is smaller than or equal to the initial one that

was calculated right after the registration and if, at the same

time, the replacement leads to storage of a value of Dosemax

that is increased with respect to the previous one. After 400

iterations, Dosemax represents the largest deviation from the

initially mapped dose that was found for any of those random

modifications that did not increase the local SSD. This value is

regarded as a local measure of the dose mapping uncertainty.

In our setting, the algorithm ran about 15 min on a laptop

with a 1.86 GHz single core processor and 32 bit architec-

ture. However, the speed can be improved by an order of

magnitude by using modern state-of-the-art computers and

parallel processing.

II.E. Evaluation of the proposed algorithm

Validation of the proposed algorithm faces two problems:

First, one of the sources of error that we are taking into

account is the lack of image structure, and we wanted to

evaluate the uncertainty of dose mapping in both, regions

with as well as without image structure. In regions without

image structure, however, anatomical landmarks are obvi-

ously not available, since landmarks can only be represented

by image structure. A second problem is that our method is a

stochastic approach. So, a large number of control points are

necessary, but the number of landmarks that can be picket

precisely is very limited, especially in those areas where

image structure is missing. So, picking landmarks is not fea-

sible to validate the algorithm. To circumvent these prob-

lems, a test data set was created based on a deformation

model. Here, the ground truth of the deformation and hence

the true deformation and dose mapping errors are known,

and so this data set was used to test the proposed method as

described below.

II.E.1. Test data

The proposed method was tested using a single CT image

of the thorax of a patient, an exhale image of a 4D CT. An

additional CT image, representing an inhale image, was gen-

erated by artificially deforming the exhale image. Therefore,

the ground truth on the deformation and the true dose map-

ping errors are known and can be compared with the uncer-

tainty estimation by the proposed algorithm.

The deformation model has been described previously in

detail,24 and so only the main features are described here.

The deformation model contains the following aspects of

respiratory motion:

II.E.1.a. Expansion of the lung in craniocaudal direction
during inhale. This aspect was modeled by an offset to the

craniocaudal component of the displacement vectors. The

offset is constant throughout each transversal plane and

decreases in cranial direction. In the area below the dia-

phragm, the offset is set constant for all voxels. The magni-

tude of the decompression ranged between 25 mm at the

diaphragm and 0 mm at the top of the lung.

II.E.1.b. Dilation of the chest wall in the transversal
plane. Dilation was simulated by scaling the chest wall in

the transversal plane. So, a point in the center of the patient

and in the region of the diaphragm was chosen, and a defor-

mation field was then created to stretch the rib cage in each

transversal plane as a function of the distance from this

point. The scaling factor decreases in caudal direction and is

constant below the diaphragm.

II.E.1.c. Tissue sliding between the lung and the rib
cage. To describe tissue sliding between the lung and the rib

cage, a segmentation of the rib cage was performed. The

sliding was then modeled based on two different deforma-

tion fields to describe the deformation inside and outside the

rib cage. The displacement vector field to describe the defor-

mation inside the lung is a superposition of the deformation

fields resulting from step one and two as described above

(denoted as DVFinternal). The deformation field to describe

the deformation outside the lung (DVFexternal) is obtained

from DVFinternal by setting the craniocaudal component of

DVFinternal to zero. DVFexternal is then modified such that the

2189 Hub et al.: A stochastic approach to estimate the uncertainty of dose mapping caused by uncertainties in b-spline registration 2189

Medical Physics, Vol. 39, No. 4, April 2012



boundary region between inside and outside the rib cage is

mapped to the same surface by both deformation fields. As

described in Ref. 24, this is done with the help of an image

registration of two masked images of the lung that were

deformed based on the two different deformation fields

DVFinternal and DVFexternal.

The combined deformation field of the steps one to three

is then given by DVFinternal for the region inside and

DVFexternal for the region outside the rib cage. The 4DCT

exhale image is then warped with this combined deforma-

tion field to obtain the simulated inhale image.

Figure 1 shows the simulated inhale image, which was

used as reference image as well as the exhale image that was

taken from the 4DCT image set and the difference image

between the simulated inhale and the exhale image of the

4DCT.

II.E.2. Evaluation

After applying the proposed algorithm on the test data,

Dosemax is know in each voxel. For our test data set, the

ground truth of the deformation, and hence the true dose

mapping error, is known as well. Therefore, it is possible to

show the relationship between estimated and true dose map-

ping error. For this purpose, the voxels are binned according

to the magnitude of Dosemax, and the average local

dose mapping error (ground truth) is then calculated for the

respective bin. The average local dose mapping error is then

plotted against Dosemax as a histogram to show the depend-

ency between average Dosemax within the respective bin

and the local dose mapping error averaged over voxels of

this bin and therefore averaged over voxels with similar

Dosemax.

III. RESULTS

Figure 2 displays the dependency between the proposed

uncertainty measure Dosemax and the true dose mapping

error. The histogram in Fig. 2(a) shows that the dose map-

ping error averaged over each bin clearly increases with

increasing Dosemax. So, for those voxels with a large

Dosemax, a larger dose mapping error can be expected com-

pared to those voxels, where Dosemax is small. The bounds

of the bins are not equidistant, but chosen such, that the

same number of voxels contribute to each bin. The increase

of the bin size (distance between left and right border

of each bin) strongly increases toward the right hand of

Figs. 2(a) and 2(b), which shows that the number of voxels

per interval of Dosemax decreases with increasing Dosemax.

So, the number of voxels with large values of Dosemax is

low; however, those voxels that have a large measure of

uncertainty, on average, are indeed associated with a large

dose mapping error. Figure 2(b) demonstrates that, among

voxels with similar Dosemax, a large variation of the actual

registration error can be found. The reason is that, although

the image registration error may potentially be large in those

areas, where the image registration metric is insensitive to

FIG. 1. (a) Exhale image taken from the 4DCT image set; (b) simulated inhale; and (c) difference image between exhale and simulated inhale image.

FIG. 2. (a) True dose mapping error as a function of Dosemax and (b) Stand-

ard deviation of the dose mapping error (ground truth) within each respec-

tive bin and thus as a function of Dosemax. The bin sizes are chosen such

that the number of voxels that contribute to each histogram bin is the same.

So, the bounds of the bins are not equidistant. Dose mapping error as well as

Dosemax are denoted in percent of the prescribed dose.
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variations of the b-spline coefficients due to missing struc-

ture, the result does not necessarily have to be incorrect,

since the algorithm may have found the correct displacement

in this point by chance although information was missing.

Figure 3 displays a transversal and a coronal CT image

slice (a, b) and the respective dose distributions (c, d) as well

as the true dose mapping error (e, f), which is known for this

specific test case as well as the proposed uncertainty measure

Dosemax (g, h). Note that the coronal slice does not intersect

the tumour, because, in the area of the tumor, the dose is

rather homogenous and thus not so interesting since the

region where dose mapping errors actually appear is the area

with dose gradients, which is displayed here, see (c, d). The

images displaying Dosemax look similar to those that show

the true dose mapping error, which suggests a correlation.

The correlation coefficient between both quantities was cal-

culated for the whole dataset, including all voxels, and a

value of 0.59 was obtained. So, Dosemax or an image

displaying this quantity as in Figs. 3(g) and 3(h) can be used

to show areas where the dose mapping must be expected to

be uncertain.

IV. DISCUSSION

This paper addresses the uncertainty of dose mapping that

appears due to geometric uncertainties in image registration.

Different approaches have been proposed to estimate the

uncertainty of dose mapping. One is based on the consis-

tency of transformations, resulting from multiple consecu-

tive registrations in reverse directions.22 Dose mapping

uncertainties in context of nonparameterized image registra-

tion have been discussed in Ref. 23. Although both methods

have successfully been applied, they yet do not account for

all sources of uncertainty. As opposed to other approaches

this one is tailored toward parameterized registration meth-

ods, and we demonstrate its performance with b-spline

FIG. 3. Topographic display of the dose mapping error and the estimate, black represents zero and white the maximum value that appeared in the image. (a)

Transversal CT image slice, the white line in (b) shows the location of this transversal slice in the coronal view; (b) Coronal CT image slice, the white line in

(a) shows the location of this coronal slice in the transversal view (c, d) dose distribution of the same slice as in (a, b); (e, f) the true dose mapping error, which

is known for this test case where the ground truth of the deformation is known; and (g, h) estimate of Dosemax.
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registration. It accounts for problems due to homogeneity as

well as misalignment of image structure after registration.

However, it does not aim to solve the mapping problem in

context of tissue growth or shrinkage, since this is an ill

posed mapping problem, because it is generally incorrect to

map dose that was applied to tissue that is present in just one

of the images. So, this method can be applied in a context or

in a subpart of an image, where tissue growth or shrinkage is

not significant. This restriction, however, is not specific to

this approach, rather this is likely to hold for any algorithm

to estimate dose mapping uncertainties.

This method does not aim to determine the true dose map-

ping error; rather, Dosemax provides information, whether a

large dose mapping error must be expected in a specific

image region, compared to other areas of the same image.

The correlation coefficient that expresses the relation

between the true dose mapping error and the proposed quan-

tity as well as the curve in Fig. 3 show that Dosemax can suc-

cessfully discriminate such regions.

When it comes to clinical application of dose mapping,

tools will be needed, which remind physicians of the dose

mapping uncertainty and, moreover, which identify those

image regions where these uncertainties are likely to be a

problem. The display of Dosemax images as in Fig. 3 may be

helpful for this. In this context, in regions with high values

of Dosemax, small dose mapping errors are possible, but, in

areas with small Dosemax, large dose mapping errors are not

likely to appear (Fig. 2).

V. CONCLUSION

An approach to identify areas where dose mapping is

likely to be inaccurate was developed and implemented. It

was evaluated based on artificially created test data and has

the potential to distinguish areas of the image where dose

mapping is uncertain from areas of the same image where

large dose mapping errors are unlikely. This method was

tested for dose mapping, but it may be applied in context of

other mapping tasks as well.
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