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An automated method is developed for the detection and staging of skeletal changes due to
hyperparathyroidism on digitized hand radiographs. Subperiosteal bony resorption, particularly
along the radial margins of the middle and proximal phalanges, is among the earliest manifes-
tations of secondary hyperparathyroidism. In order to quantify the severity of bone resorption
in these regions, the computer method analyzes the roughness of the phalangeal margins, as
projected on the radiograph. The regions of interest, which contain the phalanges, are obtained
from the digitized hand radiographs by an image preprocessor. The radial margin of each
phalanx is detected by a model-guided boundary-tracking scheme. The roughness of these
boundaries is then quantified by the mean-square variation and the first moment of the power
spectrum. A receiver operating characteristic (ROC) study comparing the computer detection
of hyperparathyroidism with the diagnosis by three experienced skeletal radiologists was per-
formed by evaluating 84 hand images from 22 patients. Our present computer method can
achieve a true-positive rate of 94% and a true-negative rate of 92%. Such a computer-aided
diagnosis system may assist radiologists in their assessment of primary and secondary hyper-
parathyroidism, since it is both accurate and not subject to either intra- or interobserver vari-

ations.
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I. INTRODUCTION

Hyperparathyroidism is an endocrine abnormality that
manifests itself in the skeletal system in a predictable man-
ner. Further, the activity of the disease correlates directly
with the severity of skeletal changes. While this may be
primary or secondary in etiology, the most common form
of hyperparathyroidism in the United States is secondary
and is related to chronic renal disease.

Hyperparathyroidism at its early stage causes subperi-
osteal resorption, which most often affects the radial mar-
gin of the middle and proximal phalanges of the index and
middle fingers and all the terminal tufts; these features are
the most sensitive and pathognomonic indicators of disease
activity.!™ This resorption causes a fuzzy lace-like appear-
ance of the phalangeal margin (Fig. 1), which progresses
to a ragged spiculated appearance in the advanced stages of
the disease. We therefore focused our investigation on the
radial margin of the proximal and middle phalanges of the
hand in this study to quantify the degree of subperiosteal
resorption.

At present the diagnosis of hyperparathyroidism is
made by detecting the appearance of the characteristic sub-
periosteal resorption on hand radiographs, by laboratory
findings of increased level of immunoreactive parathyroid
hormone (iPTH) and calcium in the blood.

Serum levels of iPTH concentration are generally more
sensitive than the radiologic findings to diagnose secondary
hyperparathyroidism. However, it has been observed® that
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iPTH levels may temporarily normalize due to fluctuating
levels of serum calcium, while the radiologic examination
still reveals evidence of subperiosteal resorption. Since
changes in the bone would require substained parathyroid
hormone stimulation or suppression for longer periods of
time, the recognition of changes in the bone itself is obvi-
ously important. Although the radiologic findings may
temporarily lag behind the biochemical changes, examina-
tion of hand radiographs is still the preferred method of
evaluating hyperparathyroidism.

Because of the subtle nature of early subperiosteal re-
sorption in the phalanges, there can be significant intra-
and interobserver variations among radiologists in assess-
ing the progression and regression of the disease. Comput-
erized methods may minimize these variations by provid-
ing a reproducible, consistent, and objective evaluation of
the extent of subperiosteal resorption of the phalanges. We
have developed digital methods to analyze the bone resorp-
tion in hand radiographs; our approach to the determina-
tion of boundary roughness as a measure of subperiosteal
resorption along the radial margins of the affected phalan-
ges is presented here.

Il. MATERIALS AND METHODS

A. Overali scheme of the computer detection
algorithm

The overall scheme of our computer detection algo-
rithm is shown in Fig. 2. There are five steps in the digital
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FIG. 1. Subperiosteal resorption on the phalangeal bone.

methods: digitization, preprocessing, boundary tracking,
quantification of the roughness of the boundaries, and clas-
sification of normal and abnormal cases. These steps will
be described in detail in the following sections.
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FIG. 2. Overall scheme of the computer detection algorithm.
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B. Digitization of hand radiographs

Digital images were obtained by digitizing hand radio-
graphs using a Lumisys (Sunnyvale, CA) DIS-1000 laser
scanner. The hand radiographs were selected from files of
patients with chronic renal failure by an experienced skel-
etal radiologist. Adult hand radiographs were taken with
Dupont Quanta Detail/Cronex 10 screen-film systems and
pediatric hand radiographs were taken with Kodak Lanex
Fine screens with Kodak TMG films. The images were
digitized at a pixel size of 0.1 mm X 0.1 mm and 4096 grey
levels. The system is calibrated so that the optical density is
linearly related to the pixel values in the range of 0.1-2.5
optical density units at 0.001 optical density units/pixel
value. The gradient of the curve decreases gradually out-
side this optical density range.

C. Preprocessing—Extraction and rotation of regions
of interest

To conserve image processing time, the regions of inter-
est are extracted from the digitized hand images. An auto-
mated method’ for the extraction of the ROI’s and deter-
mination of the orientation of the phalanx is being
developed. However, for the purpose of this study, these
steps were performed manually to ensure their accuracy.
Each ROI contains the proximal or middle phalanx of the
index or the middle finger. The dimensions of the ROI’s
vary according to the size of the individual phalanx and
range from 30X 50 pixels to 80 110 pixels. If the phalanx
is oriented at an angle relative to the vertical direction of
the digitization matrix, the ROI is rotated so that the lon-
gitudinal axis of the phalanx is aligned with the vertical
direction. This step is important because it standardizes the
geometry of the spatial sampling for all phalanges, thereby
reducing discrepancies in the measurement of boundary
roughness introduced by different sampling geometries
when the boundary points are tracked.

A new pixel in the rotated image is generated by inter-
polation in a 5X5 pixel region centered at the pixel of
interest, with a bicubic spline method.®® The bicubic spline
is chosen because of its property of smoothness in image
interpolation, and being an orthogonally separable two-
dimensional interpolation function. Furthermore, two
kinds of errors, resolution error and interpolation error,
may be introduced by an imperfect interpolation function.
An imperfect interpolation function may attenuate the
high-frequency components of the image leading to a loss
of image resolution, or introduce higher-order spectral
modes leading to interpolation error. By using higher-
order interpolation functions, such as the bicubic spline,
interpolation error is reduced at the expense of resolution
error.’

One of the difficulties in edge detection is caused by the
presence of image noise. In the image preprocessing step,
the ROI may be processed with a median filter for noise
reduction. A median filter'® may remove impulsive noise
while preserving the edge gradient. A median filter thus
appears to be useful for our detection task. The effect of
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such noise-removal preprocessing is also investigated
herein.

D. Model-guided boundary tracking

The target sites of boundary tracking are at the radial
margins of the middle and proximal phalanges of the index
and middle fingers. In order to accurately detect the level
of disease activity, it is important to determine the degree
of roughness of the phalangeal boundaries, both at the
early stage, when subperiosteal resorption is subtle, and at
the advanced stage, when the boundaries are fuzzy. The
hand radiograph has a relatively high contrast compared
with other types of x-ray images. However, the signal-to-
noise ratio is low along the fuzzy boundaries. This requires
that the boundary tracking algorithm be sensitive to detect
fuzzy boundary points with small edge gradients and be
insensitive to image noise. Most edge-detection algorithms
work well when the grey-level transition is abrupt, similar
to a step function. However, as the transition region of the
edge becomes broader and shallower, their accuracy de-
creases, due to the inability in distinguishing the noise or
false edge points from real edge points.

The edge detector used in this study is a one-
dimensional spline function,!! which acts as a linear filter,
as shown in Appendix A. This filter is convolved with an
input window of pixel elements to obtain the filter re-
sponse. The extrema of the filter response are located.
However, the extrema may not correspond to real edge
points in the input window. To reduce these spurious re-
sponses, a pattern matching technique,!' assuming that
only white Gaussian noise is present in the hand images, is
used to select the real edge points. In the presence of other
kinds of image noise including structured noise, the edge
detector may be suboptimal, as is the case here. The filter
response with the selected extrema can then be treated as a
multiple-scale pattern in which edge points are of different
gradients. So a gradient threshold is set to eliminate
“small-gradient” edge points that may be caused by other
image noise.

Our model-guided boundary tracking algorithm consists
of two stages: model building and boundary tracking. For
an input phalanx image, it first generates a model for its
radial margin; the model is then used as a guide in the
boundary-tracking stage to track the detailed features
along the boundary accurately. Figure 3 is a flow chart of
the model-guided boundary-tracking algorithm. In the
model-building stage, the aim of our algorithm is to make
use of the edge detector to locate the dominant outermost
edge points along the radial margin. These edge points
approximately describe the outline of the radial margin
and are referred to as the model points of the phalanx. The
model points are obtained by applying the edge detector
line by line along the horizontal direction. In this study,
the approximate x coordinate of a model point on the start-
ing line is chosen by a human operator. A model-building
window of 41 pixels wide is centered horizontally at the x
coordinate of the model point. The filter response within
the window is computed by convolving the spline function
with the image profile along the line. From the extrema of
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F1G. 3. Flow chart of the model-guided boundary-tracking algorithm.

the filter response, the algorithm chooses the first dominant
edge point, which has a gradient greater than a threshold
selected for model building, as the edge detector scans
from the exterior to the interior across the boundary of the
phalanx. The model-building gradient threshold is chosen
to maximize correct detection based on the statistical prop-
erties of a population of typical hand images, as described
below (Sec. III and Fig. 8). For subsequent lines, the 41-
pixel model-building window is centered at the model
point of the previous line. This procedure is repeated for
128 consecutive horizontal lines centered at the midpoint
of the radial margin. The program then inspects the de-
tected model points and groups them into one or more
segments. Within a segment, the x coordinate of any model
point must be one pixel within that of the model points in
the adjacent horizontal lines. To further reduce spurious
edge points due to noise, any segment that is composed of
two or less model points is considered to be an outlier, and



986 Chang et al.: Detection and characterization of hyperparathyroidism

is deleted. Thus, segments are separated by gaps due to
deletion of outliers or the algorithm not being able to de-
tect model points along one or more of the 128 consecutive
horizontal lines. Based on the knowledge of continuity of
the bone margin, all gaps will be filled by cubic spline
interpolation using the remaining model points. The result-
ing 128 consecutive points form the model, which approx-
imates the outline of the radial margin.

To more accurately locate the radial margin of phalan-
ges affected by either subtle or severe subperiosteal resorp-
tion, the edge detector has to be more sensitive and thus be
able to detect edge points with smaller gradients. The sen-
sitivity of the edge detector may be increased by selecting a
low threshold for the edge gradient. However, such an edge
detector will also be sensitive to image noise and the track-
ing will tend to stray away from the radial margin. Our
model-guided approach allows a sensitive edge detector to
be used in the boundary-tracking stage while reducing the
likelihood of straying away from the radial margin.

The edge detector used for boundary tracking uses the
same spline function as that described for model building
(Appendix A). However, at this stage, the algorithm uses
an 11-pixel wide boundary-tracking window centered
about the x coordinate of the model point obtained during
the model-building stage. When the edge detector scans
from the exterior to the interior across the boundary of the
phalanx within the boundary-tracking window, the first
edge point that exceeds a boundary-tracking gradient
threshold is chosen as a boundary point. The width of the
boundary-tracking window and the boundary-tracking gra-
dient threshold are again optimized for correct detection
based on the sample population of hand images (Sec. III
and Figs. 9 and 10). The choice of the boundary-tracking
gradient threshold represents a compromise such that the
edge detector will be insensitive to noise, without sacrific-
ing the ability of the edge detector to search out fuzzy edge
points in the vicinity of the model points. This procedure is
repeated for the same 128 consecutive horizontal lines
along the radial margin, as in the model-building stage.
The subsequent procedures of grouping boundary points,
deleting outliers, and filling gaps are similar to those de-
scribed above for the model points, except that in grouping
boundary points, the x coordinate of any boundary point
must be two, instead of one, pixels within that of the
boundary points in the adjacent lines.

Figure 4 shows an example in which the model and
boundary points are superimposed on the phalanx, the
boundary points are judged visually to be more accurate
than the model points in following the fuzzy details of the
radial margin. This is also verified by the results from our
ROC analysis (Sec. III and Figs. 8 and 9).

E. Quantification of boundary roughness

To characterize the severity of hyperparathyroidism in
terms of subperiosteal resorption, the boundary roughness
is quantified by the following two feature measures: mean-
square variation, which quantifies spatially the deviation of
the boundary points from an estimated natural smooth
contour of the radial margin, and the first moment or the
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FiG. 4. Model and boundary points superimposed on the phalanx. Black
dots represent the model points and white dots represent the boundary
points. Note that some of the model and boundary points overlap each
other.

weighted spatial frequency of the one-dimensional power
spectrum. A high value of first moment indicates increased
boundary roughness. These boundary-roughness measures
are defined as follows:

Mean-square variation=(1/N)=Y_,|X(n)—X(n)|?
(1)

where X (n) =estimated smooth contour of the radial mar-
gin, X (n) =boundary points, and N=number of boundary
points.

First moment of the power spectrum
N—2

= 2 ALPUD+PU) VUit bS /), @)

where f,=discrete spatial frequency, P(f,)=power spec-
tral value at f, and A f=frequency interval. The power
spectrum is calculated from a finite number of samples
with the maximum entropy method,®!* assuming that the
boundary data is at least wide-sense stationary.

The natural shape of the bone contour varies from one
phalanx to another. The variation in the location of the
boundary points is caused largely by the bone contour. It is
therefore important to correct for this variation in the
boundary location before the true variation due to subtle
erosion in the bony surface can be compared. We estimate
the smooth bone contour by applying least-squares poly-
nomial curve fitting to the detected boundary points (Sec.
III and Fig. 11). The estimated contour is subtracted from
the boundary points. The mean-square variation of the
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FI1G. 5. Plot of the detected boundary points overlaid with its fourth-order
least-squares fitted curve and the contour-corrected boundary.

contour-corrected boundary points will then reflect the ac-
tual roughness due to subperiosteal resorption. Figure 5
shows a plot of the detected boundary points overlayed
with its fourth-order least-squares fit as well as the
contour-corrected boundary points.

Figure 6 shows the power spectra of contour-corrected
boundary points for an abnormal case with hyperparathy-
roidism and a normal case. The total area under the power
spectrum curve is larger in the abnormal case than that of
the normal case, indicating that the radial margin is
rougher in the former. The shape of the curve also indi-
cates that the average spatial frequency of the severe case is
higher than that of the normal case resulting from the
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F1G. 6. Power spectra of contour-corrected boundary points for a normal
case and an abnormal case of hyperparathyroidism.
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contribution of higher spatial frequency components along
the severely affected radial margin.

F. Classification

The computer detection program was applied to each
hand image to obtain the boundary points of the radial
margin of each of the four phalanges. The mean-square
variation and the first moment of the power spectrum for
the four phalanges in each hand were calculated and the
averages of these quantities were determined. The resulting
averaged mean-square variation and the averaged first mo-
ment of the power spectrum were used as the components
of the feature vector in the construction of scatter plots in
a two-dimensional feature space. For each case, three ex-
perienced skeletal radiologists had ranked the severity of
subperiosteal resorption from 0 to 3, with rank 0 as normal
and rank 3 as florid, as described in Sec. II G. We used the
radiologists’ ranking as the “truth” for comparison with
the computer’s performance. For this purpose, all cases of
rank 1 to rank 3 were grouped as abnormal cases and rank
0 as normal cases. Then a classifier is used to classify the
cases as positive or negative using the computer extracted
features. Based on the limited number of cases used in this
study, our analysis shows that the features used for the
classification are not normally distributed. Stepwise logistic
regression,'* which does not make the assumption of mul-
tivariate normality, is thus utilized to classify the features
instead of using discriminant analysis,'> which assumes
multivariate normality. Stepwise logistic regression calcu-
lates the predicted probability of calling a case negative (or
normal), as determined by the features. By selecting dif-
ferent decision thresholds on the predicted probabilities of
calling a case negative, a ROC curve,!*!¢ which expresses
the relationship between the true-positive rate and the
false-positive rate, can be constructed to evaluate the de-
tection accuracy of the algorithm. The dependence of the
computer detection accuracy on the image-processing pa-
rameters can then be determined by comparison of the
ROC curves.

G. Observer study

An observer study was conducted using 84 hand images
from 22 patients. The selected films demonstrated none or
varying degrees of subperiosteal resorption. The left and
right hands were treated as independent cases.

The observer study was conducted with three experi-
enced radiologists who independently ranked each of the
middle and proximal phalanges of the index and middle
fingers based on the degree of subperiosteal resorption (i.e.,
boundary roughness). The four rankings are florid, defi-
nite, subtle and normal, or equivalently, rank 3, rank 2,
rank 1, and rank O, respectively. If there was substantial
disagreement among the radiologists for a particular case,
that is, if the difference in ranking was two or more, they
were asked to rank that case again independently. If there
was still substantial disagreement for that case, the three
radiologists ranked the case together to reach a consensus.
On the other hand, if there was no substantial disagree-
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FIG. 7. Scatter plot of mean-square variation versus first moment of
power spectrum for cases ranked 0, 1, 2, and 3. The mean and standard
deviation of cases of the same rank are also shown. Only one case was
ranked as 3 (florid).

ment among the radiologists in ranking a particular case,
the average ranking obtained from the individual rankings
of the three radiologists is regarded as the consensus rank-
ing. The intra- and interobserver variations are estimated
by the intraobserver and observable interobserver standard
errors, as described by Swets and Pickett.??

lil. RESULTS

The distribution of the rankings among the 84 hands is
as follows: 35 normal or rank 0, 34 subtle or rank 1, 14
definite or rank 2, and 1 florid or rank 3. Figure 7 shows
the scatter plot of the two features for cases ranked 0, 1, 2,
and 3. There is a positive correlation between the computer
determined quantities and the radiologists’ rankings. There
are overlapping regions on the distributions of the features
of these four groups. To visualize the extent of spread and
overlapping, Figure 7 also shows the means and standard
deviations of the feature measures for all the cases in each
rank. At present, our “gold standard” for evaluation of the
computer’s performance is based on visual inspection of
the hand radiographs by experienced skeletal radiologists.
We do not know what portion of the overlap between rank-
ings is due to difficulty in visually distinguishing the subtle
difference in boundary roughness between cases of any two
consecutive ranks. Thus we grouped all cases of rank 1 to
rank 3 as abnormal cases and rank O as normal cases in our
database for the following analysis.

‘To determine the optimal model-building gradient
threshold, boundary-tracking gradient threshold,
boundary-tracking window width and the least-squares fit
order, we evaluated the effect of each parameter on detec-
tion accuracy using ROC analysis.

To investigate the effect of model-building gradient
threshold on accuracy, only the model-building stage of the
model-guided boundary tracking algorithm is executed.
The model points obtained for the four phalanges in each
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of the 84 hand images are fitted with fourth-order least-
squares fit to estimate the phalangeal contour. The two
boundary-roughness measures are then calculated from the
contour-corrected model points. The result is evaluated by
plotting the ROC curves for a range of model-building
gradient thresholds. A few representative ROC curves with
model-building gradient thresholds of 0.04, 0.07, and 0.1
are shown in Fig. 8. By comparing the areas under the
ROC curves for the different model-building gradient
thresholds, we have found that the ROC curve of model-
building gradient threshold of 0.07 provides the maximum
area. Model-building gradient thresholds above 0.1 were
also investigated, but the thresholds were often too high for
the edge detector to detect sufficient edge points to give a
good approximation to the outline of the radial margin in
most of the phalanx images. On the other hand, model-
building gradient thresholds below 0.04 were often too sen-
sitive to image noise and the tracking strays away from the
radial margin. It is also observed visually that a model-
building gradient threshold of 0.07 does give a reliable ap-
proximation to the outline of the radial margin.

The next step was to determine the optimal value of the
boundary-tracking gradient threshold with the model-
building gradient threshold set at 0.04, 0.07, or 0.1,
boundary-tracking window width at 11 pixels, and a least-
squares fit of fourth order. From the ROC curves shown in
Fig. 9, we found that there is no substantial difference in
terms of the area under the ROC curves obtained with
boundary-tracking gradient thresholds of 0.01, 0.04, and
0.07 at a model-building gradient threshold of 0.07. The
ROC curves obtained with a boundary-tracking gradient
threshold of 0.01, 0.04, or 0.07 and with model-building
gradient thresholds of 0.04 and 0.1 (not shown) are all
lower than the curves shown in Fig. 9. It is also observed
that these ROC curves are higher than those with only the
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model-building stage executed (Fig. 8). Therefore, al-
though there is no substantial difference in detection accu-
racy among the different boundary-tracking gradient
thresholds in the range 0.01 to 0.07, there is significant
improvement in detection accuracy when the model-guided
boundary-tracking method is used.

With the model-building gradient threshold at 0.07, the
boundary-tracking gradient threshold at 0.01, and a least-
squares fit of fourth order, we proceeded to choose the
optimal boundary-tracking window width. Figure 10
shows ROC curves with boundary-tracking window widths
of 5, 11, and 17 pixels. Boundary-tracking window width
of 17 pixels is undesirable; this wide window combined
with a sensitive edge detector results in a tendency of
tracking to stray far from the model points. A boundary-
tracking window width of 11 pixels was, therefore, chosen.

We have assessed the effect of the degree of least-squares
fit on the accuracy of the computer detection with the
model-building gradient threshold set at 0.07, the
boundary-tracking gradient threshold at 0.01, and the
boundary-tracking window width at 11 pixels. The result-
ing ROC curves are shown in Fig. 11. The curves for
fourth and fifth orders are similar, whereas the curve for
third order is slightly lower. Since high-order least-squares
fits require more computation time, we have chosen a
fourth-order least-squares fit.

The effect of noise removal with median filtering on the
accuracy of computer detection was also investigated. With
the model-building gradient threshold at 0.07, the
boundary-tracking gradient threshold at 0.01, a boundary-
tracking window width of 11 pixels and fourth-order least-
squares fit, the detection accuracy obtained with and with-
out median filtering is compared in Fig. 12. For a given
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false-positive detection rate, the true-positive detection rate
was lower with median filtering than without median fil-
tering. This result indicates that preprocessing with a noise
smoothing filter may distort the subtle features along the
boundary, thereby reducing the sensitivity of classification
based on boundary roughness. It also indicates the degree
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F1G. 12. Comparison of detection accuracy of the computer method with
and without noise smoothing with median filtering. The model-building
gradient threshold was set at 0.07, boundary-tracking gradient threshold
at 0.01, boundary-tracking window width of 11 pixels and fourth-order
least-squares fitted contour-corrected boundary points. The curve without
median filtering represents the overall detection accuracy of our current
computerized method. The computer achieves a true-positive rate of 94%
at a true-negative rate of 92% (i.e., a false-positive rate of 8%). The area
under the ROC curve is 0.96.

of difficulty and the sensitivity required for analysis of sub-
tle subperiosteal resorption.

Using the set of parameters optimized for detection, we
applied the program to the 84 hands. Figure 13 shows the
histograms of predicted probabilities of calling a case neg-
ative for the normal and abnormal cases, as determined by
logistic regression. The small overlap between the two
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Fi1G. 13. Histograms of predicted probabilities of calling a case negative
for the normal and abnormal cases in our database as determined by
logistic regression. Each probability category has a range of +=0.5.
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groups suggests that our feature vectors are good indica-
tors of subperiosteal resorption caused by hyperparathy-
roidism. This assessment is further confirmed by the ROC
curve without median filtering shown in Fig. 12. At a true-
positive rate of 949, the false-positive rate is 8%, which
corresponds to a true-negative rate of 92%.

IV. DISCUSSION

We have developed a computer algorithm for the detec-
tion of boundary roughness of phalanges due to subperi-
osteal resorption, a skeletal manifestation of primary and
secondary hyperparathyroidism. Our preliminary results
suggest that computer-aided analysis is valuable in the de-
tection of these skeletal changes.

One of the most important objectives of the detection
algorithm is to accurately determine the boundary points
of the radial margins of the phalanges. A pixel size of 0.1
mm was used. We have not attempted to investigate the
relationship between this spatial resolution and the Ny-
quist criterion, neither have we compared the detection
accuracy of this algorithm at higher resolution. Murphey17
has shown by ROC studies that a pixel size of 0.08 < 0.08
mm is required for digitizing magnification (2X ) hand
radiographs in order to obtain observer performance in
detection of mild subperiosteal resorption comparable to
that achieved with the original magnification films. How-
ever, the digitization requirement for hand radiographs
without magnification has not been studied. At present, the
only digital systems available for general radiography are
storage phosphor plate systems. These systems provide a
high resolution mode of 0.1 mmX0.1 mm. In a practical
clinical situation, both data archiving and transmission re-
quirements limit the digitization resolution used.

The correspondence between edge points and extrema in
the filter response using any type of edge detector is im-
portant. To accomplish a one-to-one correspondence, the
edge detector is required to have finite dimension and be
smooth everywhere.!! The edge detector used in our algo-
rithm satisfies such criteria, therefore theoretically, it gives
exact correspondence between an edge point and an extre-
mum in the filter response. If, instead, other kinds of edge
detectors are used, which do not have finite dimension,
such correspondence may not be justified; this causes inac-
curacy in determining the edge location.

We have investigated the effect of the model-building
gradient threshold on the tracking algorithm. The accu-
racy of the boundary-tracking algorithm depends strongly
on the model-building stage. If the model-building stage
gives a very poor approximation to the outline of the radial
margin, the boundary points may not be included within
the borders of the boundary-tracking window. We cannot
simply increase the boundary-tracking window width be-
cause tracking may stray away from the model points due
to various kinds of image noise, including structured noise
such as calcified blood vessels. An adaptive method that
estimates the boundary-tracking window width at each
model point may be more desirable in order to accurately
track the radial margin. Tradeoff between being insensitive
to image noise and being sensitive to fuzzy boundary points
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TABLE 1. Intraobserver standard error for each of the three radiologists.

Number of cases Observer
Consensus selected for
rank repeated reading I II III
0 5 0.447 0.316 0.316
1 18 0.264 0.312 0.289
2 2 0.354 0.000 0.354
3 1 0.000 0.500 0.000

always exists. However, the gradient threshold may be ad-
justed adaptively at each model point depending on the
signal-to-noise ratio within the window.

This study has primarily dealt with quantifying the
boundary roughness of the radial margins of the middle
and proximal phalanges of the index and middle fingers.
To further improve the accuracy of discriminating abnor-
mal from normal cases, additional features may be in-
cluded: one good candidate that may characterize the ra-
dial margin is a feature that quantifies the edge strength of
the boundary. Another possibility would be characteriza-
tion of the trabecular pattern.” It has been suggested that
tuftal erosion, in which the sharp cortical outline of the
terminal tuft is lost, is the earliest manifestation of hyper-
parathyroidism. This could also be characterized by a fea-
ture and used, in addition to those features already men-
tioned, to discriminate the presence and absence of disease.

Since visual assessment of hand radiographs by experi-
enced radiologists is the preferred method of evaluating
hyperparathyroidism, the consensus of the three experi-
enced radiologists was used as the “gold standard.” This
standard is limited by intra- and interobserver variations,
which reduce accuracy in the visual evaluation of progres-
sive subperiosteal resorption. Thus, the evaluation of the
accuracy of the classifier trained, based on such a “gold
standard,” may be biased. We have measured the accuracy
of the observers in terms of the intra- and interobserver
variations in ranking. Table I and Table II, respectively,
show the standard errors'> estimated due to these varia-
tions. If accurately trained, the computer algorithm may be
a more consistent, reproducible, and objective method in
evaluating the phalangeal surface roughness due to subpe-
riosteal resorption in hyperparathyroidism.

Processing time is a crucial consideration in the clinical
settings. In this study, we have not attempted to minimize
the computational time. The most important objective in
this study was to obtain a high detection accuracy. In the

TABLE II. Observable interobserver standard error for cases within each
consensus rank.

Observable
interobserver

Consensus rank standard error

0 0.402
1 0.495
2 0.535
3 0.577
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future, we will evaluate the tradeoffs between detection
accuracy and computational cost for various parameters
used in boundary-tracking and boundary-roughness quan-
tification.

A fully automated detection system has yet to be devel-
oped to be practical in a clinical setting. The selection of
the ROI’s has to be automated and be accurate. Various
input parameters for the computer algorithm need to be
determined in an adaptive manner. More features should
be used to improve the accuracy in quantification of the
boundary roughness. The tufts and trabecular pattern may
also be included for the evaluation of hyperparathyroidism.
More importantly, a large database that includes case sam-
ples that sufficiently represent the population will be re-
quired for training of a clinically practical system. Further,
a reliable “truth” assessment for the case samples is also
critically important. Because of the difficulty of correlating
a biochemical test result with the radiographic manifesta-
tion, as discussed above, an approach to this problem may
be the use of a larger number of experienced skeletal radi-
ologists in the interpretation of the case samples and their
consensus used as the “truth.” This is equivalent to incor-
porating the knowledge of a collection of experienced ra-
diologists into the computer-aided diagnosis system. The
system thus trained may serve as an experienced consult-
ant, which is both accurate and reproducible, to reduce
variation in the performance of human observers. This is
partly inferred from our results that, using the same set of
“optimal” parameters trained with the consensus “truth”
data from three radiologists, the ROC curve of the classi-
fier with the consensus “truth” data (Fig. 12) is either
comparable to or higher than the three ROC curves (not
shown) with the individual “truth” data. The areas under
the ROC curves are 0.96, 0.96, 0.95, and 0.94, respectively;
or alternatively, at a false-positive rate of 8%, the true-
positive rates are 94%, 93%, 87%, and 76%, respectively.
The classifier therefore has been trained to provide a diag-
nosis in close agreement with the panel of radiologists and,
as such, it may provide a second opinion to the individual
radiologists if it is consulted during their individual read-
ings.

V. CONCLUSION

We have developed a computer algorithm to detect sub-
periosteal resorption in patients with hyperparathyroidism
from digitized hand radiographs. Our preliminary results
indicate that we can achieve a sensitivity of 94% at a spec-
ificity of 92%, based on the consensus rankings of three
radiologists. Our observer study indicates that there are
substantial intra- and interobserver variations in the eval-
uation of the subtle skeletal changes, even among experi-
enced radiologists. The computer-aided diagnosis system,
if accurately trained, may improve the reproducibility and
consistency in detection and staging of hyperparathy-
roidism. Further improvement in the boundary-tracking
technique is needed to ensure accurate tracking of even the
severely affected phalanges. Finally, a larger database must
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be collected in order to establish the reliability and consis-
tency of the computerized method when applied to cases
encountered in the general population.

APPENDIX A: EDGE DETECTION

The edge detector used in our study has the following
form:!!

(—6t(t+A)
—T_’ - <t<0y

"()=A {6t(t—4)

' (1) %3——, 0<t<d, (A1)
10, otherwise,

where ¢’ (¢) is the derivative of ¢(¢) and A is a normalizing
constant, such that [ * _&(2)G(#)dt=1. G(t) is the point
spread function of the digitizer and is approximated by the
Gaussian function:

1
G(1) =m

where o> 0 is determined by the system. In this study, o is
assumed to be 0.8 pixels, as suggested in Ref. 11, and
{

e(—t2/202)’ (A2)

—;T (21434)+1, —A<I<O,

¢(t) =4 (A3)

t2
T (2:-34)+1, 0<it<4,

0, otherwise,

¢(1)*G(2), where * denotes the convolution operator, is
the scaled pattern used in pattern matching'! to find the
real edge points from the extrema 7'(¢;) of the filter re-
sponse 7'(2), for j=1,..., which are superimposed with
noise response. To have a match, the mean and variance of
T(t)—-T(t;)[¢(2)*G(2)] have to be approximately equal
to E{n} [* ¢"(t)dtand [=_|F[¢'](s)|*P,(s)ds, respec-
tively, where E{n} is the ensemble average of an ergodic
noise process n, which is assumed to be white Gaussian
noise; F[¢’](s) is the Fourier transform of ¢’ (¢); and P,(s)
is the power spectrum of ».
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