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Purpose: To develop a new texture-field orientation �TFO� method that combines a priori knowl-
edge, local and global information for the automated identification of pectoral muscle on mammo-
grams.
Methods: The authors designed a gradient-based directional kernel �GDK� filter to enhance the
linear texture structures, and a gradient-based texture analysis to extract a texture orientation image
that represented the dominant texture orientation at each pixel. The texture orientation image was
enhanced by a second GDK filter for ridge point extraction. The extracted ridge points were
validated and the ridges that were less likely to lie on the pectoral boundary were removed auto-
matically. A shortest-path finding method was used to generate a probability image that represented
the likelihood that each remaining ridge point lay on the true pectoral boundary. Finally, the
pectoral boundary was tracked by searching for the ridge points with the highest probability lying
on the pectoral boundary. A data set of 130 MLO-view digitized film mammograms �DFMs� from
65 patients was used to train the TFO algorithm. An independent data set of 637 MLO-view DFMs
from 562 patients was used to evaluate its performance. Another independent data set of 92 MLO-
view full field digital mammograms �FFDMs� from 92 patients was used to assess the adaptability
of the TFO algorithm to FFDMs. The pectoral boundary detection accuracy of the TFO method was
quantified by comparison with an experienced radiologist’s manually drawn pectoral boundary
using three performance metrics: The percent overlap area �POA�, the Hausdorff distance �Hdist�,
and the average distance �AvgDist�.
Results: The mean and standard deviation of POA, Hdist, and AvgDist were 95.0�3.6%,
3.45�2.16 mm, and 1.12�0.82 mm, respectively. For the POA measure, 91.5%, 97.3%, and
98.9% of the computer detected pectoral muscles had POA larger than 90%, 85%, and 80%,
respectively. For the distance measures, 85.4% and 98.0% of the computer detected pectoral bound-
aries had Hdist within 5 and 10 mm, respectively, and 99.4% of computer detected pectoral muscle
boundaries had AvgDist within 5 mm from the radiologist’s manually drawn boundaries.
Conclusions: The pectoral muscle on DFMs can be detected accurately by the automated TFO
method. The preliminary study of applying the same pectoral muscle identification algorithm to
FFDMs without retraining demonstrates that the TFO method is reasonably robust against the
differences in the image properties between the digitized and digital mammograms. © 2010
American Association of Physicists in Medicine. �DOI: 10.1118/1.3395576�
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I. INTRODUCTION

Computerized analysis of mammograms can assist radiolo-
gists in detection and characterization of breast lesions, and
estimation of breast density that may be used for prediction
of breast cancer risk. We have previously developed a com-
puterized system, mammographic density estimator
�MDEST�, to estimate breast density automatically on digi-
tized film mammograms �DFMs�.1 For each mammogram,
the breast region was first segmented by breast boundary
detection and, for the mediolateral oblique �MLO� view, with

additional pectoral muscle trimming. A gray level threshold
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was then automatically determined to segment the dense tis-
sue from the breast region. The breast density was estimated
as the percentage of the segmented dense area relative to the
breast area. Our previous study1 indicated that the computer-
estimated mammographic breast density correlated closely
with the “reference standard” obtained by averaging five ex-
perienced radiologists’ manual segmentations and the aver-
age bias was much less than that of the radiologists’ visual
estimation. However, density estimation on MLO-view
mammograms was not as accurate as that on CC-view mam-
mograms. For example, because the pectoral region has

higher brightness than the fatty regions in the breast, if the
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pectoral muscle is not completely excluded, the residual pec-
toral region will be counted as dense area and will cause an
overestimation of the breast density. Conversely, if the
trimmed pectoral region inadvertently includes some of the
dense area adjacent to the pectoral region, the breast density
may be underestimated. Accurate segmentation of the pecto-
ral muscle on MLO-view mammograms can reduce the bias
in mammographic density estimation and improve the per-
formance of our MDEST method.

Automatic identification of the pectoral muscle is also an
essential step in other mammographic image analysis appli-
cations. For example, it can enable region-specific process-
ing in lesion detection programs to reduce false negatives.
False positives can be reduced if the detected objects in the
pectoral muscle area can be selectively suppressed. The pec-
toral muscle may also be used as a reference in image reg-
istration algorithms for multiple-view analysis of
mammograms.2–4

A few studies have been presented to identify the pectoral
muscle to date. In the study of the classification of parenchy-
mal patterns, Karssemeijer et al.5 applied Hough transform
and thresholding method to detect the pectoral muscle, based
on the assumption that the boundary of the pectoral muscle is
approximately a straight line at an angle between 45° and
90° in the oblique view. Although 615 oblique mammograms
were used as a test set for the evaluation of parenchymal
pattern classification, the performance of the pectoral muscle
detection was not reported in the study. Ferrari et al.6 imple-
mented and modified the Hough transform method by
Karssemeijer et al.5 To overcome the limitation of the
straight line representation of the pectoral muscle, a Gabor
filter-based edge enhancement method was used to improve
their initial pectoral muscle detection technique. The pectoral
muscle edges were manually drawn by the author, checked
by a radiologist, and used as reference regions for perfor-
mance evaluation. The pixels identified by computer but out-
side the reference region were defined as false positive �FP�
pixels, and the pixels within the reference region but missed
by computer were defined as false negative �FN� pixels. FP
and FN were normalized with the reference region size. The
Gabor filter-based method resulted in average FP and FN
rates of 0.58% and 5.77%, respectively, for 84 MLO testing
mammograms. Ma et al.7 used two image segmentation
methods based on graph theory in conjunction with active
contour to segment pectoral muscle in screening mammo-
gram. One method was based on adaptive pyramids �APs�
and the other was based on minimum spanning trees �MSTs�.
Using the same data set of 84 MLO test mammograms and
the reference standard as those in Ferrari’s study,6 the aver-
age FP and FN rates of 3.71% and 5.95%, respectively, were
obtained by the AP method, and 2.55% and 11.68%, respec-
tively, by the MST method �MST method did not detect the
pectoral muscle in two mammograms; the average FP and
FN were based on 82 mammograms accordingly�. Several
other studies first approximated the pectoral muscle edge by
a straight line, which was then refined using techniques such
as neural network,8 Radon transform,9 iterative cliff

10 11 12
detection, voting scheme, and region growing. The de-
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tection performance in all these studies were evaluated with
small data sets �less than 100 mammograms�, except for the
studies by Kwok et al.10 �322 mammograms�, Raba et al.12

�300 mammograms�, and Kinoshita et al.9 �540 mammo-
grams�. However, the performance of the iterative cliff de-
tection method by Kwok et al.10 was only visually assessed
by radiologists using a five-point assessment scale, who rated
83.9% of the segmentation as adequate or better, and no
pixelwise quantitative evaluation was performed. The perfor-
mance of the region growing method by Raba et al.12 was
also visually inspected by a radiologist who classified 98%
and 86% of the 320 images as “near accurate” and “good,”
respectively. The Radon transform based method by Ki-
noshita et al.9 achieved accurate pectoral muscle segmenta-
tion in 28.9% �156/540� and acceptable in 40.7% �220/540�,
but unacceptable in 30.4% �164/540� of the mammograms
compared to a radiologist’s manual segmentation.

The pectoral muscle boundary on a mammogram can be
complicated, especially for the improperly positioned views
and when dense glandular tissue overlaps with the pectoral
muscle region. Figure 1 shows examples of four typical pec-
toral muscle patterns observed in our studies that are chal-
lenging for automated detection: �1� Dense breast containing
large area of dense fibroglandular tissue overlapping the pec-

(a) (b) (c)

(d) (e) (f)

(g) (h)

FIG. 1. Examples of different patterns of pectoral muscle on the mammo-
grams that are challenging for automated pectoral muscle detection. ��a� and
�b� Dense breast containing large area of fibroglandular tissue overlapping
the pectoral muscle; ��b�, �c�, �e�, and �g�� skin fold located in the upper
region of the breast mimicking pectoral muscle boundary; � �b�, �d�, �e�, and
�h�� fuzzy pectoral edges in the lower region of the pectoral muscle; and ��f�
and �g�� small pectoral muscle.
toral muscle �Figs. 1�a� and 1�b��; �2� skin fold located in the
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upper region of the breast mimicking pectoral muscle bound-
ary �Figs. 1�b�, 1�c�, 1�e�, and 1�g��; �3� fuzzy pectoral edges
in the lower region of the pectoral muscle �Figs. 1�b�, 1�d�,
1�e�, and 1�h��; and �4� small pectoral muscle region �Figs.
1�f� and 1�g��. Note that the small bright triangle region in
the upper-right corner of Fig. 1�h� is not the pectoral muscle,
but may be detected mistakenly by the computer because of
its strong and straight edge and location. The complicated
and varied patterns seen in these examples illustrate the dif-
ficulties for computerized pectoral muscle detection. A large
number of studies on CAD methods for mammography have
been reported in the literature; however, few studies evalu-
ated the performance of a specific automated pectoral muscle
identification method using a large data set in comparison to
radiologist’s manual segmentation as a reference standard. It
is not clear whether the published methods are robust against
the difficult situations demonstrated in Fig. 1. Although the
difficult cases may only constitute a small fraction of all
cases, they are major hurdles to the full automation of ad-
vanced CAD techniques.

From our experiences in analysis of mammograms and a
previous study on pectoral muscle trimming,1–4 we have ob-
served that the texture orientation and the local and global
features in the pectoral region may be useful for detection of
pectoral muscle boundary. In this study, we developed a new
texture-field orientation �TFO� method that utilized two
gradient-based directional kernel �GDK� filters to enhance
pectoral edges. The first GDK filter was used to enhance the
linear texture structures, and then a gradient-based texture
analysis was designed to extract a texture orientation image
that represented the dominant texture orientation at each
pixel. The texture orientation image was enhanced by a sec-
ond GDK filter for ridge point extraction. After validation of
the extracted ridge points, a shortest-path finding method
was used to estimate the probability of each ridge point lying
on the true pectoral boundary. Finally, the pectoral boundary
was tracked by searching for and connecting the ridge points
with higher probability. The accuracy of the pectoral bound-
ary detection was evaluated on a large independent data set
by comparison with an experienced breast radiologist’s
manually drawn pectoral boundary. The robustness of the
algorithm was further evaluated on an independent data set
of full field digital mammograms �FFDMs�.

II. MATERIALS AND METHODS

II.A. Data sets

A data set of 260 four-view screen-film mammograms
from 65 patients was used to evaluate the performance of an
automated breast density segmentation method in our previ-
ous study.1 In this study, 130 MLO-view mammograms from
the above data set were used as a training set for the devel-
opment of pectoral muscle identification method. An inde-
pendent data set of 637 MLO-view mammograms from 562
patients was used as a test set. Among the 637 mammo-
grams, 531 mammograms from 463 patients were randomly
selected from the patient files of an ongoing NIH supported

and Institutional Review Board �IRB� approved genetic
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study of breast density in women from the Old Order Amish
population of Lancaster County, Pennsylvania.13 Another
106 mammograms from 99 patients were collected from the
patient files in the Radiology Department at the University of
Michigan �UM� hospital with IRB approval. The mammo-
grams were digitized with a LUMISYS 85 laser film scanner
with a pixel size of 50�50 �m2 and 4096 gray levels. The
gray levels are linearly proportional to optical densities
�O.D.s� from 0.1 to greater than 3 O.D. units. To reduce
processing time and noise, the full resolution digitized mam-
mograms were first smoothed with a 16�16 box filter and
subsampled by a factor of 16, resulting in a pixel size of
800�800 �m2 with approximately 225�300 pixels in an
image.

A data set consisting of FFDMs of 92 patients with 92
MLO-view images collected from the patient files in the Ra-
diology Department at the UM hospital was used as an inde-
pendent test set to evaluate the feasibility of applying our
pectoral muscle identification method to FFDMs without re-
training. The FFDM was acquired with a GE Senographe
2000D system. To avoid the changes in image quality in the
“For Presentation” images processed by the manufacturer’s
proprietary image enhancement methods that may change
over time, we generally use the raw images as input to our
computerized image analysis algorithms. A logarithmic
transform was applied to the raw FFDM to convert the linear
relationship of x-ray intensity vs pixel value to a logarithmic
relationship and 12-bit gray levels.14 The image after loga-
rithmic transform was smoothed with an 8�8 box filter
and subsampled by a factor of 8 to a pixel size of
800�800 �m2 to match the same input resolution as that of
the DFMs.

For each MLO-view DFM and FFDM, an experienced
Mammography Quality Standards Act �MQSA� radiologist
visually inspected the image displayed on a monitor with a
graphical user interface and used the windowing function to
enhance the visibility of the pectoral muscle boundary. The
pectoral muscle boundary was manually drawn by the radi-
ologist using the cursor, which was then used as the refer-
ence standard for the evaluation of the computer perfor-
mance. The radiologist also rated the visibility of the pectoral
muscle on a four-point scale, and the breast density in terms
of breast imaging reporting and data system �BI-RADS�
category15 for each MLO-view mammogram. Among the
637 MLO-view DFMs that were used as an independent test
set, 60.3%, 23.1%, 10.5%, and 6.1% of these 637 mammo-
grams were rated as one of four categories from high to low
visibility of pectoral boundaries, respectively. For the density
classification, 21.0%, 52.0%, 22.0%, and 5.0% of the 637
MLO-view DFMs were rated as BI-RADS categories 1 to 4,
respectively.

II.B. Methods

II.B.1. Enhancement in pectoral muscle edges

With the assumption that there exists a dominant orienta-
tion at each pixel within a texture pattern, an “orientation

image” can be computed from the gray level mammogram
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using least mean squares estimation based on the optimal
solution of Rao.16 Let gx�u ,v� and gy�u ,v� represent the
horizontal and vertical gradients at pixel �u ,v� in the image.
The gradient magnitude is computed as
Gu,v=�gx

2�u ,v�+gy
2�u ,v�, and the gradient orientation is

computed as �u,v=arctan�gy�u ,v� /gx�u ,v��. The sum-of-
squares S in an M �N local neighborhood centered at pixel
�i , j� can be computed as

S = �
u=1

M

�
v=1

N

Gu,v
2 cos2��u,v − ��i, j�� , �1�

where S is the sum of the squared gradient magnitudes pro-
jected along a direction ��i , j� in this neighborhood. ��i , j� is
referred to as the dominant orientation when S is the maxi-
mum. The maximum of S with respect to ��i , j� can be found
by solving the equation �dS /d��i , j��=0, the left-hand side
of which is given by

dS

d��i, j�
= 2�

u=1

M

�
v=1

N

Gu,v
2 cos��u,v − ��i, j��sin��u,v − ��i, j�� .

�2�

Thus, the dominant orientation ��i , j� can be estimated as

��i, j� =
1

2
tan−1� �u=1

M �v=1
N Gu,v

2 sin 2�u,v

�u=1
M �v=1

N Gu,v
2 cos 2�u,v

�
=

1

2
tan−1� �u=1

M �v=1
N 2gx�u,v�gy�u,v�

�u=1
M �v=1

N �gx
2�u,v� − gy

2�u,v��
� . �3�

In our study, the dominant orientation ��i , j� was estimated
in a 5�5�M =N=5� local region. The size of the local region
was chosen by experimenting with the training set. If the size
is too small, the orientation of the texture will not converge
and the estimated dominant orientation is very noisy. If the
size is too large, the local region may contain more than one
major linear texture structures with different orientations,
which can diffuse the dominant orientation of the textures
depicting the pectoral muscle boundary. An appropriate size
will be more effective in enhancing the linear texture struc-
tures. However, given the varied textures on individual mam-
mograms, the choice of the 5�5 kernel size is only a com-
promise among the population as estimated from the training
set, rather than the optimal for each type of pectoral muscle
textures.

The MLO view is preferred over a lateral 90° projection
in screening mammography because more of the breast tis-
sue in the upper outer quadrant of the breast and the axilla
can be imaged. On the MLO view, the pectoral muscle is
depicted obliquely from above and down to the level of the
nipple or further down. The medial �middle� portion of the
breast should be prominent in the MLO view. The orientation
of the digitized image can be automatically determined by
the curvature of the breast boundary. To facilitate image pro-
cessing, all mammograms �regardless of laterality� were first
oriented such that the chest wall was on the right side. We
could then assume that the direction of the pectoral muscle

boundary ran approximately from top left to bottom right
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with greater than 45° angulation. We developed a GDK filter
to enhance the linear texture structures on the mammogram
at approximate 45° from top left to bottom right. The filter
kernel is defined as:

h1 = 	
a a a . . . a

b a a . . . a

b b a . . . a

. .

. .

b b . . . b a


 h2 = 	
a . . . a a a

a . . . a a b

a . . . a b b

. .

. .

a b . . . b b


 , �4�

where, a=1 and b=−1. The size of the kernel h1 and h2 was
chosen to be 11�11 pixels �8.8�8.8 mm2�, which is about
two times of the local region for estimation of the dominant
texture orientation, described above.

The gradient at pixel �u ,v� is estimated by convolving the
image f with the kernels defined in Eq. �4� as follows:

gx�u,v� = f�u,v� � h1

gy�u,v� = f�u,v� � h2. �5�

Combining Eqs. �3� and �5�, the dominant orientation ��i , j�
can be used to enhance the texture pattern around the pecto-
ral muscle, where strong gray level changes occur along the
direction normal to the pectoral muscle edge.

Due to the presence of noise, the estimated local texture
orientation may not always be correct. The orientation image
is then smoothed using an edge preserving mean shift
algorithm17 that iteratively shifts each pixel to the average of
the pixels in its neighborhood.

The texture patterns with dominant texture orientations
directing from top left to bottom right, which are more likely
to be the pectoral edges, are enhanced by applying a second
GDK filter to the smoothed orientation image. The kernel of
the second GDK is defined as

h = 	
b1 . . . b4 a1 . . . a5

. . . .

. . . .

b1 . . . b4 a1 . . . a5


 , �6�

where am=1 �m=1, . . . ,5�, bn=−1 �n=1, . . . ,4�, and the size
of the kernel h was chosen to be 9�9 �=7.2�7.2 mm2�.
After the first GDK filtering followed by mean shift smooth-
ing, the pixels located at the pectoral boundary with sharp
edges form band structures along the pectoral boundary. By
experimenting with the kernel size of the second GDK filter
on the training set, it was observed the band structures along
the pectoral boundary could be enhanced to be ridges with
kernel sizes in the range of eight to ten pixels, while most
other structures, including the band structures not matched
with the filter kernel, would be suppressed. The kernel size
was therefore chosen to be 9�9 pixels. In this step, a GDK
filter that enhanced the horizontal gradient was found to be
sufficient because most of the pectoral boundary had an ori-

entation greater than 45°.
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Figure 2�b� shows an example of the smoothed orientation
image. The texture along the direction of the pectoral muscle
edge is enhanced to form band structures, while the glandu-
lar tissues overlapping with the pectoral muscle in the ap-
proximately normal direction are suppressed. Figure 2�c�
shows the image enhanced by the second GDK filter in
which the band structures that match the kernel are enhanced
as ridges. Candidate edges of the pectoral muscle are de-
tected on the enhanced orientation image using a ridge de-
tection algorithm. The ridges are extracted by searching for
the local maximum along the approximately 45° direction
from top left to bottom right. Figure 2�d� shows the ridges
extracted from the ridge image shown in Fig. 2�c�.

II.B.2. Identification of pectoral muscle boundary
II.B.2.a. Validation of the ridge points. After the ridges

are detected as candidate pectoral muscle edge points, a ridge
validation process is used to remove the ridges that are less
likely to lie along the pectoral boundary by the following
knowledge-based decision criteria: �1� For a single segment
connected by ridge points, a straight line is fitted to deter-
mine the line direction of this single segment. If the differ-
ence between the line direction and the presumed pectoral

(a) (b) (c)

(d) (e) (f)

(g) (h)

FIG. 2. Example of images of pectoral boundary enhancement and edge
tracking in the intermediate steps of the new pectoral muscle detection
method based on texture-field orientation. �a� Original image; �b� texture
orientation image after first GDK filter and texture-flow analysis; �c� ridge
image enhanced by the second GDK filter; �d� detected ridges; �e� validated
ridges; �f� probability pF, the pixel intensity represented the probability of
having the shortest paths passing through the pixel; �g� tracked pectoral
edges on image �f�; and �h� the final identified pectoral boundary after run-
ning box smoothing along the edge.
orientation is large than 45°, then the ridge segment will be
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eliminated. �2� A single segment containing a small number
of points �less than ten� is removed without line fitting. �3�
For each ridge segment validated by �1�, two bands are
formed parallel to the ridge segment on its left and right with
the segment as the centerline. The average gray level within
each band is calculated. Because the pectoral region is as-
sumed to have higher brightness, if the average gray level in
the left band is higher than that in the right band, then the
current ridge segment will be removed as noise. Figure 2�e�
shows a number of ridge points that were validated to be
along the pectoral orientation.

II.B.2.b. Tracking of the pectoral muscle boundary. To
track the true pectoral muscle boundary points, a seed point
has to be determined. Because most of the pectoral muscle
boundaries can be fitted to a straight line or a second-order
curve, we can consider the pectoral boundary to be the short-
est path traveling through validated ridge points from top left
to bottom right.

The image containing ridge points can be considered a
graph with ridge points as vertices. The algorithm Dijkstra18

is a greedy algorithm that can solve the problem of finding
the shortest path from a single vertex to all other vertices in
a weighted graph. In graph theory, a graph is a set of objects
called vertices connected by links called edges. Let V denote
a set of all vertices in the weighted directed graph G. An
ordered pair of vertices � and � is connected by an edge
from � to �, and the weight w�� ,�� of the edge connecting
vertices � and � is the non-negative cost of moving from
vertex � to �. Starting from vertex s and initializing all ver-
tices in the graph to be not-yet-visited vertices, Dijkstra’s
algorithm repeatedly visits the closest not-yet-visited vertices
and selects the vertex with the shortest-path cost to the start-
ing vertex s, adding it to the set of vertices already visited.
The weights of all vertices adjacent to the currently selected
vertex are then updated, which is commonly referred to as
“relaxation” of the edges between the vertices. The algorithm
ultimately connects all vertices reachable from the starting
point with the shortest path.

In our study, the image containing detected ridges consti-
tutes a directed graph, where the ridge points are graph ver-
tices and the oriented gray level gradients of ridge points
represent edges of the graph. From a starting vertex s in the
image, a map of shortest paths from all vertices to s is cal-
culated using Dijkstra’s algorithm. With the assumption that
the pectoral edge intercepts the top and the right of the im-
age, as shown in Fig. 3, the shortest-path searching method is
applied to the ridge image at multiple starting points along
the top margin of the image to extract the ridge paths ending
at multiple points along the right margin of the image.

Let S be a set of starting vertices S= �s1 , . . . ,sm�, and T a
set of destination vertices T= �t1 , . . . , tn�. Then K=m�n
shortest paths from S to T can be found by using Dijkstra’s
algorithm. Let Pk�x ,y si , tj� be a binary index such that
Pk�x ,y si , tj�=1 if point �x ,y� is on the shortest path k from

si to tj, otherwise, Pk�x ,y si , tj�=0. An image F�x ,y� can
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then be generated to count the number of paths passing
through a point �x ,y� by summing over all of the paths as
follows:

F�x,y� = �
k=1

K

Pk�x,ysi,tj�, i = 1, . . . m; j = 1, . . . ,n .

Therefore, the probability of a ridge point �x ,y� having K
shortest paths passing through it is given by

pF�x,y� = F�x,y�/K .

Figure 2�f� shows an example of a probability image. In the
probability image, the higher gray level of a point, the higher
probability of this point being tracked as a true pectoral edge
because more shortest paths pass through this pixel.

The seed point for tracking the pectoral boundary is then
determined at the point having a maximum probability value
of pF. Note that the number of points having a maximum pF

can be greater than one because an equal number of paths
can pass through different ridge points. If more than one
point with the maximum pF are found, the cluster containing
the maximum number of ridge points is determined by a
connected component analysis. The seed point is then iden-
tified as the center of the cluster. Note that the seed point
may not be one of the points at the top or right edge. It can
be located within the breast region.

Once the seed point is determined, the tracking of the
pectoral boundary is performed upward and downward.
Starting from the seed point, the pectoral boundary point is
found as the local maximum probability of pF by a line-by-
line search within a small window �window size=16 mm or
20�20 pixels�. A box smoothing filter is finally used to
smooth the tracked points to generate the final pectoral
muscle boundary. Figures 2�g� and 2�h� show the initial
tracked pectoral edges and the final identified pectoral

s1 sms2
t1
t2

tn
FIG. 3. Illustration of the shortest-path search with different starting �solid
dots� and ending points �open dots�.
boundary after box smoothing.
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II.B.3. Performance evaluation

The pectoral muscle boundary manually drawn by an ex-
perienced MQSA radiologist for each MLO-view mammo-
gram was used as the reference standard for the evaluation of
the performance of our automated pectoral muscle detection
method. Let C= �c1 ,c2 , ¯ ,cp� be computer-identified pecto-
ral boundary that contains p singly connected points, and
R= �r1 ,r2 , ¯ ,rq� be radiologist’s manually drawn pectoral
muscle boundary that contains q singly connected points.
The Euclidean distance between a computer-identified pecto-
ral point ci and a reference standard point rj is Dist�ci ,rj�, or
equivalently, Dist�rj ,ci�. For each MLO-view mammogram,
the accuracy of pectoral boundary detection is evaluated by
three performance metrics

�1� Percent overlap area �POA�

POA�C,R� =
AC � AR

AC � AR
,

where AC and AR are the computer detected pectoral
muscle area and the reference standard pectoral muscle
area enclosed by the boundaries C and R, respectively.

�2� Hausdorff distance �Hdist�

Hdist = max� max
i��1,. . .,p�

� min
j��1,. . .,q�

�Dist�ci,rj���, max
j��1,. . .,q�

�� min
i��1,. . .,p�

�Dist�rj,ci���� .

�3� Average distance �AvgDist�

AvgDist =
1

2
� 1

p
�
i=1

p

min
j��1,. . .,q�

�Dist�ci,rj��

+
1

q
�
j=1

q

min
i��1,. . .,p�

�Dist�ri,cj��� .

The distance measures are calculated in units of mm
�1 pixel=0.8 mm�.

III. RESULTS

III.A. Accuracy of computerized pectoral muscle
detection on digitized film mammograms

Figure 4 shows examples of the computer-identified pec-
toral boundary corresponding to the mammograms shown in
Fig. 1, which are typical pectoral muscle patterns that are
challenging for automated detection.

For the test data set of 637 MLO-view mammograms, the
mean and standard deviation of the POA are 95.0�3.6%
�Table I�. The mean and standard deviation of the Hdist, and
the AvgDist are 3.45�2.16 and 1.12�0.82 mm, respec-
tively. Figure 5�a� shows the cumulative percentage of im-
ages having POA greater than a certain value; 91.5% �583/
637�, 97.3% �620/637�, and 98.9% �630/637� of computer
detected pectoral muscles had percent overlap area greater
than 90%, 85%, and 80%, respectively. For the distance mea-
sures �Fig. 5�b��, 85.4% �544/637� and 98.0% �624/637� of

computer detected boundaries had Hausdorff distances
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within 5 and 10 mm from the reference boundaries, respec-
tively, and 99.4% �633/637� of computer detected pectoral
muscle boundaries had average distances within 5 mm from
the reference boundaries.

III.B. Accuracy of computerized pectoral muscle
detection on full field digital mammograms

Our TFO algorithm was directly applied to the test set of
92 MLO-view FFDMs without retraining, after the raw
FFDM images were preprocessed using logarithmic trans-
form and reduced to 800 �m pixel size to match the pixel
size of the DFMs used for training and testing of the algo-
rithm. In comparison with radiologist’s manually drawn pec-
toral muscle boundary, the mean and standard deviation of
the percent overlap area POA are 89.3�12.7%. The mean
and standard deviation of the Hdist and AvgDist are
5.37�4.74 and 2.54�4.04 mm, respectively. For the POA

FIG. 4. Examples of pectoral boundary detected by the TFO method super-
imposed on the mammograms shown in Fig. 1.

TABLE I. The agreement of computerized pectoral boundary detection with
reference to an experienced radiologist’s manually drawn boundaries for 637
MLO-view DFMs and 92 MLO-view FFDMs.

POA
�%�

Hdist
�mm�

AvgDist
�mm�

DFM Mean 95.0 3.45 1.12
Standard deviation 3.6 2.16 0.82

FFDM Mean 89.3 5.37 2.54
Standard deviation 12.7 4.74 4.04
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measure, 75.0% �69/92�, 87.0% �80/92�, and 89.1% �82/92�
of computer detected pectoral muscles had percent overlap
area greater than 90%, 85%, and 80%, respectively. For the
distance measures, 65.2% �60/92� and 91.3% �84/92� of
computer detected boundaries had Hausdorff distances
within 5 and 10 mm from the reference boundaries, respec-
tively, and 91.3% �84/92� of computer detected pectoral
muscle boundaries had average distances within 5 mm from
the reference boundaries.

III.C. Observer variability for identifying pectoral
muscle

The subset of 106 MLO-view digitized film mammo-
grams collected at the University of Michigan was used to
study the effect of the variability in the reference standard on
the performance evaluation. For each mammogram, the pec-
toral muscle boundary was manually drawn by the same ex-
perienced MQSA radiologist twice �R1 and R2� with an in-
terval of about one year. Table II shows the agreement
between the two hand-drawn pectoral muscle boundaries by
the same radiologist and between the computer detected pec-
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FIG. 5. Cumulative percentage of images having the performance metrics
greater than a certain value for the test data set of 637 MLO-view mammo-
grams. �a� Percent overlap area between TFO-detected pectoral muscle area
and reference standard pectoral muscle area and �b� two distance measures
between the TFO-detected pectoral boundary and manually drawn pectoral
boundary.
toral muscle boundary and the radiologist’s manual segmen-
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tation. For the intraobserver variability evaluation, the results
show that the average and the standard deviation of POA, the
Hdist, and the AvgDist are 92.8%�4.85%, 4.44�2.62 mm,
and 1.73�1.31 mm, respectively. Figure 6 shows the cumu-
lative percentage of images having performance metrics
greater than a certain value. For the POA measure, 81.1%
�86/106�, 95.3% �101/106�, and 98.1% �104/106� of the ra-
diologist’s two segmentations had POA larger than 90%,
85%, and 80%, respectively. For the distance measures,
72.6% �77/106� and 97.2% �103/106� of the radiologist’s two
segmentations had Hausdorff distances within 5 and 10 mm,
respectively, and 99.1% �105/106� of the two manually
drawn boundaries had AvgDist within 5 mm. The differences
in the average performance metrics between the computer
detected pectoral boundaries and the radiologist’s two seg-
mentations are 2.0% for POA and smaller than 0.6 mm for
the two distance measures �Table II�.

Table III shows the two-tailed P-values estimated from
the paired t-test for the differences in the corresponding per-
formance measures between pairs of the three comparisons.
With the radiologist’s first reading �R1� as the reference stan-
dard, the differences in performance between the radiolo-
gist’s two hand segmentations and between the computer’s
segmentation and R1 did not reach statistical significance for
any of the three performance metrics �p�0.05�. With the
radiologist’s second reading �R2� as the reference standard,
the paired t-test shows that the difference was statistically
significant for the POA measure but did not reach statistical
significance for the two distance measures. Similar results
were observed for the differences in the performance mea-
sures when the computer segmentation was evaluated using
R1 as reference standard or using R2 as the reference stan-
dard. Figure 7 shows examples of mammograms that had
large variations in radiologist’s manually drawn pectoral
muscle boundaries. The computer detected boundaries are
also shown for comparison.

IV. DISCUSSION

One of the advantages of our TFO method is the utiliza-
tion of the combined a priori knowledge, local and global
information for pectoral muscle detection. The a priori

TABLE II. Effect of radiologist’s variability on evaluation of pectoral bound-
ary segmentation. The comparison between an experienced MQSA radiolo-
gist’s two manual segmentations and the segmentation by the new TFO
method for 106 MLO-view mammograms is shown. R1 and R2 denote the
first reading and second reading of the same radiologist.

POA
�%�

Hdist
�mm�

AvgDist
�mm�

R1 vs R2 Mean 92.8 4.44 1.73
Std Dev 4.85 2.62 1.31

TFO vs R1 Mean 93.3 4.13 1.46
Std Dev 5.1 2.60 1.18

TFO vs R2 Mean 91.3 4.28 1.97
Std Dev 6.2 2.96 2.09
knowledge on pectoral muscle is its approximate direction

Medical Physics, Vol. 37, No. 5, May 2010
and relatively high gray level intensity. The local information
at a pixel is represented by the high gradient in a direction
approximately normal to the pectoral boundary, while the
global information is represented by the relationship between
the potential pectoral muscle boundary points.

We designed two new GDK filters to extract local
and global information. The first GDK filter with
11�11 pixels �8.8�8.8 mm2� kernel was designed to en-
hance edges locally along the assumed direction of pectoral

(a)
Percent Overlap Area (POA)

0.50.60.70.80.91.0

Pe
rc
en
ta
ge
of
Im
ag
es

0

20

40

60

80

100

R1 vs R2
TFO vs R1
TFO vs R2

(b) Hausdorff Distance (mm)
0 5 10 15 20 25

Pe
rc
en
ta
ge
of
Im
ag
es

0

20

40

60

80

100

R1 vs R2
TFO vs R1
TFO vs R2

(c) Average Distance (mm)
0 5 10 15 20 25

Pe
rc
en
ta
ge
of
Im
ag
es

0

20

40

60

80

100

120

R1 vs R2
TFO vs R1
TFO vs R2

FIG. 6. Cumulative percentage of images having the performance metrics
greater than a certain value for the subset of 106 MLO-view mammograms:
�a� Percent overlap area, �b� Hausdorff distance, and �c� average distance
comparing the pectoral boundaries between two segmentations �R1 and R2�
by the same radiologist, between TFO segmentation and R1, and between
TFO segmentation and R2.
muscle for the calculation of the texture orientation image,
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which depicts global information of the location and the di-
rection of the pectoral muscle. The smoothed texture orien-
tation image was further enhanced to be a ridge image by the
second GDK filter in a 9�9 pixels �7.2�7.2 mm2� local
region. The two GDK filters were designed to enhance the
edges that exhibited line structures in the regions with a cer-
tain size. The sizes of the filters were determined experimen-
tally using the training set and the selected sizes were fixed
for all test images. In this study, the pixel size of the DFMs
and FFDMs was reduced to 0.8�0.8 mm2 for identification
of the pectoral muscles both by the radiologists and by the
computer. This low resolution was chosen in order to in-
crease the computational efficiency and reduce noise. If high

TABLE III. The two-tailed P-values estimated from the paired t-test on the
differences in the three performance measures between pairs of three com-
parisons: The pectoral boundaries between two segmentations �R1 and R2�
by the same radiologist, between TFO segmentation and R1, and between
TFO segmentation and R2.

POA Hdist AvgDist

R1 and R2 vs TFO and R1 0.320 0.258 0.060
R1 and R2 vs TFO and R2 0.0008 0.579 0.064
TFO and R1 vs TFO and R2 0.0001 0.448 0.065

FIG. 7. Examples of radiologist’s intraobserver variability and TFO-detected
pectoral boundary. First column: Original images; second column: Radiolo-
gist’s first �black� and second �white� reading; third column: TFO-detected

boundaries.
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resolution images are used, the sizes of the enhancement
filters can be scaled proportionally but the effect of noise will
have to be reduced appropriately.

Because a lot of line structures are extracted from the
ridge image after edge enhancement, we developed a
shortest-path search method to further utilize the global rela-
tionship among the ridge points. For a pair of starting and
ending points, the shortest-path search method identifies a
path along the direction derived from the starting and ending
points. The probability image of the ridge points, in which
the value of a ridge point pixel represents the probability of
being a point on the shortest paths, therefore contains the
global information indicating the relationship of this ridge
point to other ridge points and pectoral boundary. The impor-
tance of combining global and local information is demon-
strated by the example shown in Fig. 2, in which the pectoral
muscle was obscured by dense tissue and gaps and noisy
ridge segments occurred in the region of the true pectoral
muscle boundary �Fig. 2�e��. Tracking of the pectoral edges
might fail if it was performed only locally by searching for
strong edges. The tracking of pectoral edges was facilitated
by searching for the ridge points that are most likely to be a
true pectoral edge as indicated by the high probability values
derived from the shortest-path method.

From the study of intraobserver variability as described in
Tables II and III, it can be seen that the agreement between
the two readings by the same radiologist is similar to the
agreement between the computer and each of the two read-
ings, in terms of the three performance metrics. As shown in
Fig. 7, one of the major reasons for disagreement between
radiologist’s two readings on a given image is the weak pec-
toral edges �shown in the first and the third rows of images�.
For the pectoral muscle that did not depict a clear edge, the
radiologist judged subjectively where the edge was. For ex-
ample, our intraobserver study indicated that subjective iden-
tification of the pectoral edges by the same radiologist two
different times can deviate as much as 20.8 mm in terms of
Hausdorff distance measurement. Using the TFO method, the
largest deviations in Hausdorff distance were 14.4 and 19.0
mm, respectively, when radiologist’s first and second reading
were used as reference standard. These results indicate that
the TFO method can detect pectoral muscle with errors
within the intraobserver variability of an experienced
radiologist.

FFDMs are increasingly used in screening and diagnosis.
Image analysis algorithms developed for DFMs have to be
adapted to FFDMs. We conducted a preliminary study to
evaluate whether our TFO algorithm trained with DFMs can
be generalized to FFDMs. The TFO algorithm was applied
directly to the FFDMs without any retraining. The results
demonstrate that the algorithm could process all FFDM im-
ages and find the location of the pectoral muscles. Although
the TFO algorithm did not track the pectoral muscle bound-
ary in FFDM as closely as that in DFMs, it self-adapted to
the potential differences in gray level and noise characteris-
tics between the two modalities. Thus, as expected, the same
method can be used for segmenting the pectoral muscle au-

tomatically on FFDM and DFM. Still, minor adjustments of
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the processing parameters may be beneficial in improving
the accuracy for segmentation in FFDMs to the same level as
in DFMs and will be pursued in future studies.

Table IV shows the comparison between our TFO method
and five reported methods for the performance metrics pro-
vided in their publications: The mean and standard deviation
of FP and FN rates and the Hausdorff distance in comparison
to radiologist’s manually segmented pectoral muscle region.
The five published methods are based on Hough transform,6

Gabor filter,6,14 AP and MSTs,7 and Radon transform,9 re-
spectively. In the study using Hough transform and Gabor
filter, pectoral muscle segmentation was considered to be ac-
curate when both FP and FN rates were less than 5%, accept-
able when 5%	FP and FN	10%, and unacceptable if both
FP and FN�10%. In the study using the Radon method,
15% was considered to be the upper threshold between ac-
ceptable and unacceptable. However, the above counting cri-
teria that were chosen in these three studies were not able to
include all situations observed in studies using the AP and
MST methods7 and our TFO method. The study using the AP
and MST methods7 designed a complete set of conditions
that included all situations in their studies. To compare the
performance to the reported studies, the performance metrics
under different conditions were calculated accordingly for
our method. This comparison shows that our TFO method
achieved higher performance than the previous methods.
However, it is known that algorithm performance may de-
pend on the data set and there may be larger variances in
results estimated with smaller data sets. Comparison of the
performances among different methods can be more defini-
tive only if they are evaluated using a large common data set
with common reference standards.

In our previous study of automated estimation of mam-
mographic density using the MDEST method,1 the breast
region was extracted by breast boundary detection and the
pectoral muscle in an MLO-view mammogram was excluded
by a gradient-based pectoral muscle trimming �GPMT�
method. To evaluate the effect on breast density estimation

TABLE IV. Comparison with reported studies using performance metrics: M
percentage of images with the conditions set in the reported studies, where th
and unacceptable ��10%�. The study using the Radon method used 15% as
in the publications are marked as NA.

Method Hough

Number of images in test set 84
FP �mean�std dev� 1.98�6.09
FN �mean�std dev� 25.19�19.14
Percentage of images with FP	5% and FN	5% 11.90%
min�FP,FN�	5% and 5%	max�FP,FN�	10% NA
min�FP,FN�	5% and max�FP,FN��10% NA
5%	FP	10% and 5%	FN	10% 9.52%
5%	min�FP,FN�	10% and max�FP,FN��10% NA
FP�10% and FN�10% 78.57%
5%	FP	15% and 5%	FN	15% NA
FP�15% and FN�15% NA
Hausdorff distance �mm� 7.08�5.26
by the new TFO method, the performance of MDEST using
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the TFO algorithm for pectoral muscle detection was com-
pared with that using the GPMT method. In the data set
containing the 531 MLO-view DFMs from the genetic study
of breast density in the Amish population,13 an experienced
radiologist provided the reference standard of percent breast
density by manual thresholding of the dense area on each
mammogram using a computer interface. The MDEST with
the TFO method and with the GPMT method for pectoral
muscle segmentation were applied to the 531 DFMs and the
percent breast density was computed using each method. The
accuracy of the breast density estimation by our MDEST
method was influenced not only by the pectoral muscle trim-
ming, but also by other factors, such as the breast boundary
detection, the automated classification of breast density pat-
terns, and the determination of the gray level threshold in
each pattern. To compare the performance of the TFO
method to that of the GPMT method, we selected the subset
of mammograms for which the breast density estimation by
MDEST was mainly affected by the pectoral muscle detec-
tion methods so that the pectoral muscle trimming error
would not be masked by the other errors. For the 262 mam-
mograms that the difference between the pectoral areas seg-
mented by TFO and GPMT was larger than 200 pixels, the
difference in the percent breast density between the two
methods was statistically significant �p	0.05�, and the cor-
relation between the MDEST-estimated percent density and
the radiologist’s reference standard was improved from 0.87
to 0.89 when the TFO method was used with MDEST in
place of the GPMT method. The comparison demonstrated
that the improved pectoral muscle identification using the
TFO method can improve the accuracy of breast density
estimation.

The major limitation of our study was that the reference
standard was provided by only one radiologist such that there
was a lack of interobserver variability analysis. We will con-
tinue to expand the data set and conduct interobserver vari-

nd standard deviation of FP and FN rates, the Hausdorff distance, and the
and FN rates are considered to be accurate �	5%�, acceptable �5% to 10%�,
pper threshold between acceptable and unacceptable. The data not provided
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V. CONCLUSION

Accurate identification of the pectoral muscle on MLO-
view mammograms is challenging due to the complicated
patterns of pectoral muscle, improperly positioned mammo-
grams, variation in image quality, and dense glandular tissues
overlapping with the pectoral muscle region. In this work,
we developed an automated pectoral muscle boundary en-
hancement and tracking method based on texture-field orien-
tation that utilizes a combination of a priori knowledge, lo-
cal and global image information. The results demonstrated
that the pectoral muscle can be identified accurately by our
TFO method compared to an experienced radiologist’s
manual segmentation as reference standard. The study of in-
traobserver variability demonstrated that the average devia-
tion of the boundary detected by the TFO method from the
radiologist’s manually drawn boundary had approximately
the same magnitude as the intraobserver variation in terms of
three performance metrics. The TFO method had higher ac-
curacy than the published methods in terms of the false posi-
tive and false negative rates in the segmented region and the
Hausdorff distance measure. The preliminary study of testing
the TFO algorithm on FFDMs demonstrated that the algo-
rithm could achieve reasonable performance on FFDMs
without retraining, indicating its adaptability to the new
mammographic modality. An automated pectoral muscle
identification method will provide a foundation for many
mammographic image analysis tasks in CAD applications.
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