A Monte Carlo based phase space model for quality assurance of intensity modulated radiotherapy incorporating leaf specific characteristics

Randi F. Aaronson¹ and John J. DeMarco
Department of Radiation Oncology, University of California, Los Angeles, California 90095-6951

Indrin J. Chetty
Department of Radiation Oncology, University of Michigan, UHB2C438 Box 0010, Ann Arbor, Michigan 48109-0010

Timothy D. Solberg
Department of Radiation Oncology, University of California, Los Angeles, California 90095-6951

(Received 4 September 2002; accepted for publication 30 September 2002; published 3 December 2002)

Dose calculations for intensity modulated radiation therapy (IMRT) require an accurate description of the radiation field defined by the multileaf collimator. A previously developed Monte Carlo phase space model has been modified to provide accurate dose verification for IMRT treatments on a Novalis linear accelerator. We have incorporated into the model the effects of the multileaf collimator geometry, including leaf transmission, interleaf leakage, the rounded leaf tips and the effects of leaf sequencing, as well as the beam divergence and energy variation across the field. The modified source model was benchmarked against standard depth dose and profile measurements, and the agreement between the calculation and measurement is within the AAPM Task Group No. 53 criteria for all benchmark fields used. Film dosimetry was used to evaluate the model for IMRT sequences and plans, and the ability of the model to account for leaf sequencing effects is also demonstrated. © 2002 American Association of Physicists in Medicine.

Key words: IMRT treatment plan verification, intensity modulated radiotherapy, Monte Carlo, multileaf collimator

I. INTRODUCTION

The development of more advanced treatment modalities in radiation therapy, such as intensity modulation, brings a need for increasingly sophisticated quality assurance techniques. Intensity modulated radiation therapy (IMRT) involves a series of small shaped fields resulting in complex intensity distributions, which limits the effectiveness of traditional verification methods. For accurate dose calculations, IMRT requires a model that is able to simulate complex and arbitrary fluence maps and account for electronic disequilibrium due to heterogeneities and surface irregularities.

Commonly used verification techniques, including radiographic film and electronic portal imaging devices, can be labor-intensive processes. Although direct measurements are accurate, computational verification is a more efficient technique. Most conventional calculation algorithms, however, do not account for electron transport; therefore they do not accurately predict dose in small fields where lateral electronic equilibrium is not achieved. The IMRT Collaborative Working Group¹ presents a set of recommendations for dose verification of IMRT. They suggest that all IMRT dose-calculation algorithms model the finite source size, extra focal radiation and electron contamination. In contrast to the other common techniques, the Monte Carlo method starts from first principles and tracks individual particle histories, thus it takes into account the transport of secondary particles and also the electronic disequilibrium present in small fields.

The Monte Carlo method produces accurate results in regions of tissue heterogeneities and surface irregularities, providing the most convenient and accurate method for the simulation of patient-specific treatment distributions.²⁻⁷

The dynamic nature of IMRT treatments introduces verification issues that are not present or not significant in conventional radiation therapy. Because of the numerous small fields used in IMRT, the intensity distributions are more complex than for static shaped beams. The well-documented effects of the shaped leaf tips and the tongue-and-groove geometry are much more significant in IMRT, and have been shown to contribute 10–15% of the maximum in-field dose.⁸⁻¹⁰ In a computational model of the multileaf collimator (MLC), the Collaborative Working Group advises considering the “effects of MLC leaf leakage, leaf transmission, ... leaf side and end transmission, and the effects of leaf sequencing.”¹¹

Three other groups have described integrated Monte Carlo models for IMRT simulation. In their paper, Fix et al.¹¹ describe the application of a multiple source model to IMRT. This model transports particles through the MLC accounting for the tongue-and-groove, but approximating the shaped tip of the leaves. Pawlicki and Ma¹² use an intensity grid in their simulation, which is more efficient than modeling and transporting particles through the individual leaves. However they only consider the average leaf transmission, ignoring the specific geometry of the MLC. In the method described by Keall et al.¹³ the path length through the MLC is calculated for...
each incident photon, accounting for the specific geometries of the MLC, beam divergence, the energy variation across the field and an approximation of the first Compton scatter.

In this paper we describe the modifications to a previously developed phase space source model, which incorporate the necessary features for accurate Monte Carlo based verification of IMRT fields using a Novalis linear accelerator. The phase space model, as described by Chetty et al., employs a treatment-specific intensity grid to adjust the open beam fluence map for arbitrarily shaped fields. This is an efficient method for simulating IMRT beams because the intensity grid is created in a preprocessing calculation, and it does not require transporting particles through the field defining collimators. The modifications we have made to the model include the ability to simulate series of fields, as used in IMRT, and to account for the tongue-and-groove and shaped leaf tip geometries of the multileaf collimator, the divergence of the beam and the energy variation across the field. The applications of this model include patient quality assurance, commissioning treatment planning systems and evaluating leaf-sequencing algorithms. We will demonstrate the accuracy of the model and its usefulness in evaluating leaf-sequencing effects and as a quality assurance tool for IMRT.

II. MATERIALS AND METHODS

A. Accelerator design

A Novalis 6 MV linear accelerator (BrainLAB AG, Heimstetten, Germany) was used for this study. It was originally designed as a dedicated shaped beam system for stereotactic radiosurgery, therefore it incorporates a wide output range and high rotational accuracy. Novalis is equipped with a micro-multileaf collimator, m3 mMLC (BrainLAB AG, Heimstetten Germany and Varian Oncology Systems, Palo Alto, CA) with a maximum field size of 10×10 cm2 at the isocenter. While the field size is limiting, it has been found to be appropriate for many common IMRT targets, such as prostate boost and head-and-neck treatments. The m3 has narrow leaves to provide improved conformity to small targets, as compared with conventional collimators, making Novalis an excellent system for select IMRT treatments.

The m3 collimator has 26 pairs of tungsten alloy leaves, with widths of 3 mm, 4.5 mm, and 5.5 mm, projected at isocenter. The leaves are linearly mounted with the center at a distance of 55.5 cm from the source, and they are focused to converge at the source. The collimator incorporates the tongue-and-groove design to reduce interleaf leakage, and the leaves have a shaped tip in the vertical direction to produce an approximately constant penumbra at the isocenter. The full overtravel and interdigitation capabilities of the collimator eliminate leakage between an opposing pair of closed leaves because the junction is moved under the backup jaws. Leaf transmission for this system has been measured to be approximately 1.3%, and interleaf transmission is between 1.6% and 2.1%, which is consistent with the analyses of Xia et al. and Cosgrove et al. The Novalis system can operate in either dynamic or step-and-shoot mode, however the simulation model currently supports only step-and-shoot delivery.

B. The phase space model

A phase space model has previously been developed for the simulation of arbitrary intensity distributions for conventional clinical treatment planning. The basis of development for the model is the MCNP4C (Monte Carlo N-Particle, version 4C) code, which is a coupled neutral/charged particle code. The code uses a three dimensional heterogeneous geometry and transports photons and electrons in the energy range from 1 keV to 100 MeV. Low energy phenomena, such as characteristic x-rays and Auger electrons, are also accurately modeled. MCNP requires the source for a particular problem to be specified in a user-defined input file. The source includes distributions of the position, energy and angle of starting particles. For this work, the phase space source is supplied by a patch file, which was developed using standard Fortran code and the PRPR pre-processor that is included in the MCNP4C distribution package.

1. Acquisition of fluence distribution

The phase space is created by calculating the fluence of an open beam, and then adjusting that fluence to match an arbitrary field shape. The open beam fluence is determined by simulating the components of the linear accelerator treatment head above the field defining collimators, using the MCNP4C code. The tally plane for this simulation is located 50 cm below the target, which is under the macro-jaws, but above the multileaf collimator. The tally consists of MCNP point and ring detectors, which score relative photon fluence. Nineteen ring detectors are placed at equal intervals extending radially outward from a point detector on the central axis. The tally covers a circular region of diameter 7 cm, corresponding to 14 cm diameter at isocenter, which covers the 10×10 cm2 maximum field size. The fluence distributions for the open beam are then reconstructed into a 200 x 200 pixel Cartesian grid with discrete photon fluence elements, in a process previously described by Chetty et al. Each pixel has dimensions of 0.5 x 0.5 mm2 at the isocenter.

By modeling the treatment head above the field defining collimators, the resulting fluence values are patient-independent and thus only need to be calculated once. This virtual source description is used for all subsequent simulations, including benchmarks and IMRT plans with a series of shaped fields. During the simulation, the starting particle’s position (x, y) is sampled from the fluence map. The radial distance $R = (x^2 + y^2)^{0.5}$ is calculated, and the particle’s energy is sampled from the energy distribution of the bin that is closest to R. The angular dependence is based upon a point source model at the position of the linear accelerator target.

2. Analysis of fluence distribution

The conical shape of the flattening filter causes a preferential attenuation of lower energy photons toward the center.
III A. provide a quantitative verification of the source size

...of the field. This results in a relative increase in the inte-

...ed energy. Figure 1 illustrates the bremsstrahlung spectra for the
central axis as well as near the edge of the field. There is an
increase in the integrated fluence of 19% and a decrease in
the mean energy of 8.8% from the central axis to the edge of
the field.

While the point source approximation underestimates the
extra-focal component of the photon output, the limited field
size of $10 \times 10 \text{ cm}^2$ and the small flattening filter of the
Novalis accelerator minimizes the effects of the finite source
size and location. An analysis of the fluence contribution
from the various structures in the treatment head shows that
at the isocenter, approximately 97% of the fluence is from
the target, and 1.2% from the flattening filter. This is much
lower than the flattening filter fluence contribution at iso-
center of 2.5% reported by Chaney et al.21 for a 6 MV beam
and 3.5% by Mohan et al.22 for a 15 MV beam, suggesting
that it is not necessary to explicitly account for extra-focal
scatter for this machine. The profile benchmarks in Sec.
III A. provide a quantitative verification of the source size
effects.

3. Acquisition of intensity distribution

For each beam in a simulation, the weights of individual
elements in the open beam fluence are adjusted by multiply-
ing the fluence grid by a beam-specific intensity grid. An
IMRT treatment consists of a series of small fields shaped by
the micro-multileaf collimator (mMLC) at each gantry angle.
The leaf sequences are obtained from a translation algorithm
based on that of Bortfeld et al.,23 which accounts for leaf
leakage and transmission and minimizes the tongue-and-groove
effect.24 The algorithm produces a leaf-sequencing
file for each gantry angle, and it also provides a beam
weight, or index, associated with each set of leaf positions.
This index represents the proportion of the total dose that has
been delivered when the leaves reach that position. For our
treatments the backup jaws remain at 9.8\times9.8 \text{ cm}^2.

The intensity grid for one set of leaf positions is a map of
relative transmission values corresponding to the specific
mMLC field shape. In order to create the grid, the leaf posi-
tions and index values for a beam are read from the sequenc-
ing file. For each segment, the mMLC leaf shape is mapped
onto a 200×200 grid by assigning every element in the grid
the value of the thickness of the corresponding leaf region.
The transmission for each element can be found by

$$T(x,y) = \exp\left(-\mu_w(x,y) \cdot l(x,y)\right),$$

(1)

where $\mu_w(x,y)$ is the linear attenuation coefficient of the
material, and $l(x,y)$ is the path length through the mMLC at
the position (x,y).

The treatment-specific intensity grid, $I(x,y)$, for a particu-
lar gantry angle is calculated from the transmission ma-
trix, $T(x,y)$ by

$$I(x,y) = \sum_{i=1}^{n} T(x,y) \cdot i_i,$$

(2)

where i_i is the index value for the segment, or the dose
proportion delivered in the segment. The product of the in-
tensity grid and the open beam fluence gives the treatment-
specific sampling map for the IMRT sequence.

4. mMLC geometry

In order to accurately determine the path length through
the mMLC at any point (x,y), we must consider the geometry
of the leaves as well as the divergence of the radiation beam.
A cross sectional image of the mMLC in the direction per-
pendicular to leaf motion shows that each leaf is composed
of a central core and an edge with two steps on each side,
making up the tongue-and-groove, as shown in Fig. 2(a), and
including a 0.06 mm gap between neighboring leaves. The
nominal leaf width is the sum of the core and the first step of
the edge on each side, and the leaf widths are 1.67 mm, 2.50
mm, and 3.05 mm, corresponding to 3 mm, 4.5 mm, and 5.5
mm at isocenter. The average core widths for the three leaves
are 1.12 mm, 1.95 mm, and 2.50 mm, respectively, and they
are each mapped to 4, 7, and 9 rows in the intensity grid.
This represents the thickest portion of a leaf. For all leaves,
the average full width of each edge, or the tongue-and-groove,
is 0.55 mm, and it is mapped to 2 rows in the inten-
sity grid. Each of these rows includes the contributions from
the edges of two neighboring leaves. This allows us to ac-
count for interleaf leakage in the model, as well as simulate
the effects of leaf sequencing, specifically the tongue-and-groove
effect. Small approximations are made in the map-
ning process because of the fixed matrix size, however the
0.5 mm pixel size at isocenter provides an accurate physical
model of the leaves, as demonstrated by our results (Sec. III).

The tip of each leaf is shaped in the vertical direction as
shown in Fig. 2(b). The center of the leaf is straight, and
beyond this the top and bottom are at an angle of approxi-
mately 2.9° relative to the vertical axis. Thus there is a re-
region of approximately 1.1 mm over which the leaf thickness

![Image](https://example.com/image.png)
increases from 2.0 cm at the tip to the full thickness of 6.4 cm. While some IMRT planning systems take the tip shape into account by using an equivalent shift in the position of the field edge, we have directly modeled the leaf tip geometry.

5. Path length

The path length through the leaf is initially calculated for the core of the leaf, incorporating the divergence in the direction of leaf motion, as well as the shaped tips of the leaves. The divergence of the radiation beam is accounted for perpendicular to the direction of leaf motion by the truncated pie shape of the leaf bank. For each pixel in the intensity grid, the ray line connecting the source to the pixel is considered. The path length represents the portion of that ray line that passes through a leaf. The intersection of the ray and the borders of the core of the corresponding leaf are determined, if any, and the distance between these points is the path length through the core of the leaf.

For pixels that correspond to the edges of the leaves, the core path length is adjusted to account for the tongue-and-groove geometry. The path length through the core is multiplied by the relative thickness of the edge with respect to the core. This factor is 0.60 for the edge nearest the core, and 0.34 for the outside edge of the leaf. A pixel on the edge between two closed leaves will be assigned the sum of the path lengths of the respective leaves. This method produces the path length for each pixel, accounting for the tongue-and-groove and shaped tip geometries of the leaves, as well as interleaf leakage and beam divergence.

6. Attenuation coefficient

As discussed in Sec. II B 2, there is an 8.8% variation in the beam energy across the field due to the flattening filter. This effect is incorporated into the beam-specific intensity grid by varying the linear attenuation coefficient in Eq. (1) based on the pixel position in the field. In the Monte Carlo simulation of the Novalis treatment head, the average energies are tabulated for 20 ring detectors covering the maximum field area. The XCOM database provided by NIST was used to determine mass attenuation coefficients for Tungsten for these average energies. The mMLC is made of a Tungsten alloy of unknown composition. Thus the density of the material was determined from the measured transmission at the central axis, and used to compute linear attenuation coefficients from the XCOM data.

Each of the average energies corresponds to a distance from the central axis (the radius of the appropriate ring detector). A look-up table is created containing the linear attenuation coefficients for these radii. In calculating the transmission for the intensity grid, the distance from the central...
axis is determined for each pixel, and the linear attenuation coefficient corresponding to the nearest ring is found in the look-up table.

III. RESULTS

A. Benchmarks

The phase space source was benchmarked against standard depth dose and profile ion chamber measurements for the Novalis accelerator. Calculations were done in a 30×30×30 cm³ simulated water phantom for field sizes of 2.4×2.4 cm², 5.1×5.1 cm², and 8×8 cm². We used a cylindrical tally cell with a grid spacing of 2 mm, and low energy cutoffs were 10 keV and 400 keV for photons and electrons, respectively. Figure 3 illustrates a comparison between measured and calculated relative depth dose values for the three benchmark field sizes. Excellent agreement, within 2% of measurement, is seen in all regions of the curves. Figure 4 shows a comparison of measured and calculated profile benchmarks. Agreement is within 2% in the inner beam (dose>90%) and outer beam (dose<10%) regions, and within 2 mm in the penumbral region (10%<dose<90%); thus the profile benchmarks are well within the AAPM Task Group No. 53 criteria for dose comparison. All source calculation points have a 1σ uncertainty of less than 2%.

B. Leaf sequencing evaluation

Three examples will demonstrate the accuracy of the phase space model for arbitrary IMRT sequences, and its effectiveness in evaluating leaf sequencing algorithms. Measurements were made using Kodak X-OMAT V film in a solid water phantom. Monte Carlo simulations were done in a simulated water phantom of the same size, with 2×2×2 mm³ voxel resolution. Low energy cutoffs were 10 keV for photons and 400 keV for electrons.

The first example demonstrates the ability of the model to simulate the effects of leaf sequencing. Figure 5 illustrates this effect with films of two leaf sequences; the only difference between the two sequences is that the one on the left (sequence A) was created to minimize the tongue-and-groove effect and the one on the right (sequence B) was not. The
beam-specific fluence maps for these sequences also indicate the differences, as seen in Fig. 6; the interleaf leakage at the edge of the field is present in both maps, and the difference in the leaf sequencing seen on the films is also visible in the sampling maps. Figure 7 indicates that the Monte Carlo dose distributions from the two sequences match the film measurements for the 80% and 45% isodose lines, normalized to maximum.

C. Significance of leaf geometry

A single beam from a five field IMRT prostate plan is used to evaluate the significance of the details that we have incorporated into the model. Two Monte Carlo calculations were done for the sequence, one using the complete model and the other accounting only for the average transmission through the leaves and ignoring the leaf geometry, divergence and energy variation. The resulting intensity grids are shown in Fig. 8, and the comparisons between the Monte Carlo calculations and film measurement are in Fig. 9. The differences in the dose distributions are subtle, but the more accurate model is better able to resolve subtleties in the distribution, particularly at high and low isodoses.

D. IMRT verification—5-field plan

Figure 10 shows the comparison of Monte Carlo calculation and film for a multiple beam IMRT plan. This plan simulates a prostate boost treatment, with five nonopposing IMRT beams at gantry angles of 0°, 60°, 140°, 220°, and 300°. The figure shows the 90%, 50%, and 20% isodose lines for the coronal isocenter slice, normalized to isocenter. Again, there is excellent agreement between the Monte Carlo simulation and measurement.

IV. DISCUSSION AND CONCLUSION

A Monte Carlo model has been developed for IMRT, using a Novalis linear accelerator, equipped with an m3 micro-multileaf collimator. The modified phase space model accurately simulates arbitrarily shaped static fields as well as IMRT sequences, making it a viable verification technique for IMRT on a linear accelerator with limited field size. We have modeled the multileaf collimator, accounting for the leaf geometry and leaf sequencing effects, beam divergence and the energy variation across the field. The geometry we use is specific to the m3 collimator, but the method of path length calculation could be applied to other collimator geometries.

The source is created by adjusting the discrete fluence weights in the phase space map based on the field shape, which eliminates the inefficient step of calculating particle transport through the leaves. Arbitrary beam weights and gantry, collimator and table angles are also accounted for, allowing for the simulation of complete clinical treatments.

Depth dose and profile benchmarks are found to be within the AAPM Task Group No. 53 acceptability criteria for three field sizes covering the range of clinical fields. IMRT plans with series of irregularly shaped fields are also accurately simulated, including leaf edge and sequencing effects. This model presents a virtual simulation tool for dosimetric verification of clinical IMRT treatments, and it also provides a method of comparing and evaluating leaf sequencing algorithms and optimization techniques.

Author to whom correspondence should be addressed. Electronic mail: raaronson@radonc.ucla.edu

5 C. M. Ma, E. Mok, A. Kapur, T. Pawlicki, D. Findley, S. Brain, K. Forster, and A. L. Boyer, “Clinical implementation of a Monte Carlo