
Anniversary Paper: History and status of CAD and quantitative image
analysis: The role of Medical Physics and AAPM

Maryellen L. Gigera�

Department of Radiology, University of Chicago, 5841 S. Maryland Avenue, MC2026, Chicago,
Illinois 60637

Heang-Ping Chan
Radiology Department, University of Michigan, 1500 E. Medical Center Drive, Med Inn Bldg C477,
Ann Arbor, Michigan 48109-5842

John Boone
Department of Radiology, University of California Davis Medical Center, 4860 Y Street, Suite 3100, Ellison
ACC Building, Sacramento, California 95817

�Received 5 February 2008; revised 13 October 2008; accepted for publication 15 October 2008;
published 20 November 2008�

The roles of physicists in medical imaging have expanded over the years, from the study of imaging
systems �sources and detectors� and dose to the assessment of image quality and perception, the
development of image processing techniques, and the development of image analysis methods to
assist in detection and diagnosis. The latter is a natural extension of medical physicists’ goals in
developing imaging techniques to help physicians acquire diagnostic information and improve
clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that
are visible on retrospective review, and they do not always correctly characterize abnormalities that
are found. Since the 1950s, the potential use of computers had been considered for analysis of
radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began
major research efforts for computer-aided detection or computer-aided diagnosis �CAD�, that is,
using the computer output as an aid to radiologists—as opposed to a completely automatic com-
puter interpretation—focusing initially on methods for the detection of lesions on chest radiographs
and mammograms. Since then, extensive investigations of computerized image analysis for detec-
tion or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted.
The growth of CAD over the past 20 years has been tremendous—from the early days of time-
consuming film digitization and CPU-intensive computations on a limited number of cases to its
current status in which developed CAD approaches are evaluated rigorously on large clinically
relevant databases. CAD research by medical physicists includes many aspects—collecting relevant
normal and pathological cases; developing computer algorithms appropriate for the medical inter-
pretation task including those for segmentation, feature extraction, and classifier design; developing
methodology for assessing CAD performance; validating the algorithms using appropriate cases to
measure performance and robustness; conducting observer studies with which to evaluate radiolo-
gists in the diagnostic task without and with the use of the computer aid; and ultimately assessing
performance with a clinical trial. Medical physicists also have an important role in quantitative
imaging, by validating the quantitative integrity of scanners and developing imaging techniques,
and image analysis tools that extract quantitative data in a more accurate and automated fashion. As
imaging systems become more complex and the need for better quantitative information from
images grows, the future includes the combined research efforts from physicists working in CAD
with those working on quantitative imaging systems to readily yield information on morphology,
function, molecular structure, and more—from animal imaging research to clinical patient care. A
historical review of CAD and a discussion of challenges for the future are presented here, along
with the extension to quantitative image analysis. © 2008 American Association of Physicists in
Medicine. �DOI: 10.1118/1.3013555�
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I. INTRODUCTION

Research and development of methodology and instrumenta-
tion for diagnostic or therapeutic applications are among the
major responsibilities of medical physicists. In medical diag-

nosis, physicists have been contributing to the development

5799 Med. Phys. 35 „12…, December 2008 0094-2405/2008/35„
of imaging techniques since the discovery of x-rays by W. C.
Roentgen. The roles of physicists in medical imaging have
expanded in all directions over the years, from the study of
imaging systems �sources and detectors� to the assessment of

image quality and perception, the development of image pro-
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cessing techniques, and the development of image analysis
methods to assist in detection and diagnosis, to name a few.
The latter is a natural extension of medical physicists’ goals
in developing imaging or other techniques to help physicians
acquire diagnostic information and improve clinical deci-
sions.

The benefit of a medical imaging exam is dependent both
on the physical quality of the medical images and on the
ability of the radiologist interpreting them. Studies indicate
that radiologists do not detect all abnormalities on images
that are visible on retrospective review, and they do not al-
ways correctly characterize abnormalities that are found. In
the clinical interpretation of medical images, limitations in
the human eye-brain visual system, reader fatigue, distrac-
tion, the presence of overlapping structures that camouflage
disease in images, and the vast number of normal cases seen
in screening programs provide cause for detection and inter-
pretation errors.1–6

Lusted discussed the use of computers in the analysis of
radiographic abnormalities in the mid-1950s.7 In the 1960s
and 1970s, researchers including physicists and clinicians
started to investigate computerized image analysis aimed at
automated detection or classification of abnormalities,8–16 in-
cluding analyses on breast images11 and chest
radiographs.12,13 However, limited computer power and qual-
ity of the image digitization equipment at that time may have
limited the chance of success for these early attempts. The
goal of stand alone, automated computerized detection or
diagnosis also made it difficult to achieve the accuracy and
the acceptance required for clinical use. In the 1970s and
1980s, with the advent of digital subtraction angiography and
the application of other digital images, various investigators
started developing computer-based quantitative analysis of
angiographic vasculature.17,18

In the mid-1980s, a team of medical physicists and radi-
ologists in the Kurt Rossmann Laboratories in the Depart-
ment of Radiology at the University of Chicago started their
research efforts for computer-aided detection or computer-
aided diagnosis �CAD�, that is, using the computer output as
an aid to radiologists—as opposed to a completely automatic
computer interpretation—focusing initially on methods for
the detection of lesions on chest radiographs and
mammograms.19–22 In this usage, CAD can be defined as a
diagnosis made by a radiologist who uses the output from a
computer analysis of the image data in their decision making
process. The final medical decision is made by the radiolo-
gist, not the computer. Note that with CAD, the role of the
computer analysis is not to replace the radiologist but rather
to aid the radiologist in his/her image interpretation and/or
decision making. For more than the past 20 years, investiga-
tions of computerized image analysis for detection or diag-
nosis of abnormalities in a variety of 2D and 3D medical
images have been conducted through collaborations between
medical physicists and radiologists. Radiologists were ex-
pected to ultimately use the output from computerized analy-
sis of medical images as a “second opinion,” like a
spellchecker, in detecting and characterizing lesions as well

as in making diagnostic decisions, as schematically shown in
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Fig. 1. Many reviews and chapters have already been written
on the development and implementation of CAD
methods.23–37 It is important to note that success in CAD
required knowledge of imaging physics �i.e., image acquisi-
tion method� as well as knowledge of various computer vi-
sion and artificial intelligence techniques. Because of the nu-
merous works that have been conducted, this brief review is
by no means exhaustive, but only serves as a historical per-
spective of the importance of CAD research in diagnostic
imaging and medical physics, and reports on the various
roles played by medical physicists in the evaluation and un-
derstanding of CAD and its limitations.

The growth of CAD over the past 20 years has been
tremendous—from the early days of time-consuming film
digitization and CPU-intensive computations on a limited
number of cases to its current status in which developed
CAD approaches are evaluated rigorously on large clinically
relevant databases. Figure 2 illustrates the growth of CAD
research in terms of number of publications in Medical Phys-
ics. CAD research by medical physicists includes many
aspects—collecting relevant normal and pathological cases;
developing computer algorithms appropriate for the medical
interpretation task including those for segmentation, feature
extraction, and classifier design �Fig. 3�; developing method-
ology for assessing CAD performance; validating the algo-
rithms using appropriate cases to measure performance and
robustness; conducting observer studies with which to evalu-
ate radiologists in the diagnostic task without and with the
use of the computer aid; and ultimately assessing perfor-
mance with a clinical trial. Currently, CAD has been ex-
tended to include image analysis of various disease types—
breast cancer, lung cancer, interstitial disease, colon cancer,
osteoporosis, osteolysis, vascular plaque, aneurysms, and
others—on various modalities, including analog and digital
radiography, ultrasound, CT, PET, MRI, and others.

CAD techniques and systems can broadly be categorized
into two types—computer-aided detection �CADe� and
computer-aided diagnosis �CADx�. CADe implies that radi-
ologists use computer outputs of the locations of suspect

Interpretation

Radiologist

CAD system

Output

Medical Image
in Digital Format

FIG. 1. Schematic diagram of a CAD system for medical image
interpretation.
regions, leaving the characterization, diagnosis, and patient
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management to the radiologist. CADe is basically a detection
task, i.e., a localization task. CADx extends the computer
analyses to yield output on the characterization of a region or
lesion, initially located by either a human or a computerized
detection system. The computer might output mathematical
descriptors to characterize the lesion and/or estimate the
probability of malignancy �or other abnormality�, leaving the
final diagnosis and patient management to the physician.
CADx is a classification task for differential diagnosis. Ulti-
mately, the goal of CAD is to reduce search errors, reduce
interpretation errors, and reduce variation between and
within observers.

There is strong synergy between CAD and quantitative
image analysis. With continued growth in CAD techniques
and the associated increase in accuracies, quantitative image
analysis is a natural extension of the new algorithmic meth-
ods to help extract quantitative features and absolute mea-
sures of morphology and function to improve medical diag-
nosis. Conversely, quantitative imaging accentuates the need
for highly robust and efficient computer-assisted image
analysis tools and stimulates the development of CADe and
CADx for the new imaging applications.

II. COMPUTER-AIDED DETECTION

Computer-aided detection entails the use of a computer
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output that only yields the location of suspect lesions. Char-
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Digital Image(s)

Segmentation of Organ Border
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Lesion Extraction
(lesion segmentation)

Feature Extraction
(mathematical descriptors of the potential

abnormality)

Feature Analysis/Classifier
(lesion vs. non-lesion;
malignant vs. benign)

Computer Output
(e.g., location of lesion, lesion characteristics,
estimate of the probability of malignancy, risk

assessment index)
FIG. 3. Components within the “black box” of a CAD system.
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acterization and diagnosis of the abnormality as well as pa-
tient management are left for the radiologist. Such systems
are most beneficial in imaging examinations in which many
cases need to be interpreted with most being normal—such
as in screening programs—e.g., screening mammography,
low-dose thoracic CT for smokers, and colon cancer screen-
ing.

Medical diagnostic imaging lends much of its scientific
development to the adaptation of signal detection theory38,39

to guide its technological evolution and performance evalu-
ation. Medical physicists play an important role in this
process.40–46 One fundamental concept is the relationship be-
tween image quality measures such as the signal-to-noise
ratio �SNR� and the detectability of signals in an image.47–53

The development of various medical imaging modalities cen-
tered around the goal of improving image quality and SNR
of the lesion of interest, which is important for both human
observers and machine vision. To achieve this goal for CADe
systems, CAD researchers proposed the difference image
technique19–22 in which the input image was processed to
generate a SNR-enhanced image and a SNR-suppressed im-
age, as demonstrated on a chest radiograph in Fig. 4�a�,
which shows the processing of the nodule prior to additional
computer vision techniques for nodule detection. Subse-
quently, the difference of the two processed images is ob-
tained to yield an image in which the conspicuity of the
lesion is greatly increased �Fig. 4�b��. This method of en-
hancing the SNR was an extension of the prior research of
these medical physicists. Although the implementation dif-
fers and depends on the lesion of interest, many CADe sys-
tems to date follow a similar approach of enhancing the SNR
as a first step.

II.A. CADe in mammography

Breast cancer detection is one of the principal research
areas that has been studied since the early days of CAD
research. Mammographic interpretation is a difficult task be-
cause mammographic signs of breast cancer such as micro-
calcifications and soft tissue masses can be very subtle and
often obscured by dense fibroglandular breast tissue. The
recommended annual screening mammography for women
over 40 years of age results in a large volume of mammo-

grams to be read by radiologists. Studies indicate that the
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false-negative rate of mammography ranges from 10% to
30%.54–60 In a study that reviewed retrospectively prior
mammograms of breast cancer patients, it was found that
67% of the cancers were visible on the prior mammograms.61

CADe, therefore, potentially can be very useful for mam-
mography.

Computerized analysis systems for mammography usu-
ally are focused on the detection of either clustered micro-
calcifications or mass lesions, with more recent methods on
architectural distortions. These methods have been reviewed
extensively.23–29,31,33,62,63

A number of investigators have reported computerized
methods for detection of microcalcifications.16,19,64–84 Al-
though the specific techniques used in different systems var-
ied, they generally contained several major steps. The breast
region is first extracted by boundary detection. The mammo-
gram may then be processed by image enhancement methods
to increase the SNR of the microcalcifications. The signal
candidates are identified and segmented based on their SNR
difference or gray level contrast from the surrounding back-
ground tissue. Features that characterize the shape, size, con-
trast of the individual microcalcifications, and of the cluster
are extracted and used as input to classifiers for differentia-
tion of true and false signals. Additional false-positive �FP�
reduction techniques, such as artificial neural networks, may
be trained to further distinguish between true signal patterns
�i.e., the lesion� and normal anatomic background. The clus-
tering property of significant microcalcifications is used to
further reduce FPs, and the remaining clusters are flagged as
suspicious lesion locations.

Soft tissue masses are imaged as focal densities on mam-
mograms. Masses with well-circumscribed margins are more
likely to be fibroadenoma or a benign cyst whereas masses
with ill-defined or spiculated borders have a high likelihood
of being malignant. However, there is large overlap between
the border characteristics of malignant and benign masses.
Initially, a few investigators developed automatic algorithms
for detection of masses on mammograms11,64,85,86 comparing
regions between the left and right breast images. The devel-
opment of mass detection systems evolved more rapidly
since the late 1980s.86–112 The overall scheme of these sys-
tems generally contains several major steps similar to those

FIG. 4. Difference-image approach to detecting nodule
candidates on chest radiographs. The approach aimed to
enhance the nodule with one processing filter and to
suppress the anatomical background with another pro-
cessing filter, with the difference resulting in an image
for further analysis. Reprinted with permission from
Giger et al. 1988 �Ref. 21�.
in a microcalcification detection system. The breast region is
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first segmented from the mammogram. The mammogram
may be preprocessed with a spatial filter or nonlinear tech-
nique to enhance the suspicious regions. The mass candi-
dates are segmented from the breast image based on their
gray level contrast, gradient orientation, or spicule informa-
tion. Feature descriptors are extracted from the segmented
objects. Rule-based classifiers or other linear, nonlinear, or
neural network classifiers are then trained to classify the
mass candidates as true mass or FPs.

While many analyses of mammograms include the spe-
cific stages of lesion segmentation and feature extraction,
some investigators have focused on extracting information
directly from the image data. Zhang et al. trained a shift-
invariant neural network to detect individual microcalcifica-
tions in a background-corrected region.74 Tourassi et al. used
information theory in developing a content-based retrieval
and detection system that took as input regions throughout
the mammogram in the detection of masses.113

In 1990, Chan et al.114 reported on the first observer study
to compare radiologists’ detection of microcalcifications with
and without the aid of a computer-aided detection �CADe�
system using receiver operating characteristic �ROC� meth-
odology and demonstrated that the radiologists’ performance
was improved significantly with CADe �Fig. 5�. This study
established the potential usefulness of CADe as a second
opinion. It also revealed the important concept that it is not
necessary for the CADe system performance to be as high as
or higher than that of the radiologists in order to provide a

FIG. 5. ROC curves illustrating statistically significant improvement in ra-
diologists’ detection of microcalcification clusters when a computer aid is
used. Level 1 corresponds to use of the computer having a performance
level of 87% true-positive rate and an average of four false-positive clusters
per image. Level 2 corresponds to use a computer aid with the same 87%
true-positive rate but a simulated average false-positive cluster rate of only
one false-positive cluster per image. Reprinted with permission from Chan
et al. �Ref. 114�.
useful second opinion, as long as it can provide information
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complementary to what radiologists may have. Additional
studies followed for both clustered calcifications and mass
lesions.92

Figures 6�a� and 6�b� show the first prototype CAD sys-
tem �circa 1994�, along with an example output on thermal
paper, which was developed and applied to screening mam-
mography at the University of Chicago. The system received
as input a screen/film mammogram, which was subsequently
digitized and automatically analyzed by the computer. The
output annotation from the system would indicate suspect
locations �clustered microcalcifications or mass lesions� on a

FIG. 6. �a� First prototype CADe system—developed for screening mam-
mography at the University of Chicago �circa 1994�; �b� system annotated
output on thermal paper.
thermal paper printout or monitor.
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The first commercial CADe system for screening mam-
mography was approved by the Food and Drug Administra-
tion �FDA� in 1998. Other systems for mammography have
obtained FDA approval since then and approval of CADe
system for digital mammography also followed. A large
number of CADe systems are being used clinically in screen-
ing screen film and digital mammography both in the United
States and overseas. Several reports have been published on
the performance of some of the commercial systems in clini-
cal practice, as summarized in Tables I and II.387–397 The
results indicated that the cancer detection rate in general in-
creased with an accompanied increase in the recall rate, as
can be expected. The design of these clinical studies can be
separated into two major groups: �i� a sequential reading de-
sign in which interpretations by the same radiologist without
CADe are immediately followed by interpretation with
CADe and �ii� a longitudinal in time �historical� design in
which a statistical comparison is made of a group of radiolo-
gists over two periods of time before and after CADe is
implemented in the practice. The former design, therefore,
collected without and with CADe data from the same patient
cohorts and the same radiologists, whereas the latter design

TABLE I. Prospective clinical trial of commercial CADe systems for screen-
ing mammography. These studies used a sequential reading design in which
the interpretations by the same radiologist without CADe immediately fol-
lowed by with CADe were recorded for individual cases. The results were,
therefore, collected from the same patient cohorts and the same radiologists.

Investigators Number of cases

Change in
cancer detection

rate �%�

Change in
recall rate

�%�

Freer et al. �Ref. 387� 12 860 +19.5 +18.5
Birdwell et al. �Ref. 388� 8682 +7.4 +8
Khoo et al. �Ref. 389� 6111 +1.4 +5.8
Dean et al. �Ref. 390� 9520 +11.4 +26
Morton et al. �Ref. 391� 18 096 +7.6 +9.5
Ko et al. �Ref. 392� 5016 +4.7 +14.9

TABLE II. Prospective clinical trial of commercial C
compared the statistical results by a group of radiolog
implemented in the practice. The patient cohorts wer

Investigators

Number of
exams

�unaided�

Gur et al. �Ref. 393� 56 432

82 129

Feig et al. �Ref. 394� 11 803

Cupples et al. �Ref. 395� 7872
Fenton et al. �Ref. 396�a 398 159
Gromet et al. �Ref. 397� 112 413

aFrom a survey study of 43 facilities, seven of which

and 2002.
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collected data from different patient cohorts and the radiolo-
gists may not be the same. The rationale and biases of these
designs have been discussed by CAD researchers.36,115,116

The latter design may introduce additional variabilities from
factors such as differences in the patient characteristics and
the radiologists’ experiences in the two periods of time. The
larger variances may make it more difficult to observe the
incremental gain in sensitivity with CADe compared to with-
out CADe. The different biases and variances may account
for part of the differences in the observed effects of CADe on
the sensitivity and specificity in these prospective studies.

The effects of CADe can be expected to depend on many
other factors, including the level of expertise and vigilance
of the radiologist and how the radiologist utilizes the CADe
marks. Current CADe systems for screening mammography
are designed to be used as a second reader, not as a concur-
rent reader. The radiologist should first interpret the case
thoroughly as if there is no CADe, and should not reduce
their level of suspicion at locations where there are no CADe
marks. It is well known that CADe systems can miss lesions
that radiologists detect routinely and mark many FPs. The
benefits of CADe often rely on its detection of some lesions
that radiologists may overlook and the willingness of radi-
ologists to work up some of the CADe marks. If CADe is
used as it is designed, the sensitivity will never decrease and
the recall rate is expected to increase. For radiologists with
low false negative rates, the incremental gain by CADe will
likely be small. Furthermore, the incremental gain in sensi-
tivity will not be realized if radiologists become too depen-
dent on the CADe system and reduce their vigilance in in-
terpreting the mammograms themselves, or if they ignore the
CADe marks because of too many FPs. It is important that
the user understands the capability and the limitations of the
CADe system and uses it properly in order to take advantage
of CADe.

The relatively large number of FPs in current CADe sys-
tems is a major drawback of using CADe for some radiolo-
gists. Continued efforts are needed to improve the sensitivity

systems for screening mammography. These studies
ver two periods of time before and after CADe was
erent and the radiologists may not be the same.

ber of
ams
ded�

Change in
cancer

detection rate �%�

Change in
recall

rate �%�

139 +1.7 +0.1
(24 radiologists)

629 −3.3 −4.9
(7 high-volume radiologists)

639 +19.7 +14.1
(17 low-volume radiologists

in Gur et al. study)
402 +16.1 +8.1
186 +4.5 +30.7
808 +11.1 +3.9

emented CAD during the study period between 1998
ADe
ists o
e diff

Num
ex
�ai

59

44

21

19
31
118
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and the specificity of the systems. Most current CADe sys-
tems concentrate on detection in a single mammogram. One
promising approach to improving the performances of CAD
systems is to incorporate multiple image information, includ-
ing correlation of two mammographic views �CC and MLO
views� of the same breast, comparison of current and prior
mammograms, or comparison of bilateral mammograms.
These strategies emulate those routinely performed by radi-
ologists in mammographic interpretation to detect new le-
sions and reduce FPs.54,117,118

Studies have been conducted to incorporate information
from multiple mammographic views of the same breast, such
as the CC and MLO views, for lesion detection and the re-
duction of FPs.84,119–122 Radiologists compare the left and
right mammograms to detect asymmetry in the density pat-
terns of the breasts. Thus, researchers used digital bilateral
comparison techniques, including methods for image regis-
tration, to incorporate information from both breasts and
identify asymmetries.64,89,91,123–125 These studies indicate that
multiview information fusion has a strong potential for im-
proving the performance of CADe systems.

Radiologists routinely compare the current and prior
mammograms, if available, for detection of newly developed
mammographic abnormalities. Automated analysis of inter-
val changes in serial mammograms requires identification of
corresponding locations on two mammograms of the same
view. The deformability of the breast and lack of invariant
“landmarks” make it difficult to correctly register two breast
images using conventional registration techniques. Various
investigators have developed methods for use in temporal
subtraction using automatically delineated skin line and
nipple positions,126 as well as regional registration tech-
niques to localize corresponding lesion locations on mammo-
grams of the same view to within a small search region of the
true location.124,127,128

Multimodality imaging is a promising approach to im-
proving breast cancer detection. There is strong interest in
developing a combined full breast 3D ultrasound and digital
mammography system in which the ultrasound scanning will
be performed automatically in the same compression as the
digital mammogram so that the corresponding lesions be-
tween the two can be correlated geometrically.129 To facili-
tate the implementation of such a system in screening mam-
mography, ideally one will have a CADe system that can
automatically detect suspicious masses on the digital mam-
mogram and initiate the ultrasound scanning, if needed,
while the breast is still under compression. After image ac-
quisition, the CADe system will automatically detect the le-
sions in the 3D ultrasound volume and correlate the lesions
with those detected on the digital mammograms. The com-
bined information from the two modalities can be used to
improve cancer detection and reduce recalls.

With the advent of direct digital mammography systems,
a number of new breast imaging techniques are under devel-
opment, including digital breast tomosynthesis,130–134 and
single-energy or dual-energy contrast-enhanced digital sub-
traction mammography135,136 and breast computed tomogra-

137–139
phy �CT�. Tomosynthesis mammography and breast
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CT hold the promise of improving breast cancer detection
and diagnosis, especially in dense breasts. Combined tomo-
synthesis mammography and 3D ultrasound scanning is also
being developed.129 These new modalities or multimodality
images drastically increase the number of images that radi-
ologists have to interpret for each case. If CADe systems are
available to assist radiologists in the analysis of the new
modalities efficiently and in integrating the information from
different modalities effectively, it may facilitate the introduc-
tion of the new techniques to clinical practice. Development
of CADe systems for tomosynthesis mammography is
underway.140,141 It can be expected that CAD development
for the other modalities will also be initiated when image
databases become available for design of the CAD systems.

II.B. CADe in thoracic imaging

CADe systems for various lung diseases have been re-
ported in the literature. Chest radiography is the most com-
monly performed procedure in medical imaging, however,
interpretation of chest radiographs is a difficult task because
of the overlapping ribs and its low contrast sensitivity for
subtle abnormalities. CAD of lung disease was attempted in
the 1970s.12,14 Dedicated efforts in the 1980s revived the
interests in development of CADe systems for chest
radiographs.20,21,142 Over the last two decades, a large num-
ber of studies have been conducted to develop computerized
methods for analysis of various abnormalities in chest radio-
graphs, including detection of lung nodules,20,21,143–152 detec-
tion and classification of interstitial diseases,142,153 detection
of pneumothorax,154 and temporal subtraction of chest radio-
graphs to detect interval changes.155–157 The effects of CADe
for lung nodule detection on radiologists were evaluated by a
number of observer performance studies.144,158–161 Similar to
CADe for breast cancer detection in mammography, these
studies indicated that the detection accuracy for lung nodules
in chest radiographs could be significantly improved with the
use of CADe. A commercial lung nodule CADe system for
chest radiography was approved by the FDA in 2001 but no
large-scale prospective clinical trials have been reported to
date.

The Early Lung Cancer Action Project �ELCAP� study
showed that thoracic CT has higher sensitivity for detection
of early stage lung cancer than chest x-rays.162 However, it is
not known whether early detection can actually reduce the
mortality rate or increase the chance of survival for lung
cancer patients. An NCI-sponsored randomized, controlled
study, National Lung Screening Trial �NLST�, was con-
ducted to compare the mortality rate of lung cancer patients
using helical CT or chest x-rays but the results are not yet
available. Thoracic CT, especially helical CT, produces a
large number of slices for each case. There will be a dramatic
increase in radiologists’ workload if CT is recommended for
lung cancer screening in the future. The potential usefulness
of CT for lung cancer screening has stimulated interest in the
development of CADe systems for lung nodule detection on
thoracic CT scans. A number of research groups have re-

163–174
ported CADe methods in this area. The performances
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of these systems vary, and the performances were evaluated
on data sets using different CT scan protocols and having
cases of different nodule characteristics. The NCI recognized
the need for CAD techniques for lung CT interpretation and
supported the Lung Imaging Database Consortium �LIDC� to
collect a standard database of lung CT images for this
purpose.175 The first commercial CADe system for thoracic
CT was approved by the FDA in 2004. Although no prospec-
tive clinical trial of lung CADe has been reported to date,
retrospective observer performance studies indicated that ob-
servers’ accuracy in detection of lung nodules on chest CT
scans can be significantly improved with the use of
CADe,176–181 indicating the potential for CADe to assist in
radiologists’ reading in clinical practice.

II.C. CADe in colon imaging

CT colonography is another important area of application
for CADe. Colon cancer is the third leading cause of cancer
deaths for men and women in the United States. Colon can-
cer screening involves detection of polyps, which can be the
precursor of colon cancer, and cancerous growths on the
walls of the large intestine. Currently the most reliable pro-
cedure for colon cancer screening is a colonoscopy. CT
colonography �CTC� is being studied as an alternative pro-
cedure. Interpretation of CTC is time consuming and difficult
even with the help of the virtual colonoscopic view that
helps the radiologist fly through the entire colon to search for
abnormalities. The radiologist’s sensitivity of polyp detection
in CTC varies over a wide range as reported in the literature,
which was attributed to many factors such as the variability
in CT scanning techniques, colon preparation methods, size
of the polyps in the studied patient cohort, and the radiolo-
gists’ experience with CTC.

CADe may be a useful adjunct to CTC to reduce false
negatives and reader variability. A number of research groups
have reported CADe methods for analysis of CTC in the past
few years.182–193 The current CTC CADe systems have sen-
sitivity ranging from 80% to 100% at an FP rate of 2 to 15
per scan. Most of the studies used a small data set for evalu-
ation so that the variances of the results may be high. In
addition, the performance of CADe depends strongly on the
data set characteristics, including the polyp size in the data
set and the CTC scanning protocol, as well as the method
used for scoring of the true positives and FPs of the CADe
algorithm. It is still unknown how these performances would
generalize to unknown cases in prospective studies. Several
retrospective observer studies have been conducted to evalu-
ate the effects of CADe on radiologists’ interpretation of
CTC.185,194–196 These studies indicate that radiologists read-
ing with CADe outperformed radiologists alone. The useful-
ness of CADe for CTC has yet to be evaluated in prospective
clinical trials.

III. COMPUTER-AIDED DIAGNOSIS—FOR
DIFFERENTIAL DIAGNOSIS

Once a lesion is detected, for example, such as in a

screening program, further imaging of the abnormality may
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be necessary in order to justify subsequent patient manage-
ment such as invasive evaluations �e.g., a biopsy� and/or
therapeutic interventions. Thus, the role of a CADx system is
to aid in the characterization of an already-found lesion or
other abnormality in terms of its morphological or functional
attributes, and in the estimation of its probability of malig-
nancy or other disease state. Such a computer system is ex-
pected to aid a radiologist in his/her differential diagnosis
and improve the positive predictive value �PPV� of the inter-
pretation. The input to a CADx algorithm could be either a
radiologist-detected or a computer-detected lesion or region.
This input could be in the form of an indication of the ap-
proximate center of the lesion or an actual delineation of the
lesion outline. As clinical CADe systems begin to give more
information beyond just localization, CADx is slowly being
introduced.

Just as radiologists use multiple modalities in the work up
of a patient’s case, so can a computer system. Medical physi-
cists, armed with their knowledge of the physics of the vari-
ous imaging modalities, such as x-ray radiography, special
radiographic views, sonography, and MRI, are able to de-
velop CADx for the various modalities and use the informa-
tion individually or in combinations. Radiologists’ use of the
output of a CADx system is expected to improve the sensi-
tivity for cancer diagnosis, reduce the number of benign bi-
opsies, and reduce variability between and within radiolo-
gists. Extensions of such systems will potentially be
developed for assessing prognosis, assessment of tumor
growth rate, and response to treatment.

III.A. CADx in breast imaging

Medical physicists have played key roles in developing
CADx methods in breast imaging across the modalities.
Computerized classification systems can be designed to take
as input either human-perceived lesion features or computer-
extracted features. Note that a diagnostic task involves both
the extraction of lesion characteristics and the subsequent
merging of these characteristics into a diagnosis. In 1988,
Getty et al. demonstrated that radiologists’ performances im-
proved when using a CADx system that merged the lesion
characteristics that the radiologists had indicated via a
checklist.197 Although such human-perceived lesion features,
e.g., BI-RADS rating, can be subjective and may vary be-
tween radiologists, the usefulness of merging such features
by computer systems has been demonstrated.197–206

Computer-extracted features, i.e., mathematical descriptors,
can characterize the lesion using features either that radiolo-
gists can perceive such as mass spiculation or distribution of
microcalcifications, or those that are not so visually intuitive
to the eye, such as those obtained with co-occurrence
matrices.62,207–248 These computer-extracted features can be
obtained from standard mammographic views �CC and
MLO�, special view mammogram, prior mammographic ex-
ams, or from tomosynthesis mammograms, as well as from
sonograms and/or breast MR images. Note that computer-
extracted lesion features can be obtained from either

radiologist-delineated lesion margins or from computer-
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segmented lesion margins. Various methods have been pro-
posed for this important segmentation stage in CADx
systems.217,230,242,249–253 A poor segmentation of the lesion
margin would subsequently yield erroneous mathematical
descriptors �features� of the lesion. As with radiologists,
computer performance in diagnosing lesions improves for
special-view mammograms, as opposed to standard views,228

and also when prior mammograms are included in the overall
analysis.226,247

With the advent of FFDM systems, investigations have
been conducted to understand the necessary conversions of a
CADx system when going from digitized screen/film images
to FFDM images.254,255 For example, investigators have
shown that a mammographic CADx system developed for
characterizing clustered microcalcifications on screen/film
mammograms as malignant or benign can also be used for
FFDM images; the system appeared to maintain consistently
high performance without requiring substantial modification
from its initial development on screen-film
mammography.246,256 While the underlying concepts regard-
ing malignant features remain, the importance of the differ-
ent features on a correct output may be dependent on the
physical image quality of acquisition system, and, thus, re-
training �calibration� may be necessary.

The understanding of the imaging physics of breast
sonography allows for the development of additional lesion
features, such as posterior acoustic shadowing, and, thus,
their corresponding mathematical descriptors. CADx sys-
tems for ultrasound include mathematical descriptors of tex-
ture, margin, and posterior acoustic shadowing
criteria.208,220,232,236,257–260 Medical physicists have led the
field in robustness evaluation studies across institutions and
across manufacturers on sonographic CADx,236,240 and in ex-
tending the analysis to 3D images.239

The use of dynamic contrast-enhanced MRI continues to
increase in diagnostic work up and preoperative staging for
breast cancer. Assessment of contrast medium uptake and
washout are related to tumor blood flow, and, thus, the asso-
ciated kinetics are related to angiogenesis and likelihood of
malignancy.261 There is a need for standardization of MR
breast imaging as protocols can vary greatly between and
within institutions, and, thus, standardized lexicon are being
developed.262 Success in MRI analysis depends on knowl-
edge of the underlying biology, the physics of the acquisi-
tion, and computer vision techniques. Some commercial sys-
tems focus on just the kinetic aspects of breast MRI and plot
the kinetic curve �uptake and washout of the contrast agent�
of regions of interest on the display workstation. CADx sys-
tems being developed for MRI yield morphological features,
kinetic features, or combinations.215,223,231,235,243,399 MRI
CADx systems have the potential to improve both the accu-
racy and efficiency of interpretation.

Medical physicists have led various observer studies dem-
onstrating CADx as an aid to radiologists in the task of dis-
tinguishing between malignant and benign
lesions,222,237,244,263,398 demonstrating that radiologists’ per-
formance in classification of malignant and benign microcal-

cifications or masses could be improved significantly by use

Medical Physics, Vol. 35, No. 12, December 2008
of CADx. Others showed that improvement in performance
with the use of CADx can be obtained by both expert mam-
mographers and community-based radiologists with the per-
formance of the aided nonexperts reaching the levels of the
unaided experts.263 Use of computer output has also been
shown to reduce the variability among radiologists’
interpretations.264 Medical physicists have also conducted
observer studies for serial mammographic exams,265 sono-
graphic CADx including those for both 2D237 and 3D ultra-
sound systems,239 and for multimodality breast CADx in
which the CADx system outputs analyses of both mammog-
raphy and ultrasound.244

Effective and efficient communication of the computer
output to the radiologist is a necessary step in the overall
CADx protocol. During residency, radiologists learn through
the review of cases from conferences, teaching files, and at-
lases, and, thus, the access to online cases of known pathol-
ogy during a radiologist’s daily practice may be helpful for
continuous learning. Searching an online image atlas can be
based on individual features, on likelihood of malignancy, or
on psychophysical measures of similarity. One of the first
display systems for computer analysis output, by Sklansky et
al.,266 used a graphical method to show a chosen number of
similar malignant lesions and the same number of similar
benign lesions. Swett et al. utilized an expert system to con-
trol the display of similar cases.267,268 Giger et al. developed
a CADx workstation interface that includes mathematical de-
scriptors of lesion characteristics as well as an estimate of the
probability that the suspect lesion is abnormal or not, with
the output given in terms of a numerical estimate of the
probability of malignancy, a retrieval of similar lesions from
an online database, and/or a graphical representation of the
case in question relative to the distributions of normals and
abnormals in a given population.269,270,244 This interface,
shown in Fig. 7, displays similar images and uses color cod-
ing to indicate whether the similar images are malignant or
benign �red outlines=malignant, green outlines=benign le-
sions�. It searches either via the computer-estimated prob-
ability of malignancy or by way of specific lesion character-
istics, and shows a specific number of the closest similar
lesions—whether they are all malignant, all benign, or a
mixture.269,270,244 Investigators using the psychophysical as-
pects of similarity have combined the computer-extracted le-
sion characteristics with subjective similarity measures ob-
tained from observers reviewing pairs of images271–273 or
from observers giving subjective perceived ratings of lesion
features.274

Multimodality CADx output can be given separately for
each modality or as a combined output that includes features
from each modality, both of which have been shown to im-
prove performance.275,241 In addition, medical physicists are
investigating the appropriate output in terms of an estimate
of the probability of malignancy, knowing that the specific
cancer prevalence in the training database may affect the

276
actual output value.
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III.B. CADx in thoracic imaging

Due to that range of potential diseases present in the tho-
rax, various types of computer-aided diagnosis methods are
being developed for both chest radiography and CT, and in-
clude computer-aided diagnosis algorithms for pulmonary
nodules and interstitial lung diseases.

Use of computers for the differential diagnosis of lung
nodules in chest radiographs and thoracic CTs has advanced
in recent years. Candidate nodules detected on thoracic CT
may be categorized as malignant or benign, or as actionable
or not. Research parallels that for breast lesions in that char-
acteristic features of the nodules are extracted from chest
radiographs and merged using classifiers to yield a likelihood
of malignancy.277–279 Others have developed classification
methods for nodules detected on CT—both conventional and
thin-section CT.280–285 This characterization of lung nodules
on CT has been enhanced with the advent of PET/CT sys-
tems, allowing for characteristics from both modalities to be
used in the computer classification.

IV. QUANTITATIVE IMAGE ANALYSIS

IV.A. Quantitative metrics in anatomical imaging

While CAD is a quantitative tool that appears to its radi-
ologist users as a qualitative tool, radiologists also make use
of physically relevant quantitative measures under limited
circumstances. These quantitative values have physical
meaning in the radiographic interpretation. The use of dis-
tance and angular measurements using rulers or protractors is
the most ubiquitous example, and clinical applications in-
clude the ultrasound-determined crown-rump length for fetal
aging,286 angular measurements for scoliosis,287 and measur-
ing tumor width.288 Medical physicists were not needed for
radiologists to capitalize on simple length measurements for
diagnosis, but radiologists do use the fact that the Hounsfield
unit �HU� in CT is proportional to the linear attenuation co-

FIG. 7. Computer/human interface for a multimodality workstation with co
mography CADx output and �b� sonography CADx output.
efficient, and medical physicist Godfrey Hounsfield �also a
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Nobel Prize recipient� developed the normalization proce-
dure that made this possible. Lung nodules that exceed a
certain HU value are considered benign due to their calcifi-
cation, while nodules under this value have a higher prob-
ability of malignancy.289 Medical physicists have played a
role in understanding the limitation of quantitative CT.290

Dual energy x-ray absorptometry �DEXA� is capable of ac-
curately determining the projected bone mineral density
�mg /cm2�, and has been used to assess fracture risk for over
two decades.291 CT can measure the bone mineral density292

in three dimensions �mg /cm3�, and has also been used to
quantify fracture risk.293 The 3D capabilities of QCT provide
the additional benefit of discriminating between trabecular
and cortical bone density,294 and here again the calibration
methods necessary for accurate bone mineral quantitation
were developed by medical physicists.294 The use of digital
subtraction angiography allows interventional radiologists to
assess the anatomical constriction of a vessel, and from the
DSA procedure, a quantitative measure of stenosis can be
easily derived. DSA was developed by Mistretta and
colleagues,295–297 and is the worldwide standard for periph-
eral angiography today. Stenosis can be repeatedly measured
during a revascularization procedure such as stent placement
or angioplasty to monitor the success of the intervention and
provide guidance to the interventionalist as to whether or not
they have successfully dilated the vessel lumen.

IV.B. Quantitative metrics in functional imaging

Imaging modalities used in the traditional nuclear medi-
cine department, including planar imaging298 and SPECT,299

compensate for their comparatively low spatial resolution by
providing unique functional information concerning metabo-
lism, pharmacokinetic uptake, and other biodistribution in-
formation. Nuclear medicine procedures became faster with
the development of the Anger camera,300 developed by medi-
cal physicist Hal Anger, and faster imaging in turn gave rise

er outputs in numerical, pictorial, and graphical modes for both �a� mam-
mput
to quantitative kinetic studies. Physicists played an important
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role as nuclear medicine hardware started to incorporate
computers,301 a process that enabled quantitative imaging in
nuclear medicine. These images, both in 2D �planar� and 3D
�SPECT�, can be quantitative302–304 when calibrated appro-
priately and used for kinetic measurements of the heart in-
cluding the ejection fraction, myocardial perfusion, and ven-
tricular volume.305 The vascular dynamics of SPECT
imaging can also be applied in neuroradiology for brain per-
fusion in acute stroke. Medical physicists, working in col-
laboration with radiologists �e.g. Ref. 306�, helped develop
specific nuclear imaging procedures. Commercially available
SPECT/CT systems are inspired by the early work of Hase-
gawa and colleagues307,308 in building dual modality scan-
ners.

Positron emission tomography �PET� was invented by
medical physicists309,310 and used in the research setting for
many years, but enjoyed widespread clinical assimilation in
the United States only when reimbursement mechanisms be-
came established. In the present form of PET/CT, developed
by Townsend and colleagues,311,312 this hybrid modality has
revolutionized oncologic imaging and allows metabolic in-
formation �PET� to be evaluated along with high resolution
anatomic information �CT�. Furthermore, the inclusion of CT
in the PET examination allows the PET image to be cor-
rected for photon attenuation,313 transforming PET imaging
into a more quantitative modality.

Magnetic resonance imaging �MRI� was developed ini-
tially by spectroscopist Paul Lauterbaur,314 but most of the
hardware development and refinement of pulse sequences
was performed by medical physicists.315–318 The biological
effects of MRI were also studied early on by medical
physicists.319 Functional MRI �fMRI� is a tool widely used
by psychiatrists and neurophysiologists to study the spatial
and temporal aspects of cognition and emotion. Blood oxy-
genation level dependent320 �BOLD� techniques are used to
monitor blood flow in the brain while simultaneously provid-
ing an audible, visual, or other sensorial stimulus to the pa-
tient. These techniques were developed by medical physicists
working with other scientists.321,322 The techniques are quan-
titative because the activity maps that are generated from
these studies use correlation and other more sophisticated
statistical measures to map spatiotemporal patterns of brain
activity specific to the sensorial stimulus. While such tech-
niques are used more for fundamental research than clinical
evaluation, clinical applications such as mapping epileptic
foci and surgical planning are becoming more common.

V. EVALUATION OF CAD AND QUANTITATIVE
IMAGE ANALYSIS SYSTEMS

Medical physicists have played important roles in devel-
oping methodology for evaluating image analysis systems,
assessing variations between such systems, and conducting
observer studies. In CAD evaluations, performance levels
can be determined for the computer alone or for radiologists
when they are using the system output as an aid in their
interpretations.323 CADe methods typically employ FROC

curves to understand sensitivity versus average false-positive
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detections per image in assessing performance of the com-
puter analysis, whereas CADx methods are evaluated using
ROC analysis to assess computer performance in the task of
distinguishing between malignant and benign
lesions.115,324–327 As decision making extends beyond two-
class diagnoses, n-class classifiers will require appropriate
measures of performance, and these efforts are also being led
by medical physicists.328–331 Furthermore, during Jiang et
al.’s research on CADx of clustered microcalcifications, the
investigators realized the need for a more relevant measure
of performance—beyond the area under the ROC curve
�AUC�—in situations such as diagnostic workup in which a
high level of sensitivity is crucial, and, thus, the partial area
index was developed as demonstrated in Fig. 8.332

The database characteristics, for example, in terms of
size, lesion distribution, difficulty, as well as the integrity of
the truth, can greatly influence the training and testing of a
CAD algorithm. Various investigators have demonstrated the
effect of different databases on mass or microcalcification
detection performance using FROC analysis,333,334 the ef-
fects of differences in scoring methods on the sensitivity and
specificity of a CAD system,62,335 and the potential biases
resulting from insufficient sample size and improper feature
selection methods,336–343 the effect of dominant features in
the training of artificial neural networks,221 and effect from
training and testing with similar images.344 Studies of robust-
ness in which CAD systems are evaluated across institutions
and across manufacturers are necessary in the translation of
the research to the clinical arena.225,236,240,345 Additional in-
vestigations have focused on the computer performance on
lesions not initially detected in screening programs.61,346

Medical physicists have led the efforts of the LIDC �lung
imaging database consortium� initiated by NCI. The LIDC
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has demonstrated and provided methods for the careful and
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necessary collection of images and relevant diagnostic infor-
mation to enable CAD research. It has also considered vari-
ous issues including the integrity of expert-defined “truth,”
radiologist variability in the identification of lung nodules on
CT scans, and a comparison of different size metrics for
pulmonary nodule measurements.175,347–351 Databases are
only as good as the associated truth about the abnormality,
whether it be the location of the lesion, biopsy results on
malignancy/benignity, or consensus opinions. In the develop-
ment of CADe systems for lung nodule detection, for ex-
ample, different investigators have used different “truths,”
and have trained and evaluated systems with images of can-
cerous lung nodules, with all types of lung nodules �both
malignant and benign�, and/or with any “actionable regions,”
i.e., a region that is suspicious enough to cause further ex-
aminations or diagnostic actions.

Ultimate evaluation of CAD involves evaluating the per-
formance of radiologists using the computer output as an aid
�i.e., in observer studies or clinical trials�. Various observer
studies have been cited throughout this article. With observer
studies, researchers aim to mimic the interpretation task on a
database that might be enriched with a higher prevalence of
cancer cases. Radiologists’ performance with CAD systems
has been compared to double reading by humans.352–354

While results on performances are obtained from observer
studies, ultimately clinical trials need to demonstrate efficacy
of CAD systems.

It is important to realize that with CADe systems, which
are focused on screening programs in which most cases will
be normal, a large number of cases will be necessary for
there to be sufficient power to demonstrate an actual im-
provement. Jiang et al. have reported that to detect an in-
crease of one additional cancer per reader per 1000 screening
mammograms with 80% power, a trial with a new modality
�such as CADe� would need at least 25 radiologists, who
would each read at least 8,000 screening mammograms.355 In
addition, the measure of performance selected may also af-
fect the overall conclusion, as noted by Horsch et al. in the
analysis of performances in terms of radiologists’ reported
probability of malignancy, in terms of BI-RAD ratings, and
in terms of the patient management decision to biopsy or
not.356

Evaluation studies on quantitative image analysis include
additional needs since the absolute metrics such as tumor
volume or blood flow must be correlated with actual physical
conditions. Studies, such as clinical trials for therapeutic re-
sponse or drug discovery, require careful standardization of
the imaging protocol. In an effort to develop consistent and
quality-controlled imaging protocols, uniform protocols for
imaging in clinical trials �UPICT� �http://upict.acr.org/� was
formed. Validation of quantitative imaging metrics have
similar requirements as those for CAD methods in that veri-
fication of “truth” and adequate statistics are necessary.

VI. CHALLENGES, LESSONS LEARNED, AND THE
FUTURE

The first FDA-approved CAD system in 1998 was for

computer-aided detection in screening mammography. While
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the detection of many types of cancers lend themselves to
CADe due to the potential of oversight “errors” in a screen-
ing population of many normal cases, mammography was a
good imaging exam for commercialization of CADe, since
screening mammography is basically a dedicated imaging
protocol, i.e., there is no other major “disease” or “incidental
findings” for which the exam is ordered. The multitude of
potential diseases/conditions presenting on a chest radio-
graph combined with the inconvenience of film digitization
for just one CAD task, slowed the research on CAD for lung
cancer. However, CADe on thoracic CT �and on digital radi-
ography� appears to be thriving, as image data are now pri-
marily digital and the display of the computer output can be
activated by a software button.

The potential for CADe is being explored for many other
modalities and diseases. Examples include detection of pul-
monary embolism357,358 and hepatocellular carcinoma on CT
scans,359 coronary artery diseases on cardiac CT
angiograms,360 urinary tract cancer in CT images,361 masses
on breast ultrasound images,236 vertebrate fracture on lateral
chest radiographs,362 brain tumor or intracranial aneurysm on
MR angiograms,363,364 retinography,365 and detection of tu-
mor change on whole-body nuclear medicine scans.366 Al-
though CADe developments in these and other areas are still
at an early stage, it can be seen that researchers will continue
to expand their interests and efforts in CADe to various areas
of applications.

Although the clinical community is accepting CADe to
their practice, challenges exist for the current CADe systems
and the development of new CADe systems. CADe systems
may suffer from high FP rates. Most FPs might be dismissed
by radiologists easily but some might require unnecessary
work up. Some radiologists are concerned with the medicole-
gal consequences that the CAD marks that are not worked up
may turn out to be malignant. Improving the CADe algo-
rithms to reduce FPs is a constant goal for CAD developers.
To develop CADe for a new area, the most difficult step is
often the collection of a large database, representative of the
patient population, for training and testing the CADe algo-
rithms. Furthermore, whether a CADe system is useful as an
aid to radiologists may be evaluated in prospective clinical
trials. As discussed above, the outcomes of a clinical trial
may be influenced by the study design and other human fac-
tors such as radiologists’ experience and vigilance, and their
response to the CAD marks, in addition to the performance
of the CADe system. Understanding these issues will be im-
portant for the study of the impact of CADe on medical
diagnosis and for motivating radiologists to take best advan-
tage of CADe in clinical practice.

The incorporation of CAD into new imaging modalities
will become commonplace. Just as computers continue to be
an integral part of our lives—so will they grow in medical
imaging. CAD is now an integral component in most major
medical imaging meetings and numerous CAD papers are
published in journals such as Medical Physics each year.
CAD will play an important role in the process of medical
image interpretation and become an indispensable compo-

nent in diagnostic imaging in the not-too-distant future. Vari-
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ous medical physicists are continuing to expand the role of
CAD beyond computerized detection and diagnosis, such as
in assessing cancer risk,367–370 risk of osteoporosis,371–375 and
potential occurrence of osteolysis.376 Extension of techniques
developed for CAD are expected to also play a role in mea-
surements of response to therapy, such as in assessing
changes in tumors following chemotherapy377,378 and in the
quantitative analysis on thoracic CT in the assessment of
mesothelioma.379 Furthermore, as new imaging modalities
make available more and more data for interpretation, inclu-
sion of CAD will be a necessity. Examples include assess-
ment of multiple disease states in thoracic/abdominal
CT380–383 and improved analysis of cardiac CT.384,385

As emphasized elsewhere,386 the use of quantitative infor-
mation that is accessible through imaging is predicted to dra-
matically increase over the next decade. Several factors lead
to this observation. �1� We are in the postdigital image era,
and virtually all image data are interpreted in digital format
by radiologists using an imaging workstation �a computer�.
Thus, the image data are readily available for computerized
assessment by interpreting physicians. �2� Radiography and
other planar imaging modalities are slowly giving way to
tomographic imaging, in CT, PET, SPECT, ultrasound, and
MRI. Tomographic images provide a much richer data set in
which spatial and other geometric parameters can be quanti-
fied. �3� The scan times for most modalities are steadily de-
creasing, giving rise to temporal imaging protocols �which
provide image data at two or more time points� for the as-
sessment of time-dependent physiological parameters such
as blood flow, perfusion, permeability, and other velocity-
based metrics. �4� Medicine is in a state of transition from a
practice-based specialty to diagnoses and treatment deci-
sions, which are evidence-based. This change will place
more emphasis on quantitative parameters as diagnostic end-
points.

Medical physicists will have a very important role to play
in this future landscape of quantitative imaging, by validat-
ing the quantitative integrity of scanners and developing im-
aging techniques, and image processing tools, which provide
quantitative data in a more automated and accurate fashion.
While the medical physicist played an essential and undeni-
able role in the development of imaging systems over the
past 50 years, as imaging systems become more complex
and the need for better and more accurate quantitative infor-
mation from images grows, the role of the physicist will be
even more important in the next 50 years.

The future includes the combined research efforts from
physicists working in CAD with those working on quantita-
tive imaging systems to readily yield information on mor-
phology, function, molecular structure, and more—from ani-
mal imaging research to clinical patient care.

ACKNOWLEDGMENTS

Maryellen Giger is grateful for the many fruitful discus-
sions with the faculty and research staff in the Department of
Radiology and Committee on Medical Physics at the Univer-

sity of Chicago. Certain parts of the chapter are the result of

Medical Physics, Vol. 35, No. 12, December 2008
research supported in parts by USPHS grants from NCI,
NIBIB, and NIAMS, as well as from the U.S. Army Breast
Cancer Research Program, the American Cancer Society, the
Whitaker Foundation, and The University of Chicago Cancer
Research Center. M. Giger is a stockholder in R2 Technol-
ogy, a Hologic Company �Sunnyvale, CA�. It is the Univer-
sity of Chicago conflict-of-interest policy that investigators
disclose publicly actual or potential significant financial in-
terests that may appear to be affected by the research activi-
ties. Heang-Ping Chan is grateful for the efforts by the fac-
ulty and researchers in the Department of Radiology and the
CAD Research Laboratory at the University of Michigan.
Certain parts of the chapter are the result of research sup-
ported in parts by USPHS grants from NCI and NIBIB, as
well as from the U.S. Army Breast Cancer Research Pro-
gram. John Boone was funded in part by a grant from the
NIH �R01 EB002138�.

a�Author to whom correspondence should be addressed. Electronic mail:
m-giger@uchicago.edu

1H. L. Kundel and D. J. Wright, “The influence of prior knowledge on
visual search strategies during the viewing of chest radiographs,” Radiol-
ogy 93, 315–320 �1969�.

2H. L. Kundel, G. Revesz, M. C. Ziskin, and F. J. Shea, “The image and its
influence on quantitative radiological data,” Invest. Radiol. 7, 187–205
�1972�.

3H. L. Kundel and G. Revesz, “Lesion conspicuity, structured noise, and
film reader error,” AJR, Am. J. Roentgenol. 126, 1233–1238 �1976�.

4D. P. Carmody, C. F. Nodine, and H. L. Kundel, “An analysis of percep-
tual and cognitive factors in radiographic interpretation,” Perception 9,
339–344 �1980�.

5H. L. Kundel and W. R. Hendee, “The perception of radiologic image
information. Report of an NCI workshop on April 15-16, 1985,” Invest.
Radiol. 20, 874–877 �1985�.

6C. F. Nodine, H. L. Kundel, C. Mello-Thoms, S. P. Weinstein, S. G. Orel,
D. C. Sullivan, and E. F. Conant, “How experience and training influence
mammography expertise,” Acad. Radiol. 6, 575–585 �1999�.

7L. B. Lusted, “Medical electronics,” N. Engl. J. Med. 252, 580–585
�1955�.

8G. S. Lodwick, T. E. Keats, and J. P. Dorst, “The coding of roentgen
images for computer analysis as applied to lung cancer,” Radiology 81,
185–200 �1963�.

9H. C. Becker, N. J. Nettleton, P. H. Meyers, J. W. Sweeney, and C. M.
Nice, “Digital computer determination of a medical diagnostic index di-
rectly from chest x-ray images,” IEEE Trans. Biomed. Eng. 11, 67–72
�1964�.

10P. H. Meyers, C. M. Nice, H. C. Becker, W. J. Nettleton, J. W. Sweeney,
and G. R. Mechstroth, “Automated computer analysis of radiographic
images,” Radiology 83, 1029–1033 �1964�.

11F. Winsberg, M. Elkin, J. Macy, V. Bordaz, and W. Weymouth, “Detection
of radiographic abnormalities in mammograms by means of optical scan-
ning and computer analysis,” Radiology 89, 211–215 �1967�.

12F. Roellinger, Jr., A. Kahveci, J. Chang, C. Harlow, S. Dwyer III, and G.
Lodwick, “Computer analysis of chest radiographs,” Comput. Graph. Im-
age Process. 2, 232–251 �1973�.

13J. Toriwaki, Y. Suenaga, T. Negoro, and T. Fukumura, “Pattern recogni-
tion of chest x-ray images,” Comput. Graph. Image Process. 2, 252–271
�1973�.

14R. Kruger, W. Thompson, and A. Turner, “Computer diagnosis of pneu-
moconiosis,” IEEE Trans. Syst. Man Cybern. SMC-4, 40–50 �1974�.

15C. Kimme, B. J. O’Laughlin, and J. Sklansky, Automatic Detection of
Suspicious Abnormalities in Breast Radiographs �Academic Press, New
York, 1975�, pp. 427–447.

16W. Spiesberger, “Mammogram inspection by computer,” IEEE Trans.
Biomed. Eng. 26, 213–219 �1979�.

17J. Reiber, C. Kooijman, C. Slager, J. Gerbrands, J. Schuurbiers, A. den
Boer, W. Wijns, and S. P. Hugenholta, “Coronary artery dimensions from

cineangiograms—Methodology and validation of a computer-assisted



5812 Giger, Chan, and Boone: History of CAD and quantitative image analysis 5812
analysis procedure,” IEEE Trans. Med. Imaging 3, 131–141 �1984�.
18H. Fujita, K. Doi, L. E. Fencil, and K. G. Chua, “Image feature analysis

and computer-aided diagnosis in digital radiography. 2. Computerized
determination of vessel sizes in digital subtraction angiography,” Med.
Phys. 14, 549–556 �1987�.

19H.-P. Chan, K. Doi, S. Galhotra, C. J. Vyborny, H. MacMahon, and P. M.
Jokich, “Image feature analysis and computer-aided diagnosis in digital
radiography. 1. Automated detection of microcalcifications in mammog-
raphy,” Med. Phys. 14, 538–548 �1987�.

20M. L. Giger, K. Doi, and H. MacMahon, “Computerized detection of lung
nodules in digital chest radiographs,” Proc. SPIE 767, 384–386 �1987�.

21M. L. Giger, K. Doi, and H. MacMahon, “Image feature analysis and
computer aided diagnosis in digital radiography. 3. Automated detection
of nodules in peripheral lung fields,” Med. Phys. 15, 158–166 �1988�.

22K. Doi, H.-P. Chan, and M. Giger, “Method and system for enhancement
and detection of abnormal anatomic regions in a digital image.” Univer-
sity of Chicago, U. S. Pat. No. 4907156, March 1990.

23M. L. Giger, “Computer-aided diagnosis,” in Syllabus: A Categorical
Course in Physics. Technical Aspects of Breast Imaging, A. G. Haus and
M. J. Yaffe, eds. �RSNA Publications, Oak Brook, IL, 1993�, pp. 272–
298.

24C. J. Vyborny and M. L. Giger, “Computer vision and artificial intelli-
gence in mammography,” AJR, Am. J. Roentgenol. 162, 699–708 �1994�.

25M. Giger and H. MacMahon, “Image processing and computer-aided di-
agnosis,” Radiol. Clin. North Am. 34, 565–596 �1996�.

26K. Doi, H. MacMahon, M. Giger, and K. Hoffmann, Proceedings of the
First International Workshop on Computer-Aided Diagnosis in Medical
Imaging �Elsevier, New York, 1999�.

27M. L. Giger, Z. Huo, M. A. Kupinski, and C. J. Vyborny, “Computer-
aided diagnosis in mammography,” in Handbook of Medical Imaging, M.
Sonka and J. M. Fitzpatrick, eds. �The Society of Photo-Optical Instru-
mentation Engineers, Bellingham, WA, 2000�, pp. 915–1004.

28Y. Jiang, “Classification of breast lesions in mammograms.” in Handbook
of Medical Imaging, Processing and Analysis, I. Bankman, ed. �Academic
Press, New York, 2000�, pp. 341–358.

29C. J. Vyborny, M. L. Giger, and R. M. Nishikawa, “Computer-aided de-
tection and diagnosis of breast cancer,” Radiol. Clin. North Am. 38, 725–
740 �2000�.

30B. van Ginneken, B. M. ter Haar Romeny, and M. A. Viergever,
“Computer-aided diagnosis in chest radiography: A survey,” IEEE Trans.
Med. Imaging 20, 1228–1241 �2001�.

31M. Giger, “Computerized image analysis in breast cancer detection and
diagnosis,” Seminars in Breast Disease 5, 199–210 �2002�.

32E. Krupinski, “The future of image perception in radiology: Synergy be-
tween humans and computers,” Acad. Radiol. 10, 1–3 �2003�.

33H. P. Chan, B. Sahiner, and L. M. Hadjiiski, “Computer-aided diagnosis
in screening mammography,” in Advances in Breast Imaging: Physics,
Technology, and Clinical Applications—Categorical Course in Diagnos-
tic Radiology Physics, A. Karellas and M. L. Giger, eds. �RSNA, Oak
Brook, IL, 2004�, pp. 191–204.

34I. Sluimer, A. Schilham, M. Prokop, and B. van Ginneken, “Computer
analysis of computed tomography scans of the lung: A survey,” IEEE
Trans. Med. Imaging 25, 385–405 �2006�.

35K. Doi, “Computer-aided diagnosis in medical imaging: historical review,
current status and future potential,” Comput. Med. Imaging Graph. 31,
198–211 �2007�.

36R. M. Nishikawa, “Current status and future directions of computer-aided
diagnosis in mammography,” Comput. Med. Imaging Graph. 31, 224–
235 �2007�.

37H. P. Chan, L. Hadjiisk, C. Zhou, and B. Sahiner, “Computer-aided diag-
nosis of lung cancer and pulmonary embolism in computed
tomography—A review,” Acad. Radiol. 15, 535–555 �2008�.

38D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics
�Wiley, New York, 1966�.

39J. A. Swets and R. M. Pickett, Evaluation of Diagnostic Systems: Meth-
ods from Signal Detection Theory �Academic Press, New York, 1982�.

40K. Rossmann, “Comparison of several methods for evaluation image
quality of radiographic screen-film system,” Am. J. Roentgenol., Radium
Ther. Nucl. Med. 97, 772–775 �1966�.

41K. Rossmann, “Image quality,” Radiol. Clin. North Am. 7, 419–433
�1969�.

42D. J. Goodenough, K. Rossmann, and L. B. Lusted, “Radiographic appli-

cations of signal detection theory,” Radiology 105, 199–200 �1972�.

Medical Physics, Vol. 35, No. 12, December 2008
43J. C. Dainty and R. Shaw, Image Science �Academic Press, New York,
1974�.

44R. F. Wagner, “Toward a unified view of radiological imaging systems.
Part II: Noisy images,” Med. Phys. 4, 279–296 �1977�.

45C. E. Metz, “ROC methodology in radiologic imaging,” Invest. Radiol.
21, 720–733 �1986�.

46H. H. Barrett and K. Myers, Foundations of Image Science �Wiley, New
York, 2004�.

47R. F. Wagner, K. E. Weaver, E. W. Denny, and R. G. Bostrom, “Toward
a unified view of radiological imaging systems. Part I: Noiseless images,”
Med. Phys. 1, 11–24 �1974�.

48J. M. Sandrik and R. F. Wagner, “Absolute measures of physical image
quality: Measurement and application to radiographic magnification,”
Med. Phys. 9, 540–549 �1982�.

49M. L. Giger and K. Doi, “Investigation of basic imaging properties of
digital radiography. Part 1: Modulation transfer function,” Med. Phys. 11,
287–295 �1984�.

50M. L. Giger, K. Doi, and C. E. Metz, “Investigation of basic imaging
properties of digital radiography. Part 2: Noise Wiener spectrum,” Med.
Phys. 11, 797–805 �1984�.

51L.-N. D. Loo, K. Doi, and C. E. Metz, “A comparison of physical image
quality indices and observer performance in the radiographic detection of
nylon beads,” Phys. Med. Biol. 29, 837–856 �1984�.

52M. L. Giger and K. Doi, “Investigation of basic imaging properties in
digital radiography. 3. Effect of pixel size on SNR and threshold con-
trast,” Med. Phys. 12, 201–208 �1985�.

53M. J. Tapiovaara and R. J. Wagner, “SNR and DQE analysis of broad-
spectrum x-ray imaging,” Phys. Med. Biol. 30, 519–529 �1985�.

54L. W. Bassett, D. H. Bunnell, R. Jahanshahi, R. H. Gold, R. D. Arndt, and
J. Linsman, “Breast cancer detection: One versus two views,” Radiology
165, 95–97 �1987�.

55B. J. Hillman, L. L. Fajardo, T. B. Hunter, B. Mockbee, C. E. Cook, R. M.
Hagman, J. C. Bjelland, C. S. Frey, and C. J. Harris, “Mammogram
interpretation by physician assistants,” AJR, Am. J. Roentgenol. 149,
907–911 �1987�.

56M. G. Wallis, M. T. Walsh, and J. R. Lee, “A review of false negative
mammography in a symptomatic population,” Clin. Radiol. 44, 13–15
�1991�.

57R. E. Bird, T. W. Wallace, and B. C. Yankaskas, “Analysis of cancers
missed at screening mammography,” Radiology 184, 613–617 �1992�.

58J. A. Harvey, L. L. Fajardo, and C. A. Innis, “Previous mammograms in
patients with impalpable breast carcinomas: Retrospective vs blinded in-
terpretation,” AJR, Am. J. Roentgenol. 161, 1167–1172 �1993�.

59C. A. Beam, P. M. Layde, and D. C. Sullivan, “Variability in the inter-
pretation of screening mammograms by US radiologists—Findings from
a national sample,” Arch. Intern Med. 156, 209–213 �1996�.

60J. G. Elmore, C. Y. Nakano, T. D. Koepsell, L. M. Desnick, C. J. D’Orsi,
and D. F. Ransohoff, “International variation in screening mammography
interpretations in community-based programs,” J. Natl. Cancer Inst. 95,
1384–1393 �2003�.

61R. L. Birdwell, D. M. Ikeda, K. F. O’Shaughnessy, and E. A. Sickles,
“Mammographic characteristics of 115 missed cancers later detected with
screening mammography and the potential utility of computer-aided de-
tection,” Radiology 219, 192–202 �2001�.

62M. Giger, Z. Huo, M. Kupinski, and C. Vyborny, “Computer-aided diag-
nosis in mammography,” in Handbook of Medical Imaging Volume II:
Medical Imaging Processing and Analysis, M. Sonka and M. Fitzpatrick
eds. �SPIE, Bellingham, WA, 2000�.

63R. Nishikawa, “Current status and future directions of computer-aided
diagnosis in mammography,” Comput. Med. Imaging Graph. 31, 224–
235 �2007�.

64J. L. Semmlow, A. Shadagopappan, L. V. Ackerman, W. Hand, and F. S.
Alcorn, “A fully automated system for screening mammograms,” Com-
put. Biomed. Res. 13, 350–362 �1980�.

65B. W. Fam, S. L. Olson, P. F. Winter, and F. J. Scholz, “Algorithm for the
detection of fine clustered calcifications on film mammograms,” Radiol-
ogy 169, 333–337 �1988�.

66D. H. Davies and D. R. Dance, “Automatic computer detection of clus-
tered calcifications in digital mammograms,” Phys. Med. Biol. 35, 1111–
1118 �1990�.

67S. Astley, I. Hutt, S. Adamson, P. Miller, P. Rose, C. Boggis, C. Taylor, T.
Valentine, J. Davies, and J. Armstrong, “Automation in mammography:

Computer vision and human perception,” Proc. SPIE 1905, 716–730

http://dx.doi.org/10.1118/1.596066
http://dx.doi.org/10.1118/1.596066
http://dx.doi.org/10.1118/1.596065
http://dx.doi.org/10.1118/1.596247
http://dx.doi.org/10.1016/S0033-8389(05)70197-4
http://dx.doi.org/10.1109/42.974918
http://dx.doi.org/10.1109/42.974918
http://dx.doi.org/10.1109/TMI.2005.862753
http://dx.doi.org/10.1109/TMI.2005.862753
http://dx.doi.org/10.1016/j.compmedimag.2007.02.002
http://dx.doi.org/10.1016/j.compmedimag.2007.02.009
http://dx.doi.org/10.1118/1.594362
http://dx.doi.org/10.1097/00004424-198609000-00009
http://dx.doi.org/10.1118/1.1637272
http://dx.doi.org/10.1118/1.595099
http://dx.doi.org/10.1118/1.595629
http://dx.doi.org/10.1118/1.595583
http://dx.doi.org/10.1118/1.595583
http://dx.doi.org/10.1088/0031-9155/29/7/007
http://dx.doi.org/10.1118/1.595708
http://dx.doi.org/10.1088/0031-9155/30/6/002
http://dx.doi.org/10.1016/S0009-9260(05)80218-1
http://dx.doi.org/10.1001/archinte.156.2.209
http://dx.doi.org/10.1016/j.compmedimag.2007.02.009
http://dx.doi.org/10.1016/0010-4809(80)90027-0
http://dx.doi.org/10.1016/0010-4809(80)90027-0
http://dx.doi.org/10.1088/0031-9155/35/8/007
http://dx.doi.org/10.1117/12.148683


5813 Giger, Chan, and Boone: History of CAD and quantitative image analysis 5813
�1993�.
68I. N. Bankman, W. A. Christens-Barry, D. W. Kim, I. N. Weinberg, O. B.

Gatewood, and W. R. Brody, “Automated recognition of microcalcifica-
tion clusters in mammograms,” Proc. SPIE 1905, 731–738 �1993�.

69N. Karssemeijer, “Recognition of clustered microcalcifications using a
random field model,” Proc. SPIE 1905, 776–786 �1993�.

70R. M. Nishikawa, M. L. Giger, K. Doi, C. J. Vyborny, R. A. Schmidt, C.
E. Metz, Y. Wu, F.-F. Yin, Y. Jiang, Z. Huo, P. Lu, W. Zhang, T. Ema, U.
Bick, J. Papaioannou, and R. H. Nagel, “Computer-aided detection and
diagnosis of masses and clustered microcalcifications from digital mam-
mograms,” Proc. SPIE 1905, 422–432 �1993�.

71L. Shen, R. M. Rangayyan, and J. E. L. Desautels, “Automatic detection
and classification system for calcifications in mammograms,” Proc. SPIE
1905, 799–805 �1993�.

72L. P. Clarke, M. Kallergi, W. Qian, H. D. Li, R. A. Clark, and M. L.
Silbiger, “Tree-structured non-linear filter and wavelet transform for mi-
crocalcification segmentation in digital mammography,” Cancer Lett. 77,
173–181 �1994�.

73W. Qian, L. P. Clarke, M. Kallergi, and R. A. Clark, “Tree-structured
nonlinear filters in digital mammography,” IEEE Trans. Med. Imaging 13,
25–36 �1994�.

74W. Zhang, K. Doi, M. L. Giger, Y. Wu, R. M. Nishikawa, and R. A.
Schmidt, “Computerized detection of clustered microcalcifications in
digital mammograms using a shift-invariant artificial neural network,”
Med. Phys. 21, 517–524 �1994�.

75H.-P. Chan, S.-C. B. Lo, B. Sahiner, K. L. Lam, and M. A. Helvie,
“Computer-aided detection of mammographic microcalcifications: Pattern
recognition with an artificial neural network,” Med. Phys. 22, 1555–1567
�1995�.

76B. Zheng, Y.-H. Chang, M. Staiger, W. Good, and D. Gur, “Computer-
aided detection of clustered microcalcifications in digitized mammo-
grams,” Acad. Radiol. 2, 655–662 �1995�.

77R. N. Strickland and H. Hahn, “Wavelet transforms for detecting micro-
calcifications in mammograms,” IEEE Trans. Med. Imaging 15, 218–229
�1996�.

78H. Yoshida, K. Doi, R. M. Nishikawa, M. L. Giger, and R. A. Schmidt,
“An improved computer-assisted diagnostic scheme using wavelet trans-
form for detecting clustered microcalcifications in digital mammograms,”
Acad. Radiol. 3, 621–627 �1996�.

79M. A. Gavrielides, J. Y. Lo, R. Vargas-Voracek, and J. C. E. Floyd, “Seg-
mentation of suspicious clustered microcalcifications in mammograms,”
Med. Phys. 27, 13–22 �2000�.

80S. Yu and L. Guan, “A CAD system for the automatic detection of clus-
tered microcalcifications in digitized mammograms,” IEEE Trans. Med.
Imaging 19, 115–126 �2000�.

81I. El-Naqa, Y. Yang, R. M. Nishikawa, and M. N. Wernick, “A support
vector machine approach for detection of microcalcifications,” IEEE
Trans. Med. Imaging 21, 1552–1563 �2002�.

82M. Salfity, R. Nishikawa, Y. Jiang, and J. Papaioannou, “The use of a
priori information to improve the detection of microcalcifications on
mammograms,” Med. Phys. 30, 823–831 �2002�.

83J. Ge, B. Sahiner, L. M. Hadjiiski, H.-P. Chan, J. Wei, M. A. Helvie, and
C. Zhou, “Computer aided detection of clusters of microcalcifications on
full field digital mammograms,” Med. Phys. 33, 2975–2988 �2006�.

84B. Sahiner, H.-P. Chan, L. M. Hadjiiski, M. A. Helvie, C. Paramagul, J.
Ge, J. Wei, and C. Zhou, “Joint two-view information for computerized
detection of microcalcifications on mammograms,” Med. Phys. 33, 2574–
2585 �2006�.

85C. Kimme, B. J. O’Loughlin, and J. Sklansky, “Automatic detection of
suspicious abnormalities in breast radiographs,” in Data Structures, Com-
puter Graphics, and Pattern Recognition, K. S. Fu, T. L. Kunii, and A.
Klinger, eds. �Academic Press, New York, 1975�, pp. 427–447.

86S. M. Lai, X. Li, and W. F. Bischof, “On techniques for detecting circum-
scribed masses in mammograms,” IEEE Trans. Med. Imaging 8, 377–386
�1989�.

87D. Brzakovic, X. M. Luo, and P. Brzakovic, “An approach to automated
detection of tumors in mammograms,” IEEE Trans. Med. Imaging 9,
233–241 �1990�.

88T. K. Lau and W. F. Bischof, “Automated detection of breast tumors using
the asymmetry approach,” Comput. Biomed. Res. 24, 273–295 �1991�.

89F.-F. Yin, M. L. Giger, K. Doi, C. E. Metz, C. J. Vyborny, and R. A.
Schmidt, “Computerized detection of masses in digital mammograms:

Analysis of bilateral subtraction images,” Med. Phys. 18, 955–963

Medical Physics, Vol. 35, No. 12, December 2008
�1991�.
90S. L. Ng and W. F. Bischof, “Automated detection and classification of

breast tumors,” Comput. Biomed. Res. 25, 218–237 �1992�.
91F.-F. Yin, M. L. Giger, C. J. Vyborny, K. Doi, and R. A. Schmidt, “Com-

parison of bilateral-subtraction and single-image processing techniques in
the computerized detection of mammographic masses,” Invest. Radiol.
28, 473–481 �1993�.

92W. P. Kegelmeyer, J. M. Pruneda, P. D. Bourland, A. Hillis, M. W. Riggs,
and M. L. Nipper, “Computer-aided mammographic screening for spicu-
lated lesions,” Radiology 191, 331–337 �1994�.

93A. Laine, S. Schuler, J. Fan, and W. Huda, “Mammographic feature en-
hancement by multiscale analysis,” IEEE Trans. Med. Imaging 13, 725–
740 �1994�.

94H. D. Li, M. Kallergi, L. P. Clarke, V. K. Jain, and R. A. Clarke, “Markov
random field for tumor detection in digital mammograms,” IEEE Trans.
Med. Imaging 14, 565–576 �1995�.

95B. Zheng, Y. H. Chang, and D. Gur, “Computerized detection of masses
in digitized mammograms using single-image segmentation and a
multilayer topographic feature analysis,” Acad. Radiol. 2, 959–966
�1995�.

96N. Karssemeijer and G. te Brake, “Detection of stellate distortions in
mammograms,” IEEE Trans. Med. Imaging 15, 611–619 �1996�.

97N. Petrick, H. P. Chan, D. Wei, B. Sahiner, M. A. Helvie, and D. D.
Adler, “Automated detection of breast masses on mammograms using
adaptive contrast enhancement and texture classification,” Med. Phys. 23,
1685–1696 �1996�.

98D. Wei, H. P. Chan, N. Petrick, B. Sahiner, M. A. Helvie, D. D. Adler,
and M. M. Goodsitt, “False-positive reduction technique for detection of
masses on digital mammograms: Global and local multiresolution texture
analysis,” Med. Phys. 24, 903–914 �1997�.

99A. J. Mendez, P. G. Tahoces, M. J. Lado, M. Souto, and J. J. Vidal,
“Computer-aided diagnosis: Automatic detection of malignant masses in
digitized mammograms,” Med. Phys. 25, 957–964 �1998�.

100H. Kobatake, M. Murakami, H. Takeo, and S. Nawano, “Computer de-
tection of malignant tumors on digital mammograms,” IEEE Trans. Med.
Imaging 18, 369–378 �1999�.

101N. Petrick, H. P. Chan, B. Sahiner, and M. A. Helvie, “Combined adap-
tive enhancement and region-growing segmentation of breast masses on
digitized mammograms,” Med. Phys. 26, 1642–1654 �1999�.

102G. M. te Brake and N. Karssemeijer, “Single and multiscale detection of
masses in digital mammograms,” IEEE Trans. Med. Imaging 18, 628–
639 �1999�.

103G. M. te Brake, N. Karssemeijer, and J. Hendriks, “An automatic method
to discriminate malignant masses from normal tissue in digital mammo-
grams,” Phys. Med. Biol. 45, 2843–2857 �2000�.

104Y. Hatanaka, T. Hara, H. Fujita, S. Kasai, T. Endo, and T. Iwase, “Devel-
opment of an automated method for detecting mammographic masses
with a partial loss of region,” IEEE Trans. Med. Imaging 20, 1209–1214
�2001�.

105N. R. Mudigonda, R. M. Rangayyan, and J. E. L. Desautels, “Detection of
breast masses in mammograms by density slicing and texture flow-field
analysis,” IEEE Trans. Med. Imaging 20, 1215–1227 �2001�.

106S. C. B. Lo, H. Li, Y. Wang, L. Kinnard, and M. T. Freedman, “A multiple
circular path convolution neural network system for detection of mam-
mographic masses,” IEEE Trans. Med. Imaging 21, 150–158 �2002�.

107N. Petrick, H. P. Chan, B. Sahiner, M. A. Helvie, S. Paquerault, and L. M.
Hadjiiski, “Breast cancer detection: Evaluation of a mass detection algo-
rithm for computer-aided diagnosis: Experience in 263 patients,” Radiol-
ogy 224, 217–224 �2002�.

108A. H. Baydush, D. M. Catarious, C. K. Abbey, and C. E. Floyd, “Com-
puter aided detection of masses in mammography using subregion Hotell-
ing observers,” Med. Phys. 30, 1781–1787 �2003�.

109G. D. Tourassi, R. Vargas-Voracek, David M. Catarious, Jr., and Carey E.
Floyd, Jr., “Computer-assisted detection of mammographic masses: A
template matching scheme based on mutual information,” Med. Phys. 30,
2123–2130 �2003�.

110J. Wei, H.-P. Chan, B. Sahiner, L. M. Hadjiiski, M. A. Helvie, M. A.
Roubidoux, C. Zhou, and J. Ge, “Dual system approach to computer-
aided detection of breast masses on mammograms,” Med. Phys. 33,
4157–4168 �2006�.

111J. Wei, L. M. Hadjiiski, B. Sahiner, H. Chan, J. Ge, M. A. Roubidoux, M.
A. Helvie, C. Zhou, Y. Wu, C. Paramagul, and Y. Zhang, “Computer

aided detection systems for breast masses: Comparison of performances

http://dx.doi.org/10.1117/12.148684
http://dx.doi.org/10.1117/12.148689
http://dx.doi.org/10.1117/12.148655
http://dx.doi.org/10.1117/12.148691
http://dx.doi.org/10.1109/42.276142
http://dx.doi.org/10.1118/1.597177
http://dx.doi.org/10.1118/1.597428
http://dx.doi.org/10.1109/42.491423
http://dx.doi.org/10.1118/1.598852
http://dx.doi.org/10.1109/42.836371
http://dx.doi.org/10.1109/42.836371
http://dx.doi.org/10.1109/TMI.2002.806569
http://dx.doi.org/10.1109/TMI.2002.806569
http://dx.doi.org/10.1118/1.1559884
http://dx.doi.org/10.1118/1.2211710
http://dx.doi.org/10.1118/1.2208919
http://dx.doi.org/10.1109/42.41491
http://dx.doi.org/10.1109/42.57760
http://dx.doi.org/10.1016/0010-4809(91)90049-3
http://dx.doi.org/10.1118/1.596610
http://dx.doi.org/10.1016/0010-4809(92)90040-H
http://dx.doi.org/10.1109/42.363095
http://dx.doi.org/10.1109/42.414622
http://dx.doi.org/10.1109/42.414622
http://dx.doi.org/10.1109/42.538938
http://dx.doi.org/10.1118/1.597756
http://dx.doi.org/10.1118/1.598011
http://dx.doi.org/10.1118/1.598274
http://dx.doi.org/10.1109/42.774164
http://dx.doi.org/10.1109/42.774164
http://dx.doi.org/10.1118/1.598658
http://dx.doi.org/10.1109/42.790462
http://dx.doi.org/10.1088/0031-9155/45/10/308
http://dx.doi.org/10.1109/42.974916
http://dx.doi.org/10.1109/42.974917
http://dx.doi.org/10.1109/42.993133
http://dx.doi.org/10.1148/radiol.2241011062
http://dx.doi.org/10.1148/radiol.2241011062
http://dx.doi.org/10.1118/1.1582011
http://dx.doi.org/10.1118/1.1589494
http://dx.doi.org/10.1118/1.2357838


5814 Giger, Chan, and Boone: History of CAD and quantitative image analysis 5814
on full-field digital mammograms and digitized screen-film mammo-
grams,” Acad. Radiol. 6, 659–669 �2007�.

112M. P. Sampat, A. C. Bovik, G. J. Whitman, and M. K. Markey, “A
model-based framework for the detection of spiculated masses on mam-
mography,” Med. Phys. 35, 2110–2123 �2008�.

113G. D. Tourassi, B. Harrawood, S. Singh, J. Y. Lo, and C. E. Floyd,
“Evaluation of information-theoretic similarity measures for content-
based retrieval and detection of masses in mammograms,” Med. Phys. 34,
140–150 �2007�.

114H.-P. Chan, K. Doi, C. J. Vyborny, R. A. Schmidt, C. E. Metz, K. L. Lam,
T. Ogura, Y. Wu, and H. MacMahon, “Improvement in radiologists’ de-
tection of clustered microcalcifications on mammograms: The potential of
computer-aided diagnosis,” Invest. Radiol. 25, 1102–1110 �1990�.

115C. Metz, “Fundamental ROC analysis,” in Handbook of Medical Imaging,
Volume I: Physics and Psychophysics, J. Beutel, H. Kundel, and R. Van
Metter, eds. �SPIE Press, Bellingham, 2000�, pp. 751–769.

116M. A. Helvie, L. Hadjiiski, E. Makariou, H.-P. Chan, N. Petrick, B. Sa-
hiner, S.-C. B. Lo, M. Freedman, D. Adler, J. Bailey, C. Blane, D. Hoff,
K. Hunt, L. Joynt, K. Klein, C. Paramagul, S. K. Patterson, and M. A.
Roubidoux, “Sensitivity of noncommercial computer-aided detection sys-
tem for mammographic breast cancer detection,” Radiology 231, 208–
214 �2004�.

117E. Thurfjell, A. Taube, and L. Tabar, “One-view versus 2-view mammog-
raphy screening—A prospective population-based study,” Acta Radiol.
35, 340–344 �1994�.

118R. G. Blanks, M. G. Wallis, and R. M. Given-Wilson, “Observer variabil-
ity in cancer detection during routine repeat �incident� mammographic
screening in a study of two versus one view mammography,” J. Med.
Screen 6, 152–158 �1999�.

119B. Sahiner, N. Petrick, H. P. Chan, S. Paquerault, M. A. Helvie, and L. M.
Hadjiiski, “Recognition of lesion correspondence on two mammographic
views—A new method of false-positive reduction for computerized mass
detection,” Proc. SPIE 4322, 649–655 �2001�.

120S. Paquerault, N. Petrick, H. P. Chan, B. Sahiner, and M. A. Helvie,
“Improvement of computerized mass detection on mammograms: Fusion
of two-view information,” Med. Phys. 29, 238–247 �2002�.

121B. Zheng, J. K. Leader, G. S. Abrams, A. H. Lu, L. P. Wallace, G. S.
Maitz, and D. Gur, “Multiview-based computer-aided detection scheme
for breast masses,” Med. Phys. 33, 3135–3143 �2006�.

122S. v. Engeland, and N. Karssemeijer, “Combining two mammographic
projections in a computer aided mass detection method,” Med. Phys. 34,
898–905 �2007�.

123F.-F. Yin, M. L. Giger, K. Doi, C. J. Vyborny, and R. A. Schmidt, “Com-
puterized detection of masses in digital mammograms: Automated align-
ment of breast images and its effect on bilateral-subtraction technique,”
Med. Phys. 21, 445–452 �1994�.

124L. M. Hadjiiski, H. P. Chan, B. Sahiner, N. Petrick, and M. A. Helvie,
“Automated registration of breast lesions in temporal pairs of mammo-
grams for interval change analysis—Local affine transformation for im-
proved localization,” Med. Phys. 28, 1070–1079 �2001�.

125Y.-T. Wu, J. Wei, L. M. Hadjiiski, B. Sahiner, C. Zhou, J. Ge, J. Shi, Y.
Zhang, and H. P. Chan, “Bilateral analysis based false positive reduction
for computer-aided mass detection,” Med. Phys. 34, 3334–3344 �2007�.

126W. Zouras, M. Giger, P. Lu, D. Wolverton, C. Vyborny, and K. Doi,
“Investigation of temporal subtraction scheme for computerized detection
of breast masses.” Proceedings of Digital Mammography ‘96 Annual
Meeting �1996�.

127S. Sanjay-Gopal, H. P. Chan, T. Wilson, M. Helvie, N. Petrick, and B.
Sahiner, “A regional registration technique for automated interval change
analysis of breast lesions on mammograms,” Med. Phys. 26, 2669–2679
�1999�.

128S. Timp, S. Van Engeland, and N. Karssemeijer, “A regional registration
method to find corresponding mass lesions in temporal mammogram
pairs,” Med. Phys. 32, 2629–2638 �2005�.

129P. L. Carson, G. L. LeCarpentier, M. A. Roubidoux, R. Q. Erkamp, J. B.
Fowlkes, and M. M. Goodsitt, “Physics and technology of breast US
imaging including automated three-dimensional US,” in Advances in
Breast Imaging: Physics, Technology, and Clinical Applications—
Categorical Course in Diagnostic Radiology Physics, A. Karellas and M.
L. Giger, eds. �RSNA, Oak Brook, IL, 2004�, pp. 223–232.

130L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E.
Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Gia-

rdino, R. Moore, D. Albagli, M. C. DeJule, F. C. Fitzgerald, D. F. Fobare,

Medical Physics, Vol. 35, No. 12, December 2008
B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin,
J. F. Richotte, C.-Y. Wirth, and R. F. Wirth, “Digital tomosynthesis in
breast imaging,” Radiology 205, 399–406 �1997�.

131S. Suryanarayanan, A. Karellas, S. Vedantham, S. P. Baker, S. J. Glick, C.
J. D’Orsi, and R. L. Webber, “Evaluation of linear and nonlinear tomo-
synthetic reconstruction methods in digital mammography,” Acad. Ra-
diol. 8, 219–224 �2001�.

132E. A. Rafferty, D. Georgian-Smith, D. B. Kopans, D. A. Hall, R. Moore,
and T. Wu, “Comparison of full-field digital tomosynthesis with two view
conventional film screen mammography in the prediction of lesion ma-
lignancy,” Radiology 225�P�, 268–268 �2002�.

133T. Wu, A. Stewart, M. Stanton, T. McCauley, W. Phillips, D. B. Kopans,
R. H. Moore, J. W. Eberhard, B. Opsahl-Ong, L. Niklason, and M. B.
Williams, “Tomographic mammography using a limited number of low-
dose cone-beam projection images,” Med. Phys. 30, 365–380 �2003�.

134Y. Zhang, H.-P. Chan, B. Sahiner, J. Wei, M. M. Goodsitt, L. M. Hadji-
iski, J. Ge, and C. Zhou, “A comparative study of limited-angle cone-
beam reconstruction methods for breast tomosynthesis,” Med. Phys. 33,
3781–3795 �2006�.

135R. A. Jong, M. J. Yaffe, M. Skarpathiotakis, R. S. Shumak, N. M. Dan-
joux, A. Gunesekara, and D. B. Plewes, “Contrast-enhanced digital mam-
mography: Initial clinical experience,” Radiology 228, 842–850 �2003�.

136J. M. Lewin, P. K. Isaacs, V. Vance, and F. J. Larke, “Dual-energy
contrast-enhanced digital subtraction mammography: Feasibility,” Radi-
ology 229, 261–268 �2003�.

137J. M. Boone, T. R. Nelson, K. K. Lindfors, and J. A. Seibert, “Dedicated
breast CT: Radiation dose and image quality evaluation,” Radiology 221,
657–667 �2001�.

138B. Chen and R. Ning, “Cone-beam volume CT breast imaging: Feasibility
study,” Med. Phys. 29, 755–770 �2002�.

139A. L. C. Kwan, J. M. Boone, K. Yang, and S.-Y. Huang, “Evaluation of
the spatial resolution characteristics of a cone-beam breast CT scanner,”
Med. Phys. 34, 275–281 �2007�.

140H. P. Chan, J. Wei, B. Sahiner, E. A. Rafferty, T. Wu, M. A. Roubidoux,
R. H. Moore, D. B. Kopans, L. M. Hadjiiski, and M. A. Helvie, “Com-
puterized detection of masses on digital tomosynthesis mammograms—A
preliminary study,” Proceedings of IWDM, 2004, pp. 199–202.

141I. Reiser, R. M. Nishikawa, M. L. Giger, T. Wu, E. A. Rafferty, R. Moore,
and D. B. Kopans, “Computerized mass detection for digital breast tomo-
synthesis directly from the projection images,” Med. Phys. 33, 482–491
�2006�.

142S. Katsuragawa, K. Doi, and H. MacMahon, “Image feature analysis and
computer-aided diagnosis in digital radiography. Detection and character-
ization of interstitial lung disease in digital chest radiographs,” Med.
Phys. 15, 311–319 �1988�.

143M. L. Giger, N. Ahn, K. Doi, H. MacMahon, and C. E. Metz, “Comput-
erized detection of pulmonary nodules in digital chest images: Use of
morphological filters in reducing false-positive detections,” Med. Phys.
17, 861–865 �1990�.

144M. L. Giger, K. Doi, H. MacMahon, C. E. Metz, and F.-F. Yin,
“Computer-aided detection of pulmonary nodules in digital chest im-
ages,” Radiographics 10, 41–52 �1990�.

145S. C. Lo, S. L. Lou, J. S. Lin, M. T. Freedman, and S. K. Mun, “Artificial
convolution neural network techniques and applications to lung nodule
detection,” IEEE Trans. Med. Imaging 14, 711–718 �1995�.

146Z. Yue, A. Goshtasby, and L. Ackerman, “Automatic detection of rib
borders in chest radiographs,” IEEE Trans. Med. Imaging 14, 525–536
�1995�.

147X. W. Xu, K. Doi, T. Kobayashi, H. MacMahon, and M. L. Giger, “De-
velopment of an improved CAD scheme for automated detection of lung
nodules in digital chest images,” Med. Phys. 24, 1395–1403 �1997�.

148F. Mao, W. Qian, J. Gaviria, and L. P. Clarke, “Fragmentary window
filtering for multiscale lung nodule detection: Preliminary study,” Acad.
Radiol. 5, 306–311 �1998�.

149M. G. Penedo, M. J. Carreira, A. Mosquera, and D. Cabello, “Computer-
aided diagnosis: A neural-network-based approach to lung nodule detec-
tion,” IEEE Trans. Med. Imaging 17, 872–880 �1998�.

150K. T. Bae, J. S. Kim, Y. H. Na, K. G. Kim, and J. H. Kim, “Pulmonary
nodules: Automated detection on CT images with morphologic matching
algorithm—Preliminary results,” Radiology 236, 286–293 �2005�.

151K. Suzuki, J. Shiraishi, H. Abe, H. MacMahon, and K. Doi, “False-
positive reduction in computer-aided diagnostic scheme for detecting

nodules in chest radiographs by means of massive training artificial neural

http://dx.doi.org/10.1118/1.2890080
http://dx.doi.org/10.1118/1.2401667
http://dx.doi.org/10.1097/00004424-199010000-00006
http://dx.doi.org/10.1148/radiol.2311030429
http://dx.doi.org/10.1117/12.431139
http://dx.doi.org/10.1118/1.1446098
http://dx.doi.org/10.1118/1.2237476
http://dx.doi.org/10.1118/1.2436974
http://dx.doi.org/10.1118/1.597307
http://dx.doi.org/10.1118/1.1376134
http://dx.doi.org/10.1118/1.2756612
http://dx.doi.org/10.1118/1.598806
http://dx.doi.org/10.1118/1.1984323
http://dx.doi.org/10.1118/1.1543934
http://dx.doi.org/10.1118/1.2237543
http://dx.doi.org/10.1148/radiol.2283020961
http://dx.doi.org/10.1148/radiol.2291021276
http://dx.doi.org/10.1148/radiol.2291021276
http://dx.doi.org/10.1148/radiol.2213010334
http://dx.doi.org/10.1118/1.1461843
http://dx.doi.org/10.1118/1.2400830
http://dx.doi.org/10.1118/1.2163390
http://dx.doi.org/10.1118/1.596224
http://dx.doi.org/10.1118/1.596224
http://dx.doi.org/10.1118/1.596478
http://dx.doi.org/10.1109/42.476112
http://dx.doi.org/10.1109/42.414618
http://dx.doi.org/10.1118/1.598028
http://dx.doi.org/10.1109/42.746620


5815 Giger, Chan, and Boone: History of CAD and quantitative image analysis 5815
network,” Acad. Radiol. 12, 191–201 �2005�.
152J. Shiraishi, F. Li, and K. Doi, “Computer-aided diagnosis for improved

detection of lung nodules by use of PA and lateral chest radiographs,”
Acad. Radiol. 14, 28–37 �2007�.

153T. Ishida, S. Katsuragawa, T. Kobayashi, H. MacMahon, and K. Doi,
“Computerized analysis of interstitial disease in chest radiographs: Im-
provement of geometric-pattern feature analysis,” Med. Phys. 24, 915–
924 �1997�.

154S. Sanada, K. Doi, and H. MacMahon, “Image feature analysis and
computer-aided diagnosis in digital radiography. Automated detection of
pneumothorax in chest images,” Med. Phys. 19, 1153–1160 �1992�.

155A. Kano, K. Doi, H. MacMahon, D. D. Hassell, and M. L. Giger, “Digital
image subtraction of temporally sequential chest images for detection of
interval change,” Med. Phys. 21, 453–461 �1994�.

156T. Ishida, S. Katsuragawa, K. Nakamura, H. MacMahon, and K. Doi,
“Iterative image warping technique for temporal subtraction of sequential
chest radiographs to detect interval change,” Med. Phys. 26, 1320–1329
�1999�.

157S. G. Armato, D. J. Doshi, R. Engelmann, P. Caligiuri, and H. MacMa-
hon, “Temporal subtraction of dual-energy chest radiographs,” Med.
Phys. 33, 1911–1919 �2006�.

158T. Kobayashi, X.-W. Xu, H. MacMahon, C. E. Metz, and K. Doi, “Effect
of a computer-aided diagnosis scheme on radiologists’ performance in
detection of lung nodules on radiographs,” Radiology 199, 843–848
�1996�.

159H. MacMahon, R. Engelmann, F. M. Behlen, K. R. Hoffmann, T. Ishida,
C. Roe, C. E. Metz, and K. Doi, “Computer-aided diagnosis of pulmonary
nodules: Results of a large-scale observer test,” Radiology 213, 723–726
�1999�.

160S. Kakeda, J. Moriya, H. Sato, T. Aoki, H. Watanabe, H. Nakata, N. Oda,
S. Katsuragawa, K. Yamamoto, and K. Doi, “Improved detection of lung
nodules with aid of computerized detection method: Evaluation of a com-
mercial computer-aided diagnosis system,” AJR, Am. J. Roentgenol. 182,
505–510 �2004�.

161S. Sakai, H. Soeda, N. Takahashi, T. Okafuji, T. Yoshitake, H. Yabuuchi,
I. Yoshino, K. Yamamoto, H. Honda, and K. Doi, “Computer-aided nod-
ule detection on digital chest radiography: Validation test on consecutive
T1 cases of resectable lung cancer,” J. Digit Imaging 19, 376–382 �2006�.

162C. I. Henschke, D. I. McCauley, D. F. Yankelevitz, D. P. Naidich, G.
McGuinness, O. S. Miettinen, D. M. Libby, M. W. Pasmantier, J. Koi-
zumi, N. K. Altorki, and J. P. Smith, “Early lung cancer action project:
Overall design and findings from baseline screening,” Lancet 354, 99–
105 �1999�.

163M. L. Giger, K. T. Bae, and H. MacMahon, “Computerized detection of
pulmonary nodules in computed tomography images,” Invest. Radiol. 29,
459–465 �1994�.

164S. G. Armato, M. L. Giger, and H. MacMahon, “Automated detection of
lung nodules in CT scans: Preliminary results,” Med. Phys. 28, 1552–
1561 �2001�.

165M. S. Brown, M. F. McNitt-Gray, J. G. Goldin, R. D. Suh, J. W. Sayre,
and D. R. Aberle, “Patient-specific models for lung nodule detection and
surveillance in CT images,” IEEE Trans. Med. Imaging 20, 1242–1250
�2001�.

166S. Armato, F. Li, M. Giger, H. MacMahon, S. Sone, and K. Doi, “Lung
cancer: Performance of automated lung nodule detection applied to can-
cers missed in a CT screening program,” Radiology 225, 685–692 �2002�.

167M. N. Gurcan, B. Sahiner, N. Petrick, H. P. Chan, E. A. Kazerooni, P. N.
Cascade, and L. Hadjiiski, “Lung nodule detection on thoracic computed
tomography images: Preliminary evaluation of a computer-aided diagno-
sis system,” Med. Phys. 29, 2552–2558 �2002�.

168K. Suzuki, S. G. Armato III, F. Li, S. Sone, and K. Doi, “Massive training
artificial neural network �MTANN� for reduction of false positives in
computerized detection of lung nodules in low-dose computed tomogra-
phy,” Med. Phys. 30, 1602–1617 �2003�.

169W. Sensakovic, S. Armato III, A. Starkey, and J. Ogarek, “Automated
matching of temporally sequential CT sections,” Med. Phys. 31, 3417–
3424 �2004�.

170Z. Ge, B. Sahiner, H. P. Chan, L. M. Hadjiiski, P. N. Cascade, N. Bogot,
E. A. Kazerooni, J. Wei, and C. Zhou, “Computer aided detection of lung
nodules: False positive reduction using a 3D gradient field method and
3D ellipsoid fitting,” Med. Phys. 32, 2443–2454 �2005�.

171K. Peldschus, P. Herzog, S. A. Wood, J. I. Cheema, P. Costello, and U. J.

Schoepf, “Computer-aided diagnosis as a second reader—Spectrum of

Medical Physics, Vol. 35, No. 12, December 2008
findings in CT studies of the chest interpreted as normal,” Chest 128,
1517–1523 �2005�.

172G. D. Rubin, J. K. Lyo, D. S. Paik, A. J. Sherbondy, L. C. Chow, A. N.
Leung, R. Mindelzun, P. K. Schraedley-Desmond, S. E. Zinck, D. P.
Naidich, and S. Napel, “Pulmonary nodules on multi-detector row CT
scans: Performance comparison of radiologists and computer-aided detec-
tion,” Radiology 234, 274–283 �2005�.

173B. Sahiner, Z. Ge, H. Chan, L. M. Hadjiiski, N. Bogot, P. Cascade, and E.
Kazerooni, “False positive reduction using Hessian features in computer-
aided detection of pulmonary nodules on thoracic CT images.” Proceed-
ings of the SPIE—Medical Imaging Annual Meeting 2005.

174K. Marten and C. Engelke, “Computer-aided detection and automated CT
volumetry of pulmonary nodules,” Eur. Radiol. 17, 888–901 �2007�.

175S. G. Armato, G. McLennan, M. F. McNitt-Gray, C. R. Meyer, D.
Yankelevitz, D. R. Aberle, C. I. Henschke, E. A. Hoffman, E. A. Kaze-
rooni, H. MacMahon, A. P. Reeves, B. Y. Croft, and L. P. Clarke, “Lung
image database consortium: Developing a resource for the medical imag-
ing research community,” Radiology 232, 739–748 �2004�.

176K. Awai, K. Murao, A. Ozawa, M. Komi, H. Hayakawa, S. Hori, and Y.
Nishimura, “Pulmonary nodules at chest CT: Effect of computer-aided
diagnosis on radiologists’ detection performance,” Radiology 230, 347–
352 �2004�.

177J. W. Lee, J. M. Goo, H. J. Lee, J. H. Kim, S. Kim, and Y. T. Kim, “The
potential contribution of a computer-aided detection system for lung nod-
ule detection in multidetector row computed tomography,” Invest. Radiol.
39, 649–655 �2004�.

178K. Marten, T. Seyfarth, F. Auer, E. Wiener, A. Grillhösl, S. Obenauer, E.
J. Rummeny, and C. Engelke, “Computer-assisted detection of pulmonary
nodules: Performance evaluation of an expert knowledge-based detection
system in consensus reading with experienced and inexperienced chest
radiologists,” Eur. Radiol. 14, 1930–1938 �2004�.

179M. S. Brown, J. G. Goldin, S. Rogers, H. J. Kim, R. D. Suh, M. F.
McNitt-Gray, S. K. Shah, D. Truong, K. Brown, and J. W. Sayre,
“Computer-aided lung nodule detection in CT results of large-scale ob-
server test,” Acad. Radiol. 12, 681–686 �2005�.

180F. Li, Q. Li, R. Engelmann, M. Aoyama, S. Sone, H. MacMahon, and K.
Doi, “Improving radiologists’ recommendations with computer-aided di-
agnosis for management of small nodules detected by CT,” Acad. Radiol.
13, 943–950 �2006�.

181B. Sahiner, L. M. Hadjiiski, H. P. Chan, J. Shi, P. N. Cascade, E. A.
Kazerooni, C. Zhou, J. Wei, A. R. Chughtai, C. Poopat, T. Song, J. Sto-
janovska, L. Frank, and A. Attili, “Effect of CAD on radiologists’ detec-
tion of lung nodules on thoracic CT scans: Observer performance study,”
Proc. SPIE 6515, 1D1–1D7 �2007�.

182B. Acar, C. F. Beaulieu, S. B. Gokturk, C. Tomasi, D. S. Paik, R. B.
Jeffrey, J. Yee, and S. Napel, “Edge displacement field-based classifica-
tion for improved detection of polyps in CT colonography,” IEEE Trans.
Med. Imaging 21, 1461–1467 �2002�.

183J. Nappi and H. Yoshida, “Automated detection of polyps with CT
colonography: Evaluation of volumetric features for reduction of false-
positive findings,” Acad. Radiol. 9, 386–397 �2002�.

184H. Yoshida, J. Nappi, P. MacEneaney, D. Rubin, and A. Dachman,
“Computer-aided diagnosis scheme for detection of polyps at CT
colonography,” Radiographics 22, 963–979 �2002�.

185R. M. Summers, A. K. Jerebko, M. Franaszek, J. D. Malley, and C. D.
Johnson, “Colonic polyps: Complementary role of computer-aided detec-
tion in CT colonography,” Radiology 225, 391–399 �2002�.

186J. J. Nappi, H. Frimmel, A. H. Dachman, and H. Yoshida, “Computerized
detection of colorectal masses in CT colonography based on fuzzy merg-
ing and wall-thickening analysis,” Med. Phys. 31, 860–872 �2004�.

187R. M. Summers, J. H. Yao, and C. D. Johnson, “CT colonography with
computer-aided detection: Automated recognition of ileocecal valve to
reduce number of false-positive detections,” Radiology 233, 266–272
�2004�.

188L. Bogoni, P. Cathier, M. Dundar, A. Jerebko, S. Lakare, J. Liang, S.
Periaswamy, M. E. Baker, and M. MacAri, “Computer-aided detection
�CAD� for CT colonography: A tool to address a growing need,” Br. J.
Radiol. 78, S57–S62 �2005�.

189Z. G. Wang, Z. R. Liang, L. H. Li, X. Li, B. Li, J. Anderson, and D.
Harrington, “Reduction of false positives by internal features for polyp
detection in CT-based virtual colonoscopy,” Med. Phys. 32, 3602–3616
�2005�.

190
R. Shi, P. Schraedley-Desmond, S. Napel, E. W. Olcott, R. B. Jeffrey, J.

http://dx.doi.org/10.1118/1.598012
http://dx.doi.org/10.1118/1.596790
http://dx.doi.org/10.1118/1.597308
http://dx.doi.org/10.1118/1.598627
http://dx.doi.org/10.1118/1.2163387
http://dx.doi.org/10.1118/1.2163387
http://dx.doi.org/10.1016/S0140-6736(99)06093-6
http://dx.doi.org/10.1097/00004424-199404000-00013
http://dx.doi.org/10.1118/1.1387272
http://dx.doi.org/10.1109/42.974919
http://dx.doi.org/10.1118/1.1515762
http://dx.doi.org/10.1118/1.1580485
http://dx.doi.org/10.1118/1.1812611
http://dx.doi.org/10.1118/1.1944667
http://dx.doi.org/10.1378/chest.128.3.1517
http://dx.doi.org/10.1148/radiol.2341040589
http://dx.doi.org/10.1148/radiol.2323032035
http://dx.doi.org/10.1148/radiol.2302030049
http://dx.doi.org/10.1097/00004424-200411000-00001
http://dx.doi.org/10.1109/TMI.2002.806405
http://dx.doi.org/10.1109/TMI.2002.806405
http://dx.doi.org/10.1148/radiol.2252011619
http://dx.doi.org/10.1118/1.1668591
http://dx.doi.org/10.1148/radiol.2331031326
http://dx.doi.org/10.1118/1.2122447


5816 Giger, Chan, and Boone: History of CAD and quantitative image analysis 5816
Yee, M. E. Zalis, D. Margolis, D. S. Paik, A. J. Sherbondy, P. Sundaram,
and C. F. Beaulieu, “CT colonography: Influence of 3D viewing and
polyp candidate features on interpretation with computer-aided detec-
tion,” Radiology 239, 768–776 �2006�.

191K. Suzuki, H. Yoshida, J. Nappi, and A. Dachman, “Massive-training
artificial neural network �MTANN� for reduction of false positives in
computer-aided detection of polyps: Suppression of rectal tubes,” Med.
Phys. 33, 3814–3824 �2006�.

192S. A. Taylor, S. Halligan, D. Burling, M. E. Roddie, L. Honeyfield, J.
McQuillan, H. Amin, and J. Dehmeshki, “Computer-assisted reader soft-
ware versus expert reviewers for polyp detection on CT colonography,”
AJR, Am. J. Roentgenol. 186, 696–702 �2006�.

193L. X. Zhao, C. P. Botha, J. O. Bescos, R. Truyen, F. M. Vos, and F. H.
Post, “Lines of curvature for polyp detection in virtual colonoscopy,”
IEEE Trans. Vis. Comput. Graph. 12, 885–892 �2006�.

194A. Mani, S. Napel, D. S. Paik, R. B. Jeffrey, J. Yee, E. W. Olcott, R.
Prokesch, M. Davila, P. Schraedley-Desmond, and C. F. Beaulieu, “Com-
puted tomography colonography: Feasibility of computer-aided polyp de-
tection in a ‘first reader’ paradigm,” J. Comput. Assist. Tomogr. 28, 318–
326 �2004�.

195A. Okamura, A. H. Dachman, N. Parsad, J. Näppi, and H. Yoshida,
“Evaluation of the effect of CAD on observers’ performance in detection
of polyps in CT colonography,” in CARS 2004. Computer Assisted Radi-
ology and Surgery, Proc. 18th International Congress and Exhibition, H.
U. Lemke, M. W. Vannier, K. Inamura, A. G. Farman, K. Doi, and J. H.
C. Reiber, eds. �Elsevier, Chicago, IL, 2004�, pp. 989–992.

196S. Halligan, D. G. Altman, S. Mallett, S. A. Taylor, D. Burling, M. Rod-
die, L. Honeyfield, J. McQuillan, H. Amin, and J. Dehmeshki, “Com-
puted tomographic colonography: Assessment of radiologist performance
with and without computer-aided detection,” Gastroenterology 131,
1690–1699 �2006�.

197D. J. Getty, R. M. Pickett, C. J. D’Orsi, and J. A. Swets, “Enhanced
interpretation of diagnostic images,” Invest. Radiol. 23, 240–252 �1988�.

198C. J. D’Orsi, D. J. Getty, J. A. Swets, R. M. Pickett, S. E. Seltzer, and B.
J. McNeil, “Reading and decision aids for improved accuracy and stan-
dardization of mammographic diagnosis,” Radiology 184, 619–622
�1992�.

199Y. Wu, M. L. Giger, K. Doi, C. J. Vyborny, R. A. Schmidt, and C. E.
Metz, “Artificial neural networks in mammography: Application to deci-
sion making in the diagnosis of breast cancer,” Radiology 187, 81–87
�1993�.

200C. E. J. Floyd, J. Lo, A. J. Yun, D. C. Sullivan, and P. J. Kornguth,
“Prediction of breast cancer malignancy using an artificial neural net-
work,” Cancer 74, 2944–2948 �1994�.

201J. A. Baker, P. J. Kornguth, J. Y. Lo, M. E. Williford, and C. E. Floyd, Jr.,
“Breast cancer: Prediction with artificial neural network based on BI-
RADS standardized lexicon,” Radiology 196, 817–822 �1995�.

202J. Y. Lo, J. A. Baker, P. J. Kornguth, J. D. Iglehart, and C. E. Floyd, Jr.,
“Predicting breast cancer invasion with artificial neural networks on the
basis of mammographic features,” Radiology 203, 159–163 �1997�.

203C. E. Floyd, Jr., J. Y. Lo, and G. D. Tourassi, “Case-based reasoning
computer algorithm that uses mammographic findings for breast biopsy
decisions,” AJR, Am. J. Roentgenol. 175, 1347–1352 �2000�.

204M. K. Markey, J. Y. Lo, and C. E. Floyd, Jr., “Differences between
computer-aided diagnosis of breast masses and that of calcifications,”
Radiology 223, 489–493 �2002�.

205C. D’Orsi et al., Breast Imaging Reporting and Data System (BI-RADS),
4th ed. �American College of Radiology, Reston, VA, 2003�.

206S. Gupta, P. F. Chyn, and M. K. Markey, “Breast cancer CADx based on
BI-RAds descriptors from two mammographic views,” Med. Phys. 33,
1810–1817 �2006�.

207A. Stavros et al., “Solid breast nodules: Use of sonography to distinguish
between benign and malignant lesions,” Radiology 196, 123–134 �1995�.

208B. Garra, B. Krasner, S. Horii, S. Ascher, S. Mun, and R. Zeman, “Im-
proving the distinction between benign and malignant breast lesions: The
value of sonographic texture analysis,” Ultrason. Imaging 15, 267–285
�1993�.

209M. L. Giger, C. J. Vyborny, and R. A. Schmidt, “Computerized charac-
terization of mammographic masses: Analysis of spiculation,” Cancer
Lett. 77, 201–211 �1994�.

210Z. Huo, M. L. Giger, C. J. Vyborny, U. Bick, P. Lu, D. E. Wolverton, and
R. A. Schmidt, “Analysis of spiculation in the computerized classification

of mammographic masses,” Med. Phys. 22, 1569–1579 �1995�.

Medical Physics, Vol. 35, No. 12, December 2008
211Y. Jiang, R. M. Nishikawa, D. E. Wolverton, M. L. Giger, K. Doi, C. J.
Vyborny, and R. A. Schmidt, “Automated feature analysis and classifica-
tion of malignant and benign clustered microcalcifications,” Radiology
198, 671–678 �1996�.

212C. Kocur, S. Rogers, L. Myers, T. Burns, M. Kabrisky, J. Hoffmeister, K.
Bauer, and J. Steppe, “Using neural networks to select wavelet features
for breast cancer diagnosis,” IEEE Eng. Med. Biol. Mag. 15, 94–102
�1996�.

213J.-L. Viton, M. Rasigni, G. Rasigni, and A. Llebaria, “Method for char-
acterizing masses on digital mammograms,” Opt. Eng. �Bellingham� 35,
3453–3459 �1996�.

214H. P. Chan, B. Sahiner, N. Petrick, M. A. Helvie, K. L. Lam, D. D. Adler,
and M. M. Goodsitt, “Computerized classification of malignant and be-
nign microcalcifications on mammograms: Texture analysis using an ar-
tificial neural network,” Phys. Med. Biol., 42, 549–567 �1997�.

215K. G. Gilhuijs, M. L. Giger, and U. Bick, “Computerized analysis of
breast lesions in three dimensions using dynamic magnetic-resonance im-
aging,” Med. Phys. 25, 1647–1654 �1998�.

216Z. Huo et al., “Automated computerized classification of malignant and
benign mass lesions on digitized mammograms,” Acad. Radiol. 5, 155–
168 �1998�.

217M. Kupinski and M. L. Giger, “Automated seeded lesion segmentation on
digital mammograms,” IEEE Trans. Med. Imaging 17, 510–517 �1998�.

218B. Sahiner, H. P. Chan, N. Petrick, M. A. Helvie, and M. M. Goodsitt,
“Computerized characterization of masses on mammograms: The rubber
band straightening transform and texture analysis,” Med. Phys. 25, 516–
526 �1998�.

219D. R. Chen, R. F. Chang, and Y. L. Huang, “Computer-aided diagnosis
applied to US of solid breast nodules by using neural networks,” Radiol-
ogy 213, 407–412 �1999�.

220M. L. Giger, H. Al-Hallaq, Z. Huo, C. Moran, D. E. Wolverton, C. W.
Chan, and W. Zhong, “Computerized analysis of lesions in US images of
the breast,” Acad. Radiol. 6, 665–674 �1999�.

221Z. Huo, M. L. Giger, and C. E. Metz, “Effect of dominant features on
neural network performance in the classification of mammographic le-
sions,” Phys. Med. Biol. 44, 2579–2595 �1999�.

222Y. Jiang, R. M. Nishikawa, R. A. Schmidt, C. E. Metz, M. L. Giger, and
K. Doi, “Improving breast cancer diagnosis with computer-aided diagno-
sis,” Acad. Radiol. 6, 22–33 �1999�.

223A. I. Penn, L. Bolinger, M. D. Schnall, and M. H. Loew, “Discrimination
of MR images of breast masses with fractal-interpolation function mod-
els,” Acad. Radiol. 6, 156–163 �1999�.

224P. Taylor, J. Fox, and A. T. Pokropek, “The development and evaluation
of CADMIUM: A prototype system to assist in the interpretation of mam-
mograms,” Med. Image Anal. 3, 321–337 �1999�.

225Z. Huo, M. L. Giger, C. J. Vyborny, D. E. Wolverton, and C. E. Metz,
“Computerized classification of benign and malignant masses on digitized
mammograms: A study of robustness,” Acad. Radiol. 7, 1077–1084
�2000�.

226L. Hadjiiski, B. Sahiner, H. P. Chan, N. Petrick, M. A. Helvie, and M.
Gurcan, “Analysis of temporal changes of mammographic features:
Computer-aided classification of malignant and benign breast masses,”
Med. Phys. 28, 2309–2317 �2001�.

227K. Horsch, M. L. Giger, L. A. Venta, and C. J. Vyborny, “Automatic
segmentation of breast lesions on ultrasound,” Med. Phys. 28, 1652–1659
�2001�.

228Z. Huo, M. L. Giger, and C. J. Vyborny, “Computerized analysis of
multiple-mammographic views: Potential usefulness of special view
mammograms in computer-aided diagnosis,” IEEE Trans. Med. Imaging
20, 1285–1292 �2001�.

229B. Sahiner, H. P. Chan, N. Petrick, M. A. Helvie, and L. M. Hadjiiski,
“Improvement of mammographic mass characterization using spiculation
meausures and morphological features,” Med. Phys. 28, 1455–1465
�2001�.

230B. Sahiner, N. Petrick, H. P. Chan, L. M. Hadjiiski, C. Paramagul, M. A.
Helvie, and M. N. Gurcan, “Computer-aided characterization of mammo-
graphic masses: Accuracy of mass segmentation and its effects on char-
acterization,” IEEE Trans. Med. Imaging 20, 1275–1284 �2001�.

231K. Gilhuijs, E. Deurloo, S. Muller, J. Peterse, and L. Schultze Kool,
“Breast MR imaging in women at increased lifetime risk of breast cacer:
Clinical system for computerized assessment of breast lesions—Initial
results,” Radiology 225, 907–916 �2002�.

232
K. Horsch, M. L. Giger, L. A. Venta, and C. J. Vyborny, “Computerized

http://dx.doi.org/10.1118/1.2349839
http://dx.doi.org/10.1118/1.2349839
http://dx.doi.org/10.1109/TVCG.2006.158
http://dx.doi.org/10.1097/00004728-200405000-00003
http://dx.doi.org/10.1097/00004424-198804000-00002
http://dx.doi.org/10.1148/radiol.2232011257
http://dx.doi.org/10.1118/1.2188080
http://dx.doi.org/10.1006/uimg.1993.1017
http://dx.doi.org/10.1118/1.597626
http://dx.doi.org/10.1117/1.601107
http://dx.doi.org/10.1088/0031-9155/42/3/008
http://dx.doi.org/10.1118/1.598345
http://dx.doi.org/10.1109/42.730396
http://dx.doi.org/10.1118/1.598228
http://dx.doi.org/10.1088/0031-9155/44/10/315
http://dx.doi.org/10.1118/1.1412242
http://dx.doi.org/10.1118/1.1386426
http://dx.doi.org/10.1109/42.974923
http://dx.doi.org/10.1118/1.1381548
http://dx.doi.org/10.1109/42.974922
http://dx.doi.org/10.1148/radiol.2253011582


5817 Giger, Chan, and Boone: History of CAD and quantitative image analysis 5817
diagnosis of breast lesions on ultrasound,” Med. Phys. 29, 157–164
�2002�.

233K. Drukker, M. L. Giger, and E. B. Mendelson, “Computerized analysis
of shadowing on breast ultrasound for improved lesion detection,” Med.
Phys. 30, 1833–1842 �2003�.

234P. Sajda, C. Spence, and L. Parra, “A multi-scale probabilistic network
model for detection, synthesis and compression in mammographic image
analysis,” Med. Image Anal. 7, 187–204 �2003�.

235W. Chen, M. L. Giger, L. Lan, and U. Bick, “Computerized interpretation
of breast MRI: Investigation of enhancement-variance dynamics,” Med.
Phys. 31, 1076–1082 �2004�.

236K. Drukker, M. L. Giger, C. J. Vyborny, and E. B. Mendelson, “Comput-
erized detection and classification of cancer on breast ultrasound,” Acad.
Radiol. 11, 526–535 �2004�.

237K. Horsch, M. L. Giger, C. J. Vyborny, and L. A. Venta, “Performance of
computer-aided diagnosis in the interpretation of lesions on breast sonog-
raphy,” Acad. Radiol. 11, 272–280 �2004�.

238M. Kallergi, “Computer-aided diagnosis of mammographic microcalcifi-
cation clusters,” Med. Phys. 31, 314–326 �2004�.

239B. Sahiner, H. P. Chan, M. A. Roubidoux, M. A. Helvie, L. M. Hadjiiski,
A. Ramachandran, C. Paramagul, G. L. LeCarpentier, A. Nees, and C.
Blane, “Computerized characterization of breast masses on three-
dimensional ultrasound volumes,” Med. Phys. 31, 744–754 �2004�.

240K. Drukker, M. Giger, and C. Metz, “Robustness of computerized lesion
detection and classification scheme across different breast ultrasound plat-
forms,” Radiology 237, 834–840 �2005�.

241K. Drukker, K. Horsch, and M. Giger, “Multimodality computerized di-
agnosis of breast lesions using mammography and sonography,” Acad.
Radiol. 12, 970–979 �2005�.

242W. Chen, M. L. Giger, and U. Bick, “A fuzzy c-means �FCM�-based
approach for computerized segmentation of breast lesions in dynamic
contrast-enhanced MR images,” Acad. Radiol. 13, 63–72 �2006�.

243W. Chen, M. L. Giger, U. Bick, and G. M. Newstead, “Automatic iden-
tification and classification of characteristic kinetic curves of breast le-
sions on DCE-MRI,” Med. Phys. 33, 2878–2887 �2006�.

244K. Horsch, M. L. Giger, C. J. Vyborny, L. Lan, E. B. Mendelson, and R.
E. Hendrick, “Classification of breast lesions with multimodality
computer-aided diagnosis: Observer study results on an independent clini-
cal data set,” Radiology 240, 357–368 �2006�.

245C. Varela, S. Timp, and N. Karssemeijer, “Use of border information in
the classification of mammographic masses,” Phys. Med. Biol. 51, 425–
441 �2006�.

246R. S. Rana, Y. Jiang, R. A. Schmidt, R. M. Nishikawa, and B. Liu,
“Independent evaluation of computer classification of malignant and be-
nign calcifications in full-field digital mammograms,” Acad. Radiol. 14,
363–370 �2007�.

247S. Timp, C. Varela, and N. Karssemeijer, “Temporal change analysis for
characterization of mass lesions in mammography,” IEEE Trans. Med.
Imaging 26, 945–953 �2007�.

248J. Shi, B. Sahiner, H. P. Chan, J. Ge, L. Hadjiisk, M. A. Helvie, A. Nees,
Y. T. Wu, J. Wei, C. Zhou, Y. Zhang, and J. Cui, “Characterization of
mammographic masses based on level set segmentation with new image
features and patient information,” Med. Phys. 35, 280–290 �2008�.

249N. Karssemeijer, “A relaxation method for image segmentation using a
spatially dependent stochastic-model,” Pattern Recogn. Lett. 11, 13–23
�1990�.

250G. M. te Brake and N. Karssemeijer, “Segmentation of suspicious densi-
ties in digital mammograms,” Med. Phys. 28, 259–266 �2001�.

251D. J. Catarious, A. Baydush, and C. J. Floyd, “Incorporation of an itera-
tive, linear segmentation routine into a mammographic mass CAD sys-
tem,” Med. Phys. 31, 1512–1520 �2004�.

252S. Timp and N. Karssemeijer, “A new 2D segmentation method based on
dynamic programming applied to computer aided detection in mammog-
raphy,” Med. Phys. 31, 958–971 �2004�.

253Y. Yuan, M. Giger, H. Li, K. Suzuki, and C. Sennett, “A dual-stage
method for lesion segmentation on digital mammograms,” Med. Phys. 34,
4180–4193 �2007�.

254L. M. Yarusso, R. M. Nishikawa, J. Papaioannou, R. Nagel, P. Jokich, and
L. A. Venta, “Application of computer-aided diagnosis to full-field digital
mammography,” in Digital Mammography 2000, M. J. Yaffe, ed. �Medi-
cal Physics Publishing, Madison, WI, 2000�, pp. 421–426.

255H. Li, M. Giger, Y. Yuan, L. Lan, K. Suzuki, A. Jamieson, L. Yarusso, R.

M. Nishikawa, and C. Sennett, Comparison of Computerized Image

Medical Physics, Vol. 35, No. 12, December 2008
Analyses for Digitized Screen-Film Mammograms and Full-Field Digital
Mammography Images �Springer, Berlin, Germany, 2006�, pp. 569–575.

256L. Hadjiiski, P. Filev, H. P. Chan, J. Ge, B. Sahiner, M. A. Helvie, and M.
A. Roubidoux, “Computerized detection and classification of malignant
and benign microcalcifications on full field digital mammograms,” in
Digital Mammography �Springer, Berlin, Germany, 2008�, pp. 336–342.

257D.-R. Chen, R.-F. Chang, and Y.-L. Huang, “Computer-aided diagnosis
applied to US of solid breast nodules by using neural networks,” Radiol-
ogy 213, 407–412 �1999�.

258R.-F. Chang, W.-J. Wu, K. M. Moon, and D.-R. Chen, “Improvement in
breast tumor discrimination by support vector machines and speckle-
emphasis texture analysis,” Ultrasound Med. Biol. 29, 679–686 �2003�.

259S. Gefen, O. Tretiak, C. Piccoli, K. Donohue, A. Petropulu, P. Shankar, L.
Huang, M. Kutay, V. Genis, F. Forsberg, J. Reid, and B. Goldberg, “ROC
analysis of ultrasound tissue characterization lassifiers for breast cancer
diagnosis,” IEEE Trans. Med. Imaging 22, 170–177 �2003�.

260Y.-L. Huang and D.-R. Chen, “Watershed segmentation for breast tumor
in 2-D sonography,” Ultrasound Med. Biol. 30, 625–632 �2004�.

261G. Brix et al., “Microcirculation and microvasculature in breast tumors:
Pharmacokinetic analysis of dynamic breast MR images series,” Magn.
Reson. Med. 52, 420–429 �2004�.

262D. Ikeda et al., “Develpment, standardization, and testing of a lexicon for
reporting contrast-enhanced breast magnetic resonance imaging studies,”
J. Magn. Reson Imaging 13, 889–895 �2001�.

263Z. Huo, M. L. Giger, C. J. Vyborny, and C. E. Metz, “Effectiveness of
computer-aided diagnosis—Observer study with independent database of
mammograms,” Radiology 224, 560–568 �2002�.

264Y. Jiang, R. M. Nishikawa, R. A. Schmidt, A. Y. Toledano, and K. Doi,
“Potential of computer-aided diagnosis to reduce variability in radiolo-
gists’ interpretations of mammograms depicting microcalcifications,” Ra-
diology 220, 787–794 �2001�.

265L. Hadjiiski, H. P. Chan, B. Sahiner, M. A. Helvie, M. A. Roubidoux, C.
Blane, C. Paramagul, N. Petrick, J. Bailey, K. Klein, M. Foster, S. Patter-
son, D. Adler, A. Nees, and J. Shen, “Improvement in radiologists’ char-
acterization of malignant and benign breast masses on serial mammo-
grams with computer-aided diagnosis: An ROC study,” Radiology 233,
255–265 �2004�.

266J. Sklansky, E. Tao, C. Ornes, and A. Disher, A Visualized Mammo-
graphic Database in Computer-Aided Diagnosis �Elsevier, New York,
1999�.

267H. A. Swett and P. R. Fisher, “ICON: A computer-based approach to
differential diagnosis in radiology,” Radiology 163, 555–558 �1987�.

268H. A. Swett, P. R. Fisher, A. I. Cohn, P. I. Miller, and P. G. Mutalik,
“Expert system controlled image display,” Radiology 172, 487–493
�1989�.

269M. L. Giger, Z. Huo, L. Lan, and C. Vyborny, “Intelligent search work-
station for computer-aided diagnosis,” Proc. CARS, pp. 822–827 �2000�.

270M. L. Giger, Z. Huo, C. J. Vyborny, L. Lan, R. M. Nishikawa, and I.
Rosenbourgh “Results of an observer study with an intelligent mammo-
graphic workstation for CAD,” in Digital Mammography IWDM 2002,
H.-O. Peitgen, ed. �Springer-Verlag, Berlin, Germany, 2003�, pp. 297–
303.

271J. A. Swets, D. J. Getty, R. M. Pickett, C. J. D’Orsi, S. E. Seltzer, and B.
J. McNeil, “Enhancing and evaluating diagnostic accuracy,” Med. Decis
Making 11, 9–18 �1991�.

272Q. Li, F. Li, J. Shiraishi, S. Katsuragawa, S. Sone, and K. Doi, “Investi-
gation of new psychophysical measures for evalution of similar images on
thoracic CT for distinction between benign and malignant nodules,” Med.
Phys. 30, 2584–2593 �2003�.

273C. Muramatsu, Q. Li, K. Suzuki, R. A. Schmidt, J. Shiraishi, G. M.
Newstead, and K. Doi, “Investigation of psychophysical measure for
evaluation of similar images for mammographic masses: Preliminary re-
sults,” Med. Phys. 32, 2295–2304 �2005�.

274B. Zheng, A. Lu, L. A. Hardesty, J. H. Sumkin, C. M. Hakim, M. A.
Ganott, and D. Gur, “A method to improve visual similarity of breast
masses for an interactive computer-aided diagnosis environment,” Med.
Phys. 33, 111–117 �2006�.

275B. Sahiner et al., “The effect of multi-modality computer classifier on
radiologists’ accuracy in characterizing breast masses,” RSNA Abstract
Book �RSNA, Oak Brook, IL, 2004�.

276K. Horsch, M. L. Giger, and C. E. Metz, “Prevalence scaling: Applica-
tions to an intelligent workstation for the diagnosis of breast cancer,”

Acad. Radiol. 15, 1446–1457 �2008�.

http://dx.doi.org/10.1118/1.1429239
http://dx.doi.org/10.1118/1.1584042
http://dx.doi.org/10.1118/1.1584042
http://dx.doi.org/10.1118/1.1695652
http://dx.doi.org/10.1118/1.1695652
http://dx.doi.org/10.1118/1.1637972
http://dx.doi.org/10.1118/1.1649531
http://dx.doi.org/10.1148/radiol.2373041418
http://dx.doi.org/10.1118/1.2210568
http://dx.doi.org/10.1148/radiol.2401050208
http://dx.doi.org/10.1088/0031-9155/51/2/016
http://dx.doi.org/10.1109/TMI.2007.897392
http://dx.doi.org/10.1109/TMI.2007.897392
http://dx.doi.org/10.1118/1.2820630
http://dx.doi.org/10.1118/1.1339884
http://dx.doi.org/10.1118/1.1738960
http://dx.doi.org/10.1118/1.1688039
http://dx.doi.org/10.1118/1.2790837
http://dx.doi.org/10.1016/S0301-5629(02)00788-3
http://dx.doi.org/10.1109/TMI.2002.808361
http://dx.doi.org/10.1016/j.ultrasmedbio.2003.12.001
http://dx.doi.org/10.1148/radiol.2242010703
http://dx.doi.org/10.1148/radiol.220001257
http://dx.doi.org/10.1148/radiol.220001257
http://dx.doi.org/10.1148/radiol.2331030432
http://dx.doi.org/10.1118/1.1605351
http://dx.doi.org/10.1118/1.1605351
http://dx.doi.org/10.1118/1.1944913
http://dx.doi.org/10.1118/1.2143139
http://dx.doi.org/10.1118/1.2143139


5818 Giger, Chan, and Boone: History of CAD and quantitative image analysis 5818
277J. Gurney and S. Swensen, “Solitary pulmonary nodules: Determining the
likelihood of malignancy with neural network analysis,” Radiology 196,
823–829 �1995�.

278K. Nakamura et al., “Computerized analysis of the likelihood of malig-
nancy in solitary pulmonary nodules by use of artificial neural networks,”
Radiology 214, 823–830 �2000�.

279M. Aoyama, Q. Li, S. Katsuragawa, H. MacMahon, and K. Doi, “Auto-
mated computerized scheme for distinction between benign and malig-
nant solitary pulmonary nodules on chest images,” Med. Phys. 29, 701–
708 �2002�.

280Y. Kawata et al., “Quantitative surface characterization of pulmonary
nodules based on thin-section CT images,” IEEE Trans. Med. Imaging 45,
2132–2138 �1998�.

281M. F. McNitt-Gray, E. Hart, N. Wyckoff, J. Sayre, J. Goldin, and D. R.
Aberle, “A pattern classification approach to characterizing solitary pul-
monary nodules imaged on high resolution CT: Preliminary restuls,”
Med. Phys. 26, 880–888 �1999�.

282M. Aoyama, Q. Li, S. Katsuragawa, F. Li, S. Sone, and K. Doi, “Com-
puterized scheme for determinaion of the likelihood measure of malig-
nancy for pulmonary nodules on low-dose CT images,” Med. Phys. 30,
387–394 �2003�.

283F. Li et al., “Improvement in radiologists’ performance for differentiating
small benign from malignant lung nodules on high-resolution CT by us-
ing computer-estimated likelihood of malignancy,” AJR, Am. J. Roent-
genol. 183, 1209–1215 �2004�.

284K. Mori et al., “Development of a novel computer-aided diagnosis system
for automatic discrimination of malignant from benign solitary nodules
on thin-section dynamic computed tomography,” J. Comput. Assist. To-
mogr. 29, 215–222 �2005�.

285S. Shah et al., “Computer aided characterization of solitary pulmonary
nodules using volumetric and contrast enhancement features,” Acad. Ra-
diol. 12, 1310–1319 �2005�.

286A. Kurjak, S. Cecuk, and B. Breyer, “Prediction of maturity in first tri-
mester of pregnancy by ultrasonic measurement of fetal crown-rump
length,” J. Clin. Ultrasound 4, 83–84 �1976�.

287A. F. Merlino, “A protractor for measuring scoliosis by the Cobb tech-
nique,” J. Bone Jt. Surg., Am. Vol. 55, 1098–1099 �1973�.

288P. Therasse, E. A. E. S. G. Arbuck, J. Wanders, R. S. Kaplan, L. Rubin-
stein, J. Verweij, G. M. Van, A. T. van Oosterom, M. C. Christian, and S.
G. Gwyther, “New guidelines to evaluate the response to treatment in
solid tumors. European Organization for Research and Treatment of Can-
cer, National Cancer Institute of the United States, National Cancer Insti-
tute of Canada,” J. Natl. Cancer Inst. 92, 205–216 �2000�.

289E. Zerhouni, R. H. M. J. F. Spivey, F. P. Leo, F. P. Stitik, and S. S.
Siegelman, “Factors influencing quantitative CT measurements of solitary
pulmonary nodules,” J. Comput. Assist. Tomogr. 6, 1075–1087 �1982�.

290M. Goodsitt, T. W. W. H. P. Chan, S. C. Larson, E. G. Christodoulou, and
J. Kim, “Accuracy of the CT numbers of simulated lung nodules imaged
with multi-detector CT scanners,” Med. Phys. 33, 3006–3017 �2006�.

291J. Borders, D. J. S. E. Kerr, J. A. Stein, E. Ramos, A. A. Moscona, and D.
Resnick, “Quantitative dual-energy radiographic absorptiometry of the
lumbar spine: in vivo comparison with dual-photon absorptiometry,” Ra-
diology 170, 129–131 �1989�.

292C. E. Cann, “Low-dose CT scanning for quantitative spinal mineral analy-
sis,” Radiology 140, 813–815 �1981�.

293C. Cann, F. O. K. H. K. Genant, and B. Ettinger, “Quantitative computed
tomography for prediction of vertebral fracture risk,” Bone �N.Y.� 6, 1–7
�1985�.

294C. E. Cann, “Quantitative CT for determination of bone mineral density:
A review,” Radiology 166, 509–522 �1988�.

295C. Mistretta and C. M. S. A. B. Crummy, “Digital angiography: A per-
spective,” Radiology 139, 273–276 �1981�.

296C. Mistretta and A. Crummy, “Diagnosis of cardiovascular disease by
digital subtraction angiography,” Science 214, 761–765 �1981�.

297C. Mistretta and A. Crummy, “Basic concepts of digital angiography,”
Prog. Cardiovasc. Dis. 28, 245–255 �1986�.

298P. Aebersold, “The development of nuclear medicine,” Am. J. Roent-
genol., Radium Ther. Nucl. Med. 75, 1027–1039 �1956�.

299R. Jaszczak, C. B. L. F. R. Whitehead, and R. E. Coleman, “Lesion
detection with single-photon emission computed tomography �SPECT�
compared with conventional imaging,” J. Nucl. Med. 23, 97–102 �1982�.

300H. Anger, “Scintillation camera with multichannel collimators,” J. Nucl.

Med. 5, 515–531 �1964�.

Medical Physics, Vol. 35, No. 12, December 2008
301D. A. Weber, “Computers in nuclear medicine: Introductory concepts,”
Semin Nucl. Med. 8, 107–112 �1978�.

302B. Tsui, E. C. F. X. Zhao, and W. H. McCartney, “Quantitative single-
photon emission computed tomography: Basics and clinical consider-
ations,” Semin Nucl. Med. 24, 38–65 �1994�.

303M. King and T. S. P. B. M. Tsui, “Attenuation compensation for cardiac
single-photon emission computed tomographic imaging: Part 1. Impact of
attenuation and methods of estimating attenuation maps,” J. Nucl. Car-
diol. 2, 513–524 �1995�.

304M. King, T. S. P. B. M. Tsui, S. J. Glick, and E. J. Soares, “Attenuation
compensation for cardiac single-photon emission computed tomographic
imaging: Part 2. Attenuation compensation algorithms,” J. Nucl. Cardiol.
3, 55–64 �1996�.

305P. Pretorius, M. A. K. W. Xia, B. M. Tsui, T. S. Pan, and B. J. Villegas,
“Evaluation of right and left ventricular volume and ejection fraction
using a mathematical cardiac torso phantom,” J. Nucl. Med. 38, 1528–
1535 �1997�.

306R. Katzberg, R. H. T. R. E. O’Mara, and D. A. Weber, “Radionuclide
skeletal imaging and single photon emission computed tomography in
suspected internal derangements of the temporomandibular joint,” J. Oral
Maxillofac Surg. 42, 782–787 �1984�.

307S. Liew and B. Hasegawa, “Noise, resolution, and sensitivity consider-
ations in the design of a single-slice emission-transmission computed to-
mographic system,” Med. Phys. 18, 1002–1015 �1991�.

308T. Lang, S. C. L. B. H. Hasegawa, J. K. Brown, S. C. Blankespoor, S. M.
Reilly, E. L. Gingold, and C. E. Cann, “Description of a prototype
emission-transmission computed tomography imaging system,” J. Nucl.
Med. 33, 1881–1887 �1992�.

309E. Hoffman and M. Phelps, “Positron emission tomography,” Med. In-
strum. 13, 147–151 �1979�.

310M. Raichle, R. L. G. M. J. Welch, Jr., K. B. Larson, B. E. Laux, and M.
M. Ter-Pogossian, “Regional cerebral oxygen utilization with positron
emission tomography,” Trans. Am. Neurol. Assoc. 104, 154–156 �1979�.

311T. Beyer, T. B. D. W. Townsend, P. E. Kinahan, M. Charron, R. Roddy, J.
Jerin, J. Young, L. Byars, and R. Nutt, “A combined PET/CT scanner for
clinical oncology,” J. Nucl. Med. 41, 1369–1379 �2000�.

312D. Townsend and S. Cherry, “Combining anatomy and function: The path
to true image fusion,” Eur. Radiol. 11, 1968–1974 �2001�.

313P. Kinahan, T. B. D. W. Townsend, and D. Sashin, “Attenuation correc-
tion for a combined 3D PET/CT scanner,” Med. Phys. 25, 2046–2053
�1998�.

314P. C. Lauterbur, “Progress in n.m.r. zeugmatography imaging,” Philos.
Trans. R. Soc. London, Ser. B 289, 483–487 �1980�.

315J. Gore, J. S. O. E. W. Emery, and F. H. Doyle, “Medical nuclear mag-
netic resonance imaging: I. Physical principles,” Invest. Radiol. 16, 269–
274 �1981�.

316P. A. Bottomley, “NMR imaging techniques and applications: A review,”
Rev. Sci. Instrum. 53, 1319–1337 �1982�.

317G. Glover and N. Pelc, “A rapid-gated cine MRI technique,” Magn. Re-
son. Med. 24, 299–333 �1988�.

318G. Glover and J. Pauly, “Projection reconstruction techniques for reduc-
tion of motion effects in MRI,” Magn. Reson. Med. 28, 275–289 �1992�.

319P. Bottomley and W. Edelstein, “Power deposition in whole-body NMR
imaging,” Med. Phys. 8, 510–512 �1981�.

320S. Ogawa, A. R. K. T. M. Lee, and D. W. Tank, “Brain magnetic reso-
nance imaging with contrast dependent on blood oxygenation,” Proc.
Natl. Acad. Sci. U.S.A. 87, 9868–9872 �1990�.

321G. Graham, O. A. P. J. Zhong, R. T. Constable, J. W. Prichard, and J. C.
Gore, “BOLD MRI monitoring of changes in cerebral perfusion induced
by acetazolamide and hypercarbia in the rat,” Magn. Reson. Med. 31,
557–560 �1994�.

322R. Menon, X. H. S. Ogawa, J. P. Strupp, P. Anderson, and K. Ugurbil,
“BOLD based functional MRI at 4 Tesla includes a capillary bed contri-
bution: Echo-planar imaging correlates with previous optical imaging us-
ing intrinsic signals,” Magn. Reson. Med. 33, 453–459 �1995�.

323R. F. Wagner, S. V. Beiden, G. Campbell, C. E. Metz, and W. M. Sacks,
“Assessment of medical imaging and computer-assisted systems: Lessons
from recent experience,” Acad. Radiol. 9, 1264–1277 �2002�.

324C. E. Metz, “Basic principles of ROC analysis,” Semin Nucl. Med. 8,
283–298 �1978�.

325R. F. Wagner, H. P. Chan, J. T. Mossoba, B. Sahiner, and N. Petrick,
“Components of variance in RoC analysis of CADx classifier perfor-

mance,” Proc. SPIE 3338, 859–875 �1998�.

http://dx.doi.org/10.1118/1.1469630
http://dx.doi.org/10.1118/1.598603
http://dx.doi.org/10.1118/1.1543575
http://dx.doi.org/10.1093/jnci/92.3.205
http://dx.doi.org/10.1118/1.2219332
http://dx.doi.org/10.1016/8756-3282(85)90399-0
http://dx.doi.org/10.1118/1.596643
http://dx.doi.org/10.1118/1.598392
http://dx.doi.org/10.1063/1.1137180
http://dx.doi.org/10.1002/mrm.1910280209
http://dx.doi.org/10.1118/1.595000
http://dx.doi.org/10.1073/pnas.87.24.9868
http://dx.doi.org/10.1073/pnas.87.24.9868
http://dx.doi.org/10.1002/mrm.1910330323
http://dx.doi.org/10.1117/12.310896


5819 Giger, Chan, and Boone: History of CAD and quantitative image analysis 5819
326S. V. Beiden, R. F. Wagner, K. Doi R. M. Nishikawa, M. Freedman, S.-C.
Lo, and X.-W. Xu, “Independent versus sequential reading in ROC stud-
ies of computer-assisted modalities: Analysis of components of variance,”
Acad. Radiol. 9, 1026–1043 �2002�.

327R. Wagner, C. E. Metz, and G. Campbell, “Assessment of medical imag-
ing systems and computer aids: A tutorial review,” Acad. Radiol. 14,
723–748 �2007�.

328D. C. Edwards, L. Lan, C. E. Metz, M. L. Giger, and R. M. Nishikawa,
“Estimating three-class ideal observer decision variables for computer-
ized detection and classification of mammographic mass lesions,” Med.
Phys. 31, 81–90 �2004�.

329D. C. Edwards, C. E. Metz, and M. A. Kupinski, “Ideal observers and
optimal ROC hypersurfaces in N-class classification,” IEEE Trans. Med.
Imaging 23, 891–895 �2004�.

330X. He, C. E. Metz, B. M. W. Tsui, J. M. Links, and E. C. Frey, “Three-
class ROC analysis—A decision theoretic approach under the ideal ob-
server framework,” IEEE Trans. Med. Imaging 25, 571–581 �2006�.

331B. Sahiner, H. P. Chan, and L. Hadjiisk, “Performance analysis of 3-class
classifiers: Properties of the 3D ROC surface and the normalized volume
under the surface for the ideal observer,” IEEE Trans. Med. Imaging 27,
215–227 �2008�.

332Y. L. Jiang, C. E. Metz, and R. M. Nishikawa, “A receiver operating:
Characteristic partial area index for highly sensitive diagnostic tests,”
Radiology 201, 745–750 �1996�.

333R. M. Nishikawa, M. L. Giger, K. Doi, C. E. Metz, F.-F. Yin, C. J.
Vyborny, and R. A. Schmidt, “Effect of case selection on the performance
of computer-aided detection schemes,” Med. Phys. 21, 265–269 �1994�.

334H. P. Chan, S. C. B. Lo, B. Sahiner, K. L. Lam, and M. A. Helvie,
“Computer-aided detection of mammographic microcalcifications: Pattern
recognition with an artificial neural network,” Med. Phys. 22, 1555–1567
�1995�.

335M. L. Giger, “Current issues in CAD for mammography,” in Digital
Mammography ‘96, K. Doi, M. L. Giger, R. M. Nishikawa, and R. A.
Schmidt, eds. �Elsevier, Amsterdam, 1996�, pp. 53–59.

336K. Fukunaga and R. R. Hayes, “Effects of sample size on classifier de-
sign,” IEEE Trans. Pattern Anal. Mach. Intell. 11, 873–885 �1989�.

337A. Jain and D. Zongker, “Feature selection: Evaluation, application, and
small sample size performance,” IEEE Trans. Pattern Anal. Mach. Intell.
19, 153–158 �1997�.

338H. P. Chan, B. Sahiner, R. F. Wagner, and N. Petrick, “Classifier design
for computer-aided diagnosis: Effects of finite sample size on the mean
performance of classical and neural network classifiers,” Med. Phys. 26,
2654–2668 �1999�.

339M. A. Kupinski and M. L. Giger, “Feature selection with limited
datasets,” Med. Phys. 26, 2176–2182 �1999�.

340B. Sahiner, H. P. Chan, N. Petrick, R. F. Wagner, and L. Hadjiiski, “Fea-
ture selection and classifier performance in computer-aided diagnosis:
The effect of finite sample size,” Med. Phys. 27, 1509–1522 �2000�.

341G. D. Tourassi, E. D. Frederick, M. K. Markey, and C. E. Floyd, Jr.,
“Application of the mutual information criterion for feature selection in
computer-aided diagnosis,” Med. Phys. 28, 2394–2402 �2001�.

342G. Lee and M. Bottema, “Significance of classification scores subsequent
to feature selection,” Pattern Recogn. Lett. 27, 1702–1709 �2006�.

343B. Sahiner, H. P. Chan, and L. Hadjiisk, “Classifier performance predic-
tion for computer-aided diagnosis using a limited data set,” Med. Phys.
35, 1559–1570 �2008�.

344Q. Li and K. Doi, “Analysis and minimization of overtraining effect in
rule-based classifiers for computer-aided diagnosis,” Med. Phys. 33, 320–
328 �2006�.

345J. Y. Lo, M. K. Markey, J. A. Baker, and C. E. Floyd, Jr., “Cross-
institutional evaluation of BI-RADS predictive model for mammographic
diagnosis of breast cancer,” AJR, Am. J. Roentgenol. 178, 457–463
�2002�.

346G. M. te Brake, N. Karssemeijer, and J. H. Hendriks, “Automated detec-
tion of breast carcinomas not detected in a screening program,” Radiol-
ogy 207, 465–471 �1998�.

347L. P. Clarke, B. Y. Croft, E. Staab, H. Baker, and D. C. Sullivan, “Na-
tional Cancer Institute initiative: Lung image database resource for imag-
ing research,” Acad. Radiol. 8, 447–450 �2001�.

348C. R. Meyer et al., “The lung image database consortium: Evaluation of
lung MDCT nodule annotations across radiologists and methods,” Acad.
Radiol. 13, 1254–1265 �2006�.

349
S. G. Armato, III, R. Y. Roberts, M. F. McNitt-Gray, C. R. Meyer, A. P.

Medical Physics, Vol. 35, No. 12, December 2008
Reeves, G. McLennan, R. M. Engelmann, P. H. Bland, D. R. Aberle, E.
A. Kazerooni, H. MacMahon, E. J. van Beek, D. Yankelevitz, B. Y. Croft,
and L. P. Clarke, “The lung image database consortium �LIDC�: Ensuring
the integrity of expert-defined ‘truth’,” Acad. Radiol. 14, 1455–1463
�2007�.

350M. F. McNitt-Gray, S. G. Armato III, C. R. Meyer, A. P. Reeves, G.
McLennan, R. C. Pais, J. Freymann, M. S. Brown, R. M. Engelmann, P.
H. Bland, G. E. Laderach, C. Piker, J. Guo, Z. Towfic, D. P. Qing, D. F.
Yankelevitz, D. R. Aberle, E. J. van Beek, H. MacMahon, E. A. Kaze-
rooni, B. Y. Croft, and L. P. Clarke, “The lung image database consortium
�LIDC� data collection process for nodule detection and annotation,”
Acad. Radiol. 14, 1464–1474 �2007�.

351A. P. Reeves et al., “The lung image database consortium: A comparison
of different size metrics for pulmonary nodule measurements,” Acad.
Radiol. 14, 1475–1485 �2007�.

352N. Karssemeijer, J. D. M. Otten, A. L. M. Verbeek, J. H. Groenewoud, H.
J. de Koning, J. Hendriks, and R. Holland, “Computer-aided detection
versus independent double reading of masses on mammograms,” Radiol-
ogy 227, 192–200 �2003�.

353F. J. Gilbert, S. M. Astley, M. A. McGee, M. G. Gillan, C. R. Boggis, P.
M. Griffiths, and S. W. Duffy, “Single reading with computer-aided de-
tection and double reading of screening mammograms in the United
Kingdom National Breast Screening Program,” Radiology 241, 47–53
�2006�.

354P. Skaane, A. Kshirsagar, S. Stapleton, K. Young, and R. A. Castellino,
“Effect of computer-aided detection on independent double reading of
paired screen-film and full-field digital screening mammograms,” AJR,
Am. J. Roentgenol. 188, 377–384 �2007�.

355Y. Jiang, D. L. Miglioretti, C. E. Metz, and R. A. Schmidt, “Designing
imaging trials to demonstrate improvements in breast cancer detection
rate,” Radiology 243, 360–367 �2007�.

356K. Horsch, M. Giger, and C. E. Metz, “Potential effect of different radi-
ologist reporting methods on studies showing benefit of CAD,” Acad.
Radiol. 15, 139–152 �2008�.

357Y. Masutani, H. MacMahon, and K. Doi, “Computerized detection of
pulmonary embolism in Spiral CT angiography based on volumetric im-
age analysis,” IEEE Trans. Med. Imaging 21, 1517–1523 �2002�.

358C. Zhou, H. P. Chan, S. Patel, P. N. Cascade, B. Sahiner, L. M. Hadjiiski,
and E. A. Kazerooni, “Preliminary investigation of computer-aided detec-
tion of pulmonary embolism in 3D computed tomographic pulmonary
angiography �CTPA� images,” Acad. Radiol. 12, 782–792 �2005�.

359T. Tajima, X. Zhang, T. Kitagawa, M. Kanematsu, X. Zhou, T. Hara, H.
Fujita, R. Yokoyama, H. Kondo, H. Hoshi, S. Nawano, and K. Shinozaki,
“Computer-aided detection �CAD� of hepatocellular carcinoma on multi-
phase CT images,” Proc. SPIE 6514, 2Q1–2Q10 �2007�.

360C. Zhou, H. P. Chan, A. Chughtai, S. Patel, E. A. Kazerooni, B. Sahiner,
and L. M. Hadjiiski, “Computerized analysis of coronary artery plaque
disease: Early experience of automated segmentation of coronary arteries
in ECG-gated cardiac CT,” 93rd Scientific Assembly and Annual Meeting
of the Radiological Society of North America �2007�.

361L. M. Hadjiiski, B. Sahiner, E. M. Caoili, R. H. Cohan, and H. P. Chan,
“Automated detection of ureter abnormalities on multidetector row CT
urography,” Proc. SPIE 6144, 1W1–1W7 �2006�.

362S. Kasai, F. Li, J. Shiraishi, Q. Li, and K. Doi, “Computerized detection
of vertebral compression fractures on lateral chest radiographs: Prelimi-
nary results of a tool for early detection of osteoporosis,” Med. Phys. 33,
4664–4676 �2006�.

363H. Arimura, Q. Li, Y. Korogi, T. Hirai, S. Katsuragawa, Y. Yamashita, K.
Tsuchiya, and K. Doi, “Computerized detection of intracranial aneurysms
for three-dimensional MR angiography: Feature extraction of small pro-
trusions based on a shape-based difference image technique,” Med. Phys.
33, 394–401 �2006�.

364S. Kobashi, K. Kondo, and Y. Hata, “Computer-aided diagnosis of intrac-
ranial aneurysms in MRA images with case-based reasoning,” IEICE
Trans. Inf. Syst. E89-D(1), 340–350 �2006�.

365M. Niemeijer, B. van Ginneken, J. Staal, M. Suttorp-Schulten, and M.
Abramoff, “Automatic detection of red lesions in digital color fundus
photographs,” IEEE Trans. Med. Imaging 24, 584–592 �2005�.

366J. Shiraishi, Q. Li, D. Appelbaum, Y. Pu, and K. Doi, “Development of a
computer-aided diagnostic scheme for detection of interval changes in
successive whole-body scans,” Med. Phys. 34, 25–36 �2006�.

367J. W. Byng, N. F. Boyd, E. Fishell, R. A. Jong, and M. J. Yaffe, “Auto-

mated analysis of mammographic densities,” Phys. Med. Biol. 41, 909–

http://dx.doi.org/10.1118/1.1631912
http://dx.doi.org/10.1118/1.1631912
http://dx.doi.org/10.1109/TMI.2004.828358
http://dx.doi.org/10.1109/TMI.2004.828358
http://dx.doi.org/10.1109/TMI.2006.871416
http://dx.doi.org/10.1118/1.597287
http://dx.doi.org/10.1118/1.597428
http://dx.doi.org/10.1109/34.31448
http://dx.doi.org/10.1109/34.574797
http://dx.doi.org/10.1118/1.598805
http://dx.doi.org/10.1118/1.598821
http://dx.doi.org/10.1118/1.599017
http://dx.doi.org/10.1118/1.1418724
http://dx.doi.org/10.1118/1.2868757
http://dx.doi.org/10.1118/1.1999126
http://dx.doi.org/10.1148/radiol.2271011962
http://dx.doi.org/10.1148/radiol.2271011962
http://dx.doi.org/10.1148/radiol.2411051092
http://dx.doi.org/10.2214/AJR.05.2207
http://dx.doi.org/10.2214/AJR.05.2207
http://dx.doi.org/10.1148/radiol.2432060253
http://dx.doi.org/10.1109/TMI.2002.806586
http://dx.doi.org/10.1118/1.2364053
http://dx.doi.org/10.1118/1.2163389
http://dx.doi.org/10.1118/1.2401044
http://dx.doi.org/10.1088/0031-9155/41/5/007


5820 Giger, Chan, and Boone: History of CAD and quantitative image analysis 5820
923 �1996�.
368J. W. Byng, M. J. Yaffe, G. A. Lockwood, L. E. Little, D. L. Tritchler, and

N. F. Boyd, “Automated analysis of mammographic densities and breast
carcinoma risk,” Cancer 80, 66–74 �1997�.

369Z. Huo, M. L. Giger, D. E. Wolverton, W. Zhong, S. Cumming, and O. I.
Olopade, “Computerized analysis of mammographic parenchymal pat-
terns for breast cancer risk assessment: Feature selection,” Med. Phys. 27,
4–12 �2000�.

370Z. Huo, M. L. Giger, O. I. Olopade, D. E. Wolverton, B. L. Weber, C. E.
Metz, W. Zhong, and S. A. Cummings, “Computerized analysis of digi-
tized mammograms of BRCA1 and BRCA2 gene mutation carriers,” Ra-
diology 225, 519–526 �2002�.

371P. Caligiuri, M. Giger, and M. Favus, “Multifractal radiographic analysis
of osteoporosis,” Med. Phys. 21, 503–508 �1994�.

372T. Southard and K. Southard, “Detection of simulated osteoporosis in
maxillae using radiographic texture analysis,” IEEE Trans. Biomed. Eng.
43, 123–132 �1996�.

373S. Majumdar, J. Lin, T. Link, J. Millard, P. Augat, X. Ouyang, D. Newitt,
R. Gould, M. Kothari, and H. Genant, “Fractal analysis of radiographs:
Assessment of trabecular bone structure and prediction of elastic modulus
and strength,” Med. Phys. 26, 1330–1340 �1999�.

374M. R. Chinander, M. Giger, J. Martell, and M. Favus, “Computerized
analysis of radiographic bone patterns: Effect of imaging conditions on
performance,” Med. Phys. 27, 75–85 �2000�.

375T. J. Vokes, M. Giger, M. R. Chinander, K. Tg, M. Favus, and L. Dixon,
“Radiographic texture analysis of densitometer-generated calcaneus im-
ages differentiates postmenopausal women with and without fractures,”
Osteoporosis Int. 17, 1472–1482 �2006�.

376J. R. Wilkie, M. L. Giger, M. R. Chinander, C. Engh, R. Hopper, and J.
Martell, “Temporal radiographic texture analysis in the detection of
periprosthetic osteolysis,” Med. Phys. 3, 377–387 �2008�.

377W. DeMartini, C. Lehman, S. Peacock, and M. Russell, “Computer-aided
detection applied to breast MRI: Assessment of CAD-generated enhance-
ment and tumor sizes in breast cancers before and after neoadjuvant che-
motherapy,” Acad. Radiol. 12, 806–814 �2005�.

378E. Street, L. Hadjiisk, B. Sahiner, S. Gujar, M. Ibrahim, S. Mukerji, and
H. P. Chan, “Automated volume analysis of head lesions on CT scans
using 3D level set segmentation,” Med. Phys. 34, 4399–4408 �2007�.

379S. G. Armato III, G. Oxnard, M. Kocherginsky, N. Vogelzang, H. Kin-
dler, and H. MacMahon, “Evaluation of semi-automated measurements of
mesothelioma tumor thickness on CT scans,” Acad. Radiol. 12, 1301–
1309 �2005�.

380C. Abe, C. E. Kahn, K. Doi, and S. Katsuragawa, “Quantitative analysis
of liver texture in ultrasound images: A preliminary study,” Invest. Ra-
diol. 27, 71–77 �1992�.

381K. T. Bae, M. L. Giger, C. T. Chen, and C. E. Kahn, “Automatic segmen-
tation of 3-D liver structure from CT data,” Med. Phys. 20, 71–78 �1993�.

382K. R. Hoffmann, S. Y. Chen, M. Kormano, and R. A. Coulden, “Segmen-
tation and display of hepatic vessels and metastases,” Proc. SPIE 1898,
263–270 �1993�.

383B. S. Garra, M. F. Insana, I. A. Sesterhenn, T. J. Hall, R. F. Wagner, C.
Rotellar, J. Winchester, and R. K. Zeman, “Quantitative ultrasonic detec-
tion of parenchymal structural change in diffuse renal disease,” Invest.

Radiol. 29, 134–140 �1994�.

Medical Physics, Vol. 35, No. 12, December 2008
384M. King, M. L. Giger, K. Suzuki, D. M. Bardo, B. Greenberg, L. Lan, and
X. Pan, “Computerized assessment of motion-contaminated calcified
plaques in cardiac multidetector CT,” Med. Phys. 34, 4876–4889 �2007�.

385M. King, M. L. Giger, K. Suzuki, and X. Pan, “Feature-based character-
ization of motion-contaminated calcified plaques in cardiac multidetector
CT,” Med. Phys. 34, 4860–4875 �2007�.

386J. M. Boone, “Radiological interpretation 2020: Toward quantitative im-
age assessment,” Med. Phys. 34, 4173–4179 �2007�.

387T. W. Freer and M. J. Ulissey, “Screening mammography with computer-
aided detection: Prospective study of 12,860 patients in a community
breast center,” Radiology 220, 781–786 �2001�.

388R. L. Birdwell, P. Bandodkar, and D. M. Ikeda, “Computer-aided detec-
tion with screening mammography in a university hospital setting,” Ra-
diology 236, 451–457 �2005�.

389L. A. L. Khoo, P. Taylor, and R. M. Given-Wilson, “Computer-aided
detection in the United Kingdom national breast screening programme:
Prospective study,” Radiology 237, 444–449 �2005�.

390J. C. Dean and C. C. Ilvento, “Improved cancer detection using computer-
aided detection with diagnostic and screening mammography: Prospec-
tive study of 104 cancers,” AJR, Am. J. Roentgenol. 187, 20–28 �2006�.

391M. J. Morton, D. H. Whaley, K. R. Brandt, and K. K. Amrami, “Screen-
ing mammograms: Interpretation with computer-aided detection—
Prospective evaluation,” Radiology 239, 375–383 �2006�.

392J. M. Ko, M. J. Nicholas, J. B. Mendel, and P. J. Slanetz, “Prospective
assessment of computer-aided detection in interpretation of screening
mammography,” AJR, Am. J. Roentgenol. 187, 1483–1491 �2006�.

393D. Gur, J. H. Sumkin, H. E. Rockette, M. A. Ganott, C. Hakim, L. A.
Hardesty, W. R. Poller, R. Shah, and L. Wallace, “Changes in breast
cancer detection and mammography recall rates after the introduction of a
computer-aided detection system,” J. Natl. Cancer Inst. 96, 185–190
�2004�.

394S. A. Feig, E. A. Sickles, W. P. Evans, and M. N. Linver, “Re: Changes in
breast cancer detection and mammography recall rates after the introduc-
tion of a computer-aided detection system,” J. Natl. Cancer Inst. 96,
1260–1261 �2004�.

395T. E. Cupples, J. E. Cunningham, and J. C. Reynolds, “Impact of
computer-aided detection in a regional screening mammography pro-
gram,” AJR, Am. J. Roentgenol. 185, 944–950 �2005�.

396J. J. Fenton, S. H. Taplin, P. A. Carney, L. Abraham, E. A. Sickles, C.
D’Orsi, E. A. Berns, G. Cutter, R. E. Hendrick, W. E. Barlow, and J. G.
Elmore, “Influence of computer-aided detection on performance of
screening mammography,” N. Engl. J. Med. 356, 1399–1409 �2007�.

397M. Gromet, “Comparison of computer-aided detection to double reading
of screening mammograms: Review of 231,221 mammograms,” AJR,
Am. J. Roentgenol. 190, 854–859 �2008�.

398H. P. Chan, B. Sahiner, M. A. Helvie, N. Petrick, M. A. Roubidoux, T. E.
Wilson, D. Adler, C. Paramagul, J. Newman, and S. Sanjay-Gopal, “Im-
provement of radiologists’ characterization of mammographic masses by
using computer-aided diagnosis: An ROC study,” Radiology 212, 817–
827 �1999�.

399S. Behrens, H. Laue, M. Althaus, T. Boehler, B. Kuemmerlen, H. K.
Hahn, and H.-O. Peitgen, “Computer assistance for MR based diagnosis
of breast cancer: Present and future challenges,” Comput. Med. Imaging

Graph. 31, 236–247 �2007�.

http://dx.doi.org/10.1118/1.598851
http://dx.doi.org/10.1118/1.597390
http://dx.doi.org/10.1118/1.598628
http://dx.doi.org/10.1118/1.598858
http://dx.doi.org/10.1007/s00198-006-0089-y
http://dx.doi.org/10.1118/1.2794174
http://dx.doi.org/10.1118/1.597064
http://dx.doi.org/10.1118/1.2804718
http://dx.doi.org/10.1118/1.2794172
http://dx.doi.org/10.1118/1.2789501
http://dx.doi.org/10.1148/radiol.2203001282
http://dx.doi.org/10.1148/radiol.2362040864
http://dx.doi.org/10.1148/radiol.2362040864
http://dx.doi.org/10.1148/radiol.2372041362
http://dx.doi.org/10.2214/AJR.05.0111
http://dx.doi.org/10.1148/radiol.2392042121
http://dx.doi.org/10.2214/AJR.05.1582
http://dx.doi.org/10.2214/AJR.04.1300
http://dx.doi.org/10.1056/NEJMoa066099

