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This work describes the application of an object definition algorithm to the medical imaging envi-
ronment for the task of automated detection of anatomical boundaries in three dimensions in the
presence of low spatial frequency nonstationarities. We have chosen the Liou—Jain algorithm and
have modified it for use with 3D medical image datasets and extended it by including a recruitment
operator that corrects for the algorithm’s inherent volume underestimation. The algorithm avoids
problems in both traditional statistical segmentation and 2D techniques and elegantly bridges the
gap between traditional gradient-based edge finding and regression-based segmentation techniques.
Results are shown for MRI datasets from the human abdomen and brain and for a CT dataset of a
liver tumor, as well as an MRI scan of a glioma in a rat brain. For comparison, the human abdomen
dataset was processed by a multivariate, statistical classifier. The results demonstrate the statistical
technique’s susceptibility to low spatial frequency nonstationarities due to rf field inhomogeneity;
the Liou-Jain algorithm is shown to be immune to this effect. Further, the results show spatial
consistency as a result of inherent characteristics of the algorithm. Volumes identified by the
algorithm are visualized and assessed qualitatively in three dimensions. Quantitative accuracy of
the algorithm’s volume estimates is assessed by the use of a phantom. This work demonstrates that
this technique is effective in automatically detecting anatomical organ and lesion surfaces in 3D
medical datasets that are corrupted by low spatial frequency nonstationarity and in obtaining vol-

ume estimates. © 1996 American Association of Physicists in Medicine.
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I. INTRODUCTION

Surface detection in medical image datasets arising from CT
(computed tomography) and MRI (magnetic resonance im-
aging) is important in a number of areas. In radiation oncol-
ogy, accurate, automated delineation of organ and lesion
boundaries is vital in developing treatment plans, as well as
retrospective assessment of radiation delivery. Chemothera-
peutic approaches to cancer therapy depend on accurate es-
timates of lesion and organ volumes to assess the efficacy of
a particular therapeutic regimen. The availability of a three-
dimensional anatomical representation may aid in planning
and executing certain surgical procedures. All of these appli-
cations have the common requirement of identifying organ
and lesion boundaries in three dimensions for the purposes of
visualization and quantification. This paper describes how
we are using a robust object definition algorithm to deter-
mine anatomical boundaries noninteractively in medical im-
age datasets. The term “‘robust algorithm” is borrowed from
computer science; it describes an algorithm that performs
well in the presence of unusual conditions. In this paper, we
use it to characterize the algorithm’s inherent ability to define
objects in the presence of varying degrees of field nonunifor-
mity as discussed in the following paragraphs.

To date, many segmentation techniques applied to medi-
cal imaging have relied on statistical classification.!”® Al-
though relatively straightforward in their application and ef-
ficient in their computation, these techniques have two
serious flaws: They are adversely affected by low spatial
frequency nonstationarities in the input image datasets, and
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spatial relationships are not taken into account unless aug-
mented by other techniques. Bezdek ef al.® have reviewed
several segmentation techniques under the general heading
of pattern recognition.

In CT images, spatial nonstationarities can arise from cup-
ping artifact,” particularly in the head. CT contrast studies
may also suffer from spatial intensity variations caused by
movement of the contrast bolus through the tissue being im-
aged relative to the position of the scan plane at a particular
time.® Spatial inhomogeneity of the rf field coil (especially
body and surface coils) in MRI scanners results in low spa-
tial frequency nonstationarities in MRI images.” !
(Throughout the remainder of this paper, when terms such as
“nonstationarity,” ‘“‘intensity variations,” and ‘“nonunifor-
mity” are applied to image datasets, they refer to intensity
variations having low spatial frequency content.) Even newer
“bird cage” coils for 1.5-T scanners suffer from field inho-
mogeneities, sometimes to a significant degree.'? The recent
demonstration of high field strength scanners (e.g., in the 4-T
range) in producing useful clinical images'? underscores the
need to correct nonstationarities caused by field inhomoge-
neities and limited rf penetration due to the higher frequen-
cies employed.'* .

These intensity variations cause severe errors in classify-
ing MRI datasets using traditional statistical methods. Figure
I illustrates the problem in analyzing an MRI exam of the
liver using a histogram-based classifier known as HICAP
(Histogram Cluster Analysis Procedure).? The original gray-
scale image [Fig. 1(a)] demonstrates intensity variation be-
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FiG. 1. (a) MRI image of the liver. Note the intensity differences between the left and right sides of the abdomen for subcutaneous fat as well as differences
within the liver itself due to field inhomogeneity. (b) Results of statistical classification using HICAP. The clusters illustrated are intended to identify the liver
(red and green) and subcutaneous fat (red and blue), but erroneously include other structures as well (e.g., a vertebra, the spinal cord, intercostal and other

muscles).

tween the left and right sides of the abdomen due to field
inhomogeneity of the scanner. Because of this, the clusters
found by HICAP [Fig. 1(b)] do not have a one-to-one corre-
spondence with anatomical structures. For example, in order
to define the liver, three clusters must be used. However, in
doing so, structures other than the liver are included. Al-
though simple statistical classification is useful in some situ-
ations, its application to MRI datasets is complicated since
significant manual editing of the clusters or the incorporation
of other techniques is necessary to obtain useful results.
Traditional statistical classification algorithms also have
the drawback of neglecting spatial information. For example,
the formation of a histogram inherently neglects organ shape
and anatomical relations between organ cross sections in ad-
Jjacent slices. Further, some algorithms operate in two dimen-
sions even when the goal is to classify three-dimensional
structures. That is, classification is performed on each slice
of the dataset independently; clusters from contiguous slices
must then be associated to reconstruct a three-dimensional
representation. Since spatial relationships are not preserved,
clusters in adjacent slices may be spatially inconsistent. Even
if the histogram is formed using all of the slices in the three-
dimensional dataset, spatial information is still not consid-
ered and connectivity must be provided by postprocessing,
for example, manual editing® or the application of various
operators.” Morphological operators may also be employed,
but even gray-scale morphological operators may not utilize
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the underlying intensity data appropriately with regard to
segmentation, especially in the presence of nonstationarities.

il. MATERIALS AND METHODS

Liou and Jain'>~'® have developed a novel segmentation
algorithm that we use as a basic tool to identify 3D volumes
in medical image datasets that are corrupted by nonstation-
arities. It overcomes the fundamental deficiencies in statisti-
cal classifiers discussed above. In this section, a brief de-
scription of the algorithm (based on Refs. 15-18) is
presented. We also discuss dataset preprocessing and modi-
fications made to the algorithm to adapt it for use in the
medical imaging environment. Finally, we describe an exten-
sion to the algorithm that compensates for volume underes-
timation, a well-recognized limitation of this segmentation
tool.

The input data consists of a series of contiguous two-
dimensional images (typically from a tomographic imaging
modality such as CT or MRI) that define a three-dimensional
rectangular volume dataset. Depending on the scanning pa-
rameters, the voxel aspect ratio may be as great as 10:1:1.
The resulting anisotropic partial volume effect causes diffi-
culties in computing the gradient magnitude and in generat-
ing the volume hypotheses in the Liou—Jain algorithm. Inter-
polation of additional slices between the original slices offers
a partial solution at the expense of increased storage and
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computational requirements. (However, interpolated slices
retain the same partial volume anisotropy as the original
dataset.) Instead, as a preprocessing operation, we perform
two-dimensional low-pass filtering on each slice of the origi-
nal data. The elements in the filter’s kernel are calculated as
a function of slice thickness and in-plane resolution to filter
the data in the in-plane dimensions to an extent that approxi-
mates the partial volume blurring that occurs during data
collection due to slice thickness. Thus the remainder of the
algorithm operates on voxels with isotropic partial volume
contributions without interpolating along the long axis of the
data or subsampling in the in-plane dimensions.

In some datasets, three-dimensional median filtering is
performed as discussed later. The kernel dimensions are cho-
sen so that the kernel size expressed in physical coordinates
is approximately cubic. Median filtering has the advantage of
reducing speckle noise in the data while preserving edges,
another important consideration in volume hypothesis gen-
eration.

A weighted three-dimensional gradient operator is used to
compute the gradient magnitude. The three difference com-
ponents are scaled by dividing each by its respective voxel
dimension. In order to bound and compress the gradient
magnitude, an embedding angle transform'® (inverse tangent
of the gradient magnitude) is applied. The transformed gra-
dient magnitude is passed into the segmentation algorithm
where it is used as a 3D edge map along with the 3D filtered
intensity dataset.

The algorithm begins by partitioning the intensity dataset
into a series of volume hypotheses based on discontinuities
that typically separate features having different uniformity or
smoothness characteristics. Discontinuities are detected by
thresholding the gradient magnitude data. However, edge
strengths can vary; in medical images this may be caused, for
example, by (1) partial volume effects and (2) orientation
and profile characteristics of organ—lesion and organ—organ
boundaries. Thus, a set of thresholds is applied iteratively to
locate bounding surfaces in three dimensions. The iteration
proceeds from high to low threshold values, generating an
independent set of nonoverlapping volume hypotheses at
each step. In this manner, the volume hypothesis generated
for a particular feature is initially relatively large and be-
comes smaller as the iteration continues. Each volume hy-
pothesis is tested for smoothness. Volume hypotheses that
fail the test are discarded; however, the voxels of these hy-
potheses are available for consideration at lower thresholds
where they may be included in smaller volume hypotheses.
Smoothness within a hypothesis is assessed by a regression
technique. Intensity values of the voxels within the hypoth-
esis being tested are fit to a polynomial whose independent
variables are spatial coordinates in the three-dimensional
space of the dataset:

Iv.axyz)= a;x'yizh. (1)
i+j+k=sv

The maximum variation order (MVO), v, of the polynomial
is chosen to allow a certain variation in the intensities within
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the volume to be accommodated. In the work presented here,
v =4 is used. Each volume hypothesis at each threshold is fit
separately and independently and is thus characterized by its
own set of coefficients g.

Goodness-of-fit of the regression for each hypothesis is
assessed by evaluating the following inequality:

2 =<g?, 2)

where s* is the residual and is calculated as the sum of
squares of the error of the regression fit divided by the de-
grees of freedom, and ¢” is estimated from the noise variance
of the intensity data using simple statistics over a region of
interest. If Eq. (2) is satisfied, the volume hypothesis is ac-
cepted as correct. Consider a case, however, where it is not
satisfied, and the hypothesis is rejected. In the partitioning
scheme described above, the size of the volume hypothesis
for a given feature decreases as the threshold iteration pro-
ceeds, and s* will most likely decrease. Thus a hypothesis
that fails to meet the smoothness criterion at a high threshold
may satisfy it at a lower one.

As a result of thresholding the gradient magnitude to form
the volume hypotheses, volumes are sometimes significantly
underestimated. This is because voxels in the gradient mag-
nitude data having values above the threshold define the
bounding surfaces between volume hypotheses and are not
included in volume hypotheses themselves. As a result they
remain uncommitted (i.e., not included in a volume hypoth-
esis). This causes a reduction of volume at the surfaces of the
volumes that is dependent on the profile of the edges. A 3D
voxel recruitment operator that functions as an extension of
the Liou—Jain algorithm is applied to dilate the volumes se-
lectively by attempting to assign uncommitted voxels to pre-
viously identified volumes. This operator may be considered
a hybrid morphological operator in that it operates in part as
a conventional binary morphological operator but more im-
portantly examines the intensity data (as well as the regres-
sion models defined by the coefficients for the identified vol-
umes) in making its decisions regarding the disposition of
uncommitted voxels by using a hypothesis testing paradigm.

Figure 2 depicts this three-dimensional operator in two
dimensions for simplicity. In this illustration, the kernel of
the operator overlays voxels from two volumes identified by
the basic algorithm, as well as uncommitted voxels not iden-
tified by the algorithm. Each uncommitted voxel is examined
to determine whether it should be assigned to a previously
identified volume. This determination is based on botk local
morphology and the voxel’s intensity value and is distinct
from simple statistical or histogram-based techniques. First,
the voxel in question must be eight-connected (or 26-
connected for the 3D implementation that is actually used in
this work) to at least one previously identified volume. This
is consistent with connectivity characteristics of the Liou—
Jain algorithm and means that voxels are only added to sur-
faces of existing volumes.

If this connectivity condition is satisfied, the voxel is
tested against each of these connected neighboring volumes
(A and B in Fig. 2) to determine whether it should be as-
signed to one of them. This is accomplished by evaluating
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Uncommitted
Pixels

FiG. 2. Two-dimensional example of the recruitment operator used to correct
for volume underestimation. The uncommitted pixel marked by the “X* at
the center of the 3X3 kernel is eight-connected to both regions A and B.
This operator employs hypothesis testing as does the basic Liou—Jain algo-
rithm itself.

the model polynomial (whose coefficients were previously
computed during hypothesis testing) of each neighboring
volume at the coordinates of the voxel in question according
to Eq. (1). The voxel is assigned to the volume whose model
offers the best fit as assessed in a manner consistent with the
hypothesis testing ‘step of the basic Liou—Jain algorithm.
This decision is based on two criteria, both of which must be
satisfied in order that the voxel be assigned to an existing
volume; otherwise, the voxel remains uncommitted. The
goodness-of-fit parameter s> is updated by adding the square
of the residual of the potentially added voxel to the sum of
squares of the residual of the existing volume and dividing
by the degrees of freedom; the first criterion is that this up-
dated s? satisfy Eq. (2). The second is a more selective cri-
terion based on the residual of the added voxel. It requires
that the residual of the added voxel divided by the updated s
not exceed a user-specified individual voxel fit parameter
which is expressed as the number of sigmas of the residual
from zero. That is, if we assume that the residual has a nor-
mal distribution with a standard deviation of s and zero
mean, the model error of the added point must lie within a
user-specified number of sigmas from the mean.

The computations were carried out on a DEC 3000 Model
500X AXP (Digital Equipment Corp., Maynard, MA). Typi-
cal execution times on this processor range from approxi-
mately 2060 s, depending on the size of the dataset and the
schedule used to iterate through thresholds. The results were
visualized in both two and three dimensions using AVS (Ap-
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plication Visualization System from Advanced Visual Sys-
tems, Inc., Waltham, MA).

Hi. RESULTS

The volumes identified by the Liou-Jain algorithm for a
MRI exam are presented in Fig. 3 for a representative slice
through the volume dataset. This is the same data that was
submitted to HICAP analysis (Fig. 1). Figure 3(a) shows the
intensity data, while Fig. 3(b) demonstrates the regions iden-
tified by the algorithm. The voxel recruitment operator was
applied to the volume dataset {Fig. 3(c)]. In Figs. 3(b) and
3(c), note that although some regions may appear to consist
of a number of disconnected pieces, they are in fact con-
nected at other locations in the 3D dataset since connectivity
in three-space is guaranteed by the algorithm. In fact, the 3D
alpha blend/gradient shaded display in Fig. 3(d) demon-
strates this.

The algorithm was also applied to a dataset obtained by
scanning a rat brain in vivo containing a 9L glioma using a
SISCO (Spectroscopy Imaging Systems Corp., Sunnyvale,
CA) MRI system interfaced to an Oxford (Oxford, England)
7-T magnet.lg Figure 4 shows the results. In this case, pre-
processing includes median filtering to reduce the texture
noise in the intensity data which appears in both normal and
diseased neural tissue. Without this step, the texture prevents
adequate volume hypothesis formation from the gradient
magnitude data.

A dataset from a MRI scan of a human head was ana-
lyzed, with the resuits shown in Fig. 5. The slices were col-
lected in the coronal orientation. This analysis demonstrates
the performance of the algorithm in a case where fine detail
(i.e., the interface between the gray and white matter) is
present. Eighteen passes of the recruitment operator were
applied over which the volume representing white matter
increased from 98.7 to 559 cm®. The operator is applied re-
peatedly until the increase in volume between two successive
passes drops below a specified fraction. In this case the stop-
ping criterion of 0.1% increase in volume of the white matter
was reached between the 17th and 18th passes.

A CT liver exam was analyzed to study the performance
of the algorithm in defining a liver lesion, as shown in Fig.
6(a), a case demonstrating a posttransplant lymphoprolifera-
tive tumor. The results of the basic segmentation algorithm
and voxel recruitment are shown in outline form in Fig. 6(b).

In order to quantify the accuracy of the algorithm, a phan-
tom study was performed. A vinyl glove filled with copper
sulfate solution (approximately 15 mM) was imaged by a
Picker Vista 0.5-T MRI scanner (Picker International, Cleve-
land, OH). Sixty slices orthogonal to the long axis of the
glove were collected over 30 cm with no gap between slices
using a 30-cm field of view; 256X256 images were recon-
structed. The volume of the fluid within the glove is calcu-
lated as 748.5 cm® based on its density and its independently
measured weight. As expected, volume underestimation was
evident in the result in the form of a gap between the volume
identifying the fluid within the glove and the volume identi-
fying the surrounding air, yielding an estimate of 575.8 cm?
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F1G. 3. The same MRI case as presented in Fig. 1 was submitted to the Liou—Jain algorithm. A set of 14 contiguous 2D images forms the volume dataset. The
results are displayed using a visualization tool known as AVS. Each volume is indicated by a ditferent color: white—subcutaneous fat, magenta—Iliver.
red—organs of the digestive system, dark orange—spleen, yellow—Ilungs and aorta (see discussion in the text), green—heart. (a) A representative axial slice
of the intensity data. Field inhomogeneity is evident in the intensity variation between the liver's left lobe, its central portion, and its right surface. (b)
Segmentation results displayed in two dimensions at the same axial position. Although volumes may appear to be fragmented, they are in fact connected in
other axial slices not shown in this figure. (¢) Results after application of the recruitment operator. (d) The same data presented using an alpha-blend/gradient
shading technique. The view is from the rear of the patient looking down into the abdomen.

for the glove’s interior volume. Following recruitment, the
estimate of the glove’s interior volume is 748.3 cm?.

IV. DISCUSSION AND CONCLUSION

The difference in performance of the statistical segmenta-
tion and the robust object definition procedure in the pres-
ence of spatial nonstationarities is well illustrated by Figs. 1
and 3. The nonstationarity resulting from rf field inhomoge-
neity causes a difference in intensity between different re-
gions of the liver and between the subcutaneous fat on the
left and right sides of the images. While this causes serious
errors to be committed in the HICAP analysis in detecting the
liver, the Liou—Jain algorithm identifies the liver as a single
volume. Further, the Liou—Jain algorithm discriminates be-
tween the vessels in the liver and liver tissue itself since the
vessels are (correctly) not included in the volume hypothesis
for the liver. Note that some detail is lost due to volume
underestimation, apparent in some of the vessels of the liver;
however, some small vessels are well delineated. The alpha-
blend/gradient shading display technique used in Fig. 3(d)
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allows the seven major anatomic features identified by the
algorithm to be visualized. It is easy to see an artifactual
bridge between the left lung and the descending aorta caused
by limited resolution and partial volume averaging in the
original scan which causes these two organs to be identified
as one. The right lung is identified separately and is pre-
sented in yellow along with the left.

The method of thresholding the gradient magnitude field
to generate volume hypotheses is simple to implement, effi-
cient to compute, and guarantees completely enclosed vol-
ume hypotheses. The surfaces that delineate the volume hy-
potheses are typically more than one voxel thick and are not
included in the volumes themselves. As a result, artifactual
links between volume hypotheses are not possible as is the
case with some a]gorithms.‘%’20 Another result, however, is
that volumes are underestimated. The voxel recruitment op-
erator is used to correct this underestimation. Its operation is
consistent with the Liou—Jain algorithm regarding its spatial
connectivity characteristics and its use of hypothesis testing
in determining whether an uncommitted voxel should be
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(a)

added to an existing volume. Since it takes the conservative
approach of adding voxels in a single layer to existing vol-
umes, multiple passes of the operator are usually applied.
However, even though the algorithm for adding voxels is
conservative, dramatic growth in a region can occur even
with a single pass of the operator.

The recruitment operator is, in a sense, self-limiting. First,
if two existing volumes abut each other, there is, of course,
no opportunity for growth at the point of contact. Second, a
voxel must satisfy goodness-of-fit criteria in order to be
added. Finally, the process is stopped when the increase in
volume between successive passes drops below a specified
fraction. If a conservative individual voxel fit criterion is
used, the fit, as quantified by s [Eq. (2)], often improves
slightly with the addition of voxels. The major short-coming
of this operator is that if an isolated anatomical feature is too
small to have been identified by the basic Liou—Jain algo-
rithm or if the nature of the gradient magnitude field within
or near it otherwise prevented appropriate volume hypoth-
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FiG. 4. Normal tissue and a 9L glioma are identificd by the algorithm in a
MRI dataset of a rat brain. Note that the original slices (256X256 pixels
in-plane) are cropped to 77X 77 pixels to include only the tissue of interest.
(a) Typical slice of raw data. Note the texture in both the normal tissue (N)
and in the lesion (L). Areas of blood (B} are present in the glioma. Partial
volume effect (PV) is also evident. (b) The same slice after preprocessing
(in-plane low-pass filtering and median filtering) with the results of the
segmentation (before voxel recruitment) for this slice superimposed. Two
volumes identifying normal brain (blue) and the [esion (red) are indicated.
(c) The same slice after recruitment.

FIG. 5. A MRI scan of a human head. A single slice from the 3D data is
shown with the results of the object definition process for the white matter
only; the recruitment operator has been applied. (An intertor pixel remove
operation has been applied to the volume that identifies the white matter so
that the white and gray matter can be better visualized in the intensity
image.) Note the fidelity with which the interface between white and gray
matter is defined. Note also that the algorithm crred in detecting the medial
temporal lobes (L) differently on each side.
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FiG. 6. Definition of a lesion in CT data. (a) A representative axial slice of the intensity data. (b) Results of segmentation and recruitment. The tumor is
represented by the red outline and normal liver tissue by the green outline. The region between the identified tumor margin and normal tissue represents

uncommitted voxels that remain after applying the recruitment operator.

eses from being formed, then, of course, no recruitment is
possible at that location.

Although the MRI head scan (Fig. 5) presents a challenge
to the Liou—Jain algorithm, it demonstrates how the recruit-
ment algorithm corrects volume underestimation by propa-
gating the volume surfaces to appropriate anatomical bound-
aries while preserving small detail. Defining the white matter
completely required quite a large amount of growth: The
initial output of the Liou-Jain algorithm identified only the
central portion of the white matter adequately but almost
none of the subcortical white matter immediately beneath the
gyri. Even though recruitment was performed by applying
many passes with a lenient fit criterion (18 passes using an
individual fit parameter of 7.0 sigmas), the operator defined
the detailed boundary between gray and white matter without
inappropriate growth into neighboring anatomical structures.
The initial output of the Liou—Jain algorithm also identified
regions that only sparsely sampled the gray matter. However,
this was inadequate to allow the recruitment operator to form
a volume correctly representing gray matter. Sparse sampling
is a result of the volume underestimation characteristic de-
scribed above. In many locations the thickness of the gray
matter layer is comparable to the thickness of the layer lost
to volume underestimation, resulting in small or nonexistent
hypotheses. The inability of the present method of hypoth-
esis generation to deal with this situation motivates an im-
portant piece of future work: designing an operator that
forms volume hypotheses with single voxel wide boundaries.

The order of the polynomial used to model the intensity
has a bearing on the acceptance of volume hypotheses and is
chosen based on the nature of the underlying nonstationarity.
(In a practical sense, the order also affects computational
speed.) For example, a relatively low-order polynomial may
be sufficient to fit a volume containing very smooth, low
spatial frequency variations. The order of the polynomial
[expressed as “maximum variation order” or MVO, v in Eq.
(1)] along with the number of independent variables (three
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spatial coordinates in our case) determines the form of the
polynomial.

To assess the effect of MVO on the residual of the fit, we
fit the voxels from the liver of the MRI dataset (Fig. 3) to
five different polynomials specified by MVOs of 1, 2, 3, 4,
and 5. Figure 7(a) plots the residual variance of the liver
volume’s fit versus the number of polynomial terms for each

Residual variance
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Fi1G. 7. The effect of polynomial model order on the residual of the model fit
using the voxel values of the liver identified in Fig. 3. (a) Variance of the
residual vs number of terms in the polynomial for each of five MVOs (1-5).
(b) Variance of the residual vs MVO.
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of the five MVOs. Figure 7(b) shows a plot of the resulting
variance deviation of the residual with all terms considered
versus MVO. At a MVO of 4, the standard deviation of the
residual is approximately equal to the signal-to-noise ratio
measured in this dataset which sets an approximate lower
limit on the residual. Further, it is clear that the improvement
in the residual becomes less as MVO increases. We conclude
that a MVO of 4 is appropriate based on (1) our experience
with the performance of the algorithm on MRI datasets (a
conclusion also reached by the original authors of the
algorithmlé) and (2) the computational complexity resulting
trom high MVOs. (Specifying an MVO of 5 results in a
polynomial of 56 terms versus 35 terms for a MVO of 4.)

The amplitude of the texture pattern in the rat brain data
obtained from the SISCO system is great enough to require
the additional step of median filtering during the preprocess-
ing phase. Without texture reduction, volumes identified in
the brain and glioma are very sparsely filled because of the
difficulty in forming appropriate volume hypotheses by gra-
dient magnitude thresholding. In the case shown, the appli-
cation of an 11X 11X3 kernel (a cube approximately 1.3 mm,
on each side in physical coordinates) results in a striking
reduction in texture while preserving edges adequately [Fig.
4(b)].

It is noteworthy in Fig. 4(b) that at some locations the
edge of the volume identifying normal rat brain appears
closer to the “true,” visually assessed interface with the tu-
mor than does the edge of the lesion’s volume. Inspection of
edge profiles reveals that the shape of the edge of the inten-
sity data results in a gradient magnitude profile that is asym-
metrical. When thresholded, the interior portion of the edge
(i.e., on the lesion’s side) is thicker than the outer portion,
causing underestimation of the lesion to be slightly greater
than that of normal tissue.

The algorithm is well suited for defining amorphously
shaped objects since it makes no assumptions about shape.
Thus, one of its prime uses is the identification of lesions.
Figure 6 demonstrates the performance of the algorithm in
defining a lesion (a posttransplant lymphoproliferative tu-
mor) that appears in a CT liver exam. The results of segmen-
tation and recruitment are shown in outline form in Fig. 6(b).
Although field nonuniformity is not a major problem in this
case, we use the algorithm because of its 3D characteristics
and the ability to use the recruitment operator to refine the
edge estimates. The algorithm identified both normal liver
tissue and the lesion as shown in outline form in Fig. 6(b).
There is a band of uncommitted voxels between them which
is consistent with detailed visual analysis of the edge profile.
The fact that the edges of the liver and the lesion do not
coincide can be used to advantage in object definition for
radiation therapy treatment planning. For example, the red
outline would correspond to ““gross tumor volume” and the
green to “clinical tumor volume” which includes regions of
suspected microscopic tumor invasion.

Quantitative assessment of an object definition algo-
rithm’s performance is often difficult because of the problem
of finding an appropriate *‘gold standard.” Even manual trac-
ings made by a trained operator are often subjective (espe-
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cially in areas of partial volume averaging and low-contrast
edges) and are not always reproducible.’! Quantitative com-
parisons with automated methods are similarly prone to er-
ror. Hence, we rely in part on qualitative assessment of the
results.

The vinyl glove phantom is a 3D object having a volume
known with sufficient accuracy and precision via indepen-
dent information (its weight and density). The excellent
agreement with the measured volume of the vinyl glove
phantom demonstrates that the Liou—Jain segmentation algo-
rithm along with voxel recruitment identifies boundaries cor-
rectly in the presence of spatial inhomogeneity.

Counting pre- and postprocessing steps, the elapsed time
required by the Liou—Jain algorithm is approximately 20
times greater than that required by HICAP for the MRI dataset
presented here. Conclusions drawn from this number must
consider the following. First, the time required for the Liou-
Jain algorithm is highly dependent on the number of thresh-
old levels used and the number of hypotheses formed and
tested at each threshold. Second, we consider the benefits of
the Liou—Jain algorithm as presented in this paper to out-
weigh the computational requirements. Third, note that the
nature of the hypothesis generation step allows parallelism to
be exploited to a high degree. Separate processors can evalu-
ate hypotheses independently at each threshold, with the re-
sults combined into a single dataset. (This high degree of
distribution results in some redundant calculations. Imple-
menting an overlap detection scheme via interprocess com-
munication could eliminate this redundancy.) Note that re-
cent work has shown that the Liou—Jain algorithm executes
approximately 60 times faster on a RISC processor (DEC
3000 Model 500X AXP) than on our previous generation
computer, thus making it more suitable for interactive use.

We have shown that the Liou—Jain algorithm is immune
to problems that are inherent in statistical classifiers: It per-
forms well in the presence of low spatial frequency nonsta-
tionarities and guarantees connectivity in three-space. The
use of this algorithm in identifying structures in the human
abdomen and head and in detecting tumors in the human
liver and rat brain were demonstrated. Qualitative assessment
shows good results in defining anatomical surfaces; quanti-
tative assessment of volume estimates by the use of a phan-
tom shows a high degree of accuracy following the applica-
tion of a correction for volume underestimation. With
attention paid to pre- and postprocessing operations, this al-
gorithm shows promise in defining objects automatically in
the medical imaging environment.
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