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Purpose: The small number of samples available for training and testing is often the limiting factor
in finding the most effective features and designing an optimal computer-aided diagnosis (CAD)
system. Training on a limited set of samples introduces bias and variance in the performance of a
CAD system relative to that trained with an infinite sample size. In this work, the authors conducted
a simulation study to evaluate the performances of various combinations of classifiers and feature
selection techniques and their dependence on the class distribution, dimensionality, and the training
sample size. The understanding of these relationships will facilitate development of effective CAD
systems under the constraint of limited available samples.

Methods: Three feature selection techniques, the stepwise feature selection (SFS), sequential float-
ing forward search (SFFS), and principal component analysis (PCA), and two commonly used
classifiers, Fisher’s linear discriminant analysis (LDA) and support vector machine (SVM), were
investigated. Samples were drawn from multidimensional feature spaces of multivariate Gaussian
distributions with equal or unequal covariance matrices and unequal means, and with equal cova-
riance matrices and unequal means estimated from a clinical data set. Classifier performance was
quantified by the area under the receiver operating characteristic curve A,. The mean A, values
obtained by resubstitution and hold-out methods were evaluated for training sample sizes ranging
from 15 to 100 per class. The number of simulated features available for selection was chosen to be
50, 100, and 200.

Results: It was found that the relative performance of the different combinations of classifier and
feature selection method depends on the feature space distributions, the dimensionality, and the
available training sample sizes. The LDA and SVM with radial kernel performed similarly for most
of the conditions evaluated in this study, although the SVM classifier showed a slightly higher
hold-out performance than LDA for some conditions and vice versa for other conditions. PCA was
comparable to or better than SFS and SFFS for LDA at small samples sizes, but inferior for SVM
with polynomial kernel. For the class distributions simulated from clinical data, PCA did not show
advantages over the other two feature selection methods. Under this condition, the SVM with radial
kernel performed better than the LDA when few training samples were available, while LDA
performed better when a large number of training samples were available.

Conclusions: None of the investigated feature selection-classifier combinations provided consis-
tently superior performance under the studied conditions for different sample sizes and feature
space distributions. In general, the SFFS method was comparable to the SFS method while PCA
may have an advantage for Gaussian feature spaces with unequal covariance matrices. The perfor-
mance of the SVM with radial kernel was better than, or comparable to, that of the SVM with
polynomial kernel under most conditions studied. © 2010 American Association of Physicists in
Medicine. [DOI: 10.1118/1.3284974]
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[. INTRODUCTION

Advances in computer processing power, memory capacity,
imaging technologies, and image processing algorithms have
greatly improved the diagnostic information available to ra-
diologists. Image processing and analysis tools allow com-
puters to aid radiologists in previously time-consuming
tasks. Computer-aided detection and diagnosis (CAD) soft-
ware further facilitates image interpretation. Computer-aided
detection systems mark suspicious areas on images that ra-
diologists may have overlooked to prompt them to examine
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that area more carefully. Computer-aided diagnosis software
for cancer provides a malignancy estimate of suspicious tis-
sue.

For these computer aids to be effective, however, a CAD
system would need to extract salient features from the im-
ages, choose only the features that can discriminate between
classes, and accurately classify previously unseen samples.
Ideally, there would be a large number of training samples to
design the CAD system, but it is expensive and time-
consuming to collect case samples with ground truth. The
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development of CAD systems for automatic detection and
diagnosis of lung nodules on computed tomography (CT)
can serve as an example. For detection studies, the gold stan-
dard for determining whether abnormal-appearing tissue is
considered a nodule is often determined by a consensus
among radiologists, yet considerable interobserver variability
makes the truth uncertain. For diagnosis studies, a nodule is
considered benign when it shows no change for at least 2 yr.
Determination of malignancy often requires biopsy. If mul-
tiple nodules are present in the lungs, biopsy may not be
performed for every nodule because of the risks and ex-
penses. These factors limit the number of samples available
to train, validate, and test CAD systems.

An important issue in CAD system development is
whether the performance on training data is generalizable to
the population at large. It is therefore useful to estimate the
bias and variance of the classifier performance on previously
unseen samples. This would allow users to predict the per-
formance when the CAD system is applied to unknown cases
in clinical practice. Classifiers for the differentiation of true
and false lesions or for the differentiation of malignant and
benign lesions are some of the main components in a CAD
system. Studies of sample size effects on classifier design
exemplify similar problems in development of CAD sys-
tems. Previous simulation studies have focused on the effect
of finite sample size on classifier performance when the
samples were drawn from multivariate Gaussian distribu-
tions of various dimensionalities. Resubstitution and hold-
out methods were used for estimating classifier performance.
In the resubstitution method, the classifier performance is
measured by applying the classifier to the training samples
that have been used to design it. In the hold-out method, the
samples are partitioned into training and test samples. The
classifier is designed with only the training samples and then
evaluated on the independent test samples. Chan et al.* com-
pared the sample size effects on the design of the linear
discriminant, the quadratic discriminant, and the backpropa-
gation artificial neural networks (ANNSs). For feature spaces
of Gaussian distributions with unequal covariance matrices
and three to 15 dimensions, the linear discriminant analysis
(LDA) classifier was inferior to the quadratic discriminant or
the ANN when there were a large number of training
samples. However, with a small number of training samples
available, a simpler classifier such as the LDA or ANN with
few nodes may be preferred. A small sample size becomes
even more limiting when one has to select the most effective
features from a large pool of available features using the
same small sample set. Sahiner et al.? investigated the effect
of sample size, number of available features, and the param-
eters for stepwise feature selection (SFS) on LDA perfor-
mance. They found that the resubstitution estimate was al-
ways optimistically biased, except when there were too few
features. The hold-out estimate was always pessimistically
biased when the classifier was trained on only the training
samples.

In recent studies, Sahiner et al. investigated the bias and
variance of various resampling methods in predicting the
performance of a classifier for unknown samples when the

Medical Physics, Vol. 37, No. 2, February 2010

classifier is trained with a finite sample size. Two classifiers,
Fisher’s LDA (Ref. 3) and backpropagation ANN (Ref. 4)
were evaluated. Under their study conditions, they found that
the prediction accuracy depends strongly on the resampling
method, especially for large feature dimensionality and small
sample sizes. Li and Doi® performed a simulation study and
proposed an automated threshold selection method to mini-
mize the overtraining effect in rule-based classifier design. Li
and Doi° also performed another study6 to compare evalua-
tion methods for CAD systems such as the bias of the esti-
mated performance, the generalization performance, and the
uniqueness of the CAD scheme. Beiden et al.” focused on
the variance of competing classifiers. They concluded that in
comparing various classifiers, the variance contributed by the
finite training sample is the dominant component. This is
opposed to the conventional wisdom that the finite training
sample size contributed to the bias on the performance mea-
sures, while the variance is mainly determined by the finite
number of test samples.

The interaction between the feature selection method and
the classifier used will also influence the training of a clas-
sifier. Some combinations of methods may perform better
than others given a small sample size, some may generalize
better to unknown samples, and others may result in lower
variance. Jain and Zongker® compared various feature selec-
tion algorithms and concluded that the sequential forward
floating search’ (SFFS) method performed better than other
methods. Kudo and Sklansky'® also concluded that SFFS
was effective for small-scale and medium-scale problems
while genetic algorithms would be better suited for large-
scale problems.

The goal of this study is to investigate combinations of
feature selection techniques and classifiers and to compare
their performance on two classes of data drawn from multi-
variate Gaussian distributions with unequal means and either
equal or unequal covariance matrices. The effects of the co-
variance matrices, finite sample size, and the dimensionality
of the feature spaces on the performance of the classifier
were studied. Although the performance of feature selection
methods and classifiers have been investigated extensively in
the literature, there are only limited studies on combinations
of these two important processes for various feature selection
techniques and classifiers under the condition of limited
training sample size. Sima and Dougherty™ performed a
simulation study in which LDA, support vector machine
(SVM), and three nearest neighbor methods were used as
classifiers, and SFFS and the t-test were used for feature
selection. Since their focus was the comparison between the
performance of the optimal and selected feature sets, they did
not present a comparison of different combinations of the
classifiers and feature selection methods. In addition, the ef-
fect of the training sample size was not studied. Hua et al.*?
used LDA, linear SVM, and nearest neighbor classifiers with
ten feature selection methods in a simulation study and with
real data. Most of the presented results were based on the
LDA, and the comparison of different combinations was not
presented in detail. Lee et al.*® compared a number of clas-
sification methods with three gene selection methods on
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seven gene expression data sets. All three selection methods
in their study were univariate, i.e., were based on measures
of the performance of individual genes. The performance of
combined features was not considered at the gene selection
stage. The current study investigated the relationship be-
tween feature selection methods and classifiers in multivari-
ate normal feature spaces over a range of training sample
size and dimensionality of the feature space. Although the
conditions that can be covered in a single study are still
limited, this relatively systematic study of representative fea-
ture selection methods and classifiers provides further under-
standing of the issues for classifier design. The information
may serve as a guide in future CAD system development and
prompt further investigations in these important areas.

[Il. METHODS AND MATERIALS

To train a classifier in a CAD system, the first step is often
feature extraction from the case samples. Since it is not
known a priori whether the computer-extracted features may
be useful for the classification task at hand, a large number of
possible features are often extracted and a feature selection
method is used to choose the most effective features. A clas-
sifier is then built using the selected features as input predic-
tor variables. Both the feature selection and the classifier
parameters should be trained on the training samples only.
The performance of the trained classifier on unknown cases
is then estimated on the independent samples that have been
held out for testing.

IILA. Class distributions

In this simulation study, the training and test samples for
the two classes were drawn randomly from two multivariate
Gaussian distributions of three different types: (1) Equal co-
variance matrices with unequal means, (2) unequal covari-
ance matrices with unequal means, and (3) equal covariance
matrices estimated from clinical data with unequal means.
While a number of previous studies that investigated feature
selection performance also used simulated Gaussian
data,>®°* a few others simulated a mixture of Gaussians™*°
and Boolean feature spaces.'’*® Although clinical data may
not follow any of these idealized distributions, we chose to
use Gaussian distributions because they are commonly used
in both simulation studies and theoretical analyses of classi-
fier performance in pattern recognition literature.

A set of Ng samples was generated from each class distri-
bution using a random number generator. The details of the
two classes are described below. This set was then randomly
partitioned into Ny, training and Ny test samples per class.
We varied Ny, and fixed Ny to be 100 per class for a given
feature space to study the effect of training sample size on
classifier performance. For a given number of training and
testing samples, 1000 experiments were performed with a
new set of samples generated for each experiment. Keeping
Nt fixed for different experiments allowed us to directly
investigate the dependence of the variance of the perfor-
mance measure on the number of training samples, without
the confounding effects of the variation in the number of test
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samples. The resubstitution and hold-out test performances
of the classifier were quantified by the area under the re-
ceiver operating characteristic curve A,. The mean and the
variance of the resubstitution and hold-out test A, for the
given sample size were estimated from the 1000 experi-
ments.

IILA.1. Equal covariance matrices and unequal
means

The first condition simulated two classes with multivari-
ate Gaussian distributions and equal covariance matrices.
Without loss of generality, we used two identity matrices
because a common arbitrary covariance matrix for both
classes can be simultaneously diagonalized and the variances
of the individual feature components normalized to unity.19
The mean feature vector of the first class was zero, u,=0,
and the difference in the class means, Auf(i), between the
two classes for feature i was given by2

Au(i) = pup(i) = wy() = apB', i=1,...,M and B<1,
(1)

where M is the dimensionality of the available feature space
from which a number of features may be selected. The
squared Mahalanobis distance between the two classes A
was computed as?

a2,3

2
— _ n2M

A= =AM 2)
since all the diagonal values of the covariance matrix were 1.
The parameter B was set to be 0.9 and « was chosen such
that A=3.0. Feature i therefore has decreasing ability to
separate the two classes as i increases. The specific form of
the features and the values of these parameters were not criti-
cal for the purpose of this simulation study; they were de-
signed to generate a set of features that have varying dis-
criminatory powers to distinguish the two classes. For the
equal covariance matrix condition, the Mahalanobis distance
can be used to determine the ideal A, value of the optimal
classifier trained and tested with the true (infinite-sized)
population, denoted as A,(0). In this study, the Mahalanobis
distance was selected such that A,(«0)=0.89, which is repre-
sentative of the range of A, values achieved in CAD litera-
ture. The classification accuracy for M=50, 100, and 200
was investigated.

IILA.2. Unequal covariance matrices and unequal
means

This condition simulated two classes that follow underly-
ing Gaussian distributions with different covariance matri-
ces. The covariance matrix of the first class was diagonalized
and scaled as the identity matrix %;=1, with u;=0. The co-
variance matrix of the second class 3, was simultaneously
diagonalized such that it had eigenvalues v;,i=1,...,M,
where M is the dimensionality of the feature space available
for selection. The values of v; were generated by
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M, &= Umax — 1

Toepn @

where y=1.5, v=v1=3, and the smallest eigenvalue v,
=vy Was set to 1. The eigenvalues of the covariance matrix
for the second class therefore decreased exponentially from
Umax 10 1 as the feature number changed from 1 to M. The
values of the mean vector of the second class u, were cal-
culated according to Eq. (1), where 8=0.9. For the unequal
covariance matrix condition, there is no closed-form solution
that relates the mean and covariance matrices of the class
distributions to A,(«). However, a close approximation for
A,() in terms of the Bhattacharyya distance’®?! has been
derived.? In this study, the value of « in Eqg. (1) was chosen
such that the Bhattacharyya distance between the two classes
was 3/8, which corresponded to A,()=~0.89. With the se-
lected values of « and B, the squared Mahalanobis distance
was 1.66, which was lower than that in the equal covariance
matrix condition. The nonidentity covariance matrix was de-
signed such that the greatest separation in the mean value
corresponded with the greatest eigenvalue in the covariance
matrix. Since our goal was to compare the performance of
various features selection methods and classifiers, the spe-
cific values of v, and vy, were not critical.

vi=l+e(YW-1), i=1,...

IILA.3. Equal covariance matrices based on clinical
data and unequal means

To simulate features from clinical data that may be en-
countered by a CAD system, we first extracted features from
volumes-of-interest containing lung nodules from CT scans.
These features were extracted with the goal of classifying the
lung nodules as malignant or benign.® They included mor-
phological features such as volume and perimeter, in addition
to gray-level statistics, texture features from run-length
statistics,2*%° gradient field, and radii features. The means
and covariance matrices of each class were estimated from a
database of 124 malignant and 132 benign nodules. These
estimated means and covariance matrices were assumed to
be the true underlying multivariate Gaussian distributions of
the population for this study. We assumed that the two
classes had the same multivariate Gaussian distribution with
covariance matrix %=(3;+3,)/2, where X, and X, were
estimated from the malignant and benign classes, respec-
tively, of the clinical data.

II.B. Feature selection methods

Typical feature selection strategies include the “top-
down” and “bottom-up” methods. Marill and Green®® intro-
duced the top-down method, which is initialized with the
entire feature space. Features are removed after certain crite-
ria have been met to obtain the set of remaining features to
be used. Its counterpart is the bottom-up method, which is
initialized with the empty set, and features are added until
certain criteria have been met.?’ The disadvantage of these
methods is the “nesting effect,” in which features removed
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are no longer considered or features added cannot be re-
moved. The SFS and SFFS methods were designed to over-
come the nesting effect.

I.B.1. SFS

We used a linear model and employed the Wilks’
lambda®! based on the outcome of the linear model as the
feature selection criterion in SFS. Initially, all features are
tested to find the one that provides the best value of the
selection criterion. At each subsequent step, every feature
that has not been selected is evaluated to determine how
much the feature can improve the selection criterion when it
is combined with the set of already selected features. Wilks’
lambda is defined as the ratio of the within-group sum of
squares to the total sum of squares

Ag
- 2ieclassl(h(d)(xi) B ml(d))z + Eieclassz(h(d)(xi) B mz(d))z
SiL (D) - m®)?

(4)

where d is the dimensionality of the selected feature sub-
space, h@(X;) is the discriminant score for the input vector
X; consisting of the selected features for case i, h@(X;)
=b"X;+by, with bT=[b,,b,, ... ,by] and b, being the LDA
coefficients, ml(d) and mz(d are the means of the discriminant
scores for classes 1 and 2, respectively, m® is the mean of
the discriminant scores for both classes, and N is the number
of available training samples. The smaller the value of
Wilks’ lambda, the smaller the spread within each class rela-
tive to the spread of the entire sample, indicating that the
separation of the two classes is larger and better classifica-
tion can be achieved.

The significance of the change in Wilks’ lambda for a new
feature entered into the analysis is based on F statistics.?®
To determine whether a feature should be included when d
features have already been selected, the F -to-enter value is
calculated™ for each feature that has not been selected

F:(N—d—2)< A —1), (5)
Ng+1

where Ay and \y,q are the Wilks’ lambda values before and
after entering the feature to the pool of selected features. The
feature with the largest F-to-enter value is added to the se-
lected features if its value is higher than a threshold F;,. A
lower F;, threshold means that it is easier to add more fea-
tures, resulting in a larger set of selected features. After a
feature is entered, each feature in the selected pool is tested
for removal by calculating the F -to-remove value, which is
defined similarly to F-to-enter. The feature with the smallest
F-to-remove value that is also lower than a threshold F is
removed. A lower F,,; makes it more difficult to remove
features, which will lead to a larger set of selected features.
This process of entering and removing a feature is repeated
until no more features satisfy the criteria for entry or re-
moval. Another threshold is the tolerance term, which pre-
vents a feature from being entered when it is highly corre-
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lated with the already selected features, even if the feature
satisfies the F;, threshold. Because the thresholds are not
known a priori, and it is not practical to search through all
combinations, we set F,;=F;,—1, where F;, was varied from
2 to 7 to cover a reasonable range of values, and the toler-
ance threshold was fixed at 0.001. These thresholds result in
a wide range of the number of features selected, allowing us
to demonstrate the effect of finite sample size on feature
selection and classifier performance.

I1.B.2. SFFS

A disadvantage of SFS is that it only allows one feature to
be added or discarded at a time. The plus-I-minus-r method*!
allows the addition of | or removal of r features at a time, but
there is no theoretical way to predict the best | and r values.
Pudil et al.® introduced the floating search method, which is
a suboptimal search method that assesses the performance of
combinations of features. The number of features added or
removed at each step changes dynamically, and a predefined
number of desired features control the stopping criterion.

The SFFS method is initialized with the best performing
combination of two features based on the Mahanalobis dis-
tance between the two classes. A table stores the best per-
forming feature combinations of cardinalities of 1 through a
number beyond the total number of desired features plus
delta. As features are added and removed, the performance of
features is assessed. If a better performing combination of
the same cardinality is found, then that combination is up-
dated in the table. The procedure terminates when the num-
ber of selected features reaches the predetermined number of
desired features plus delta. This allows the SFFS algorithm
to search for combinations of features of cardinality beyond
the desired number of features. The best feature combination
corresponding to the desired cardinality can then be chosen.
Interested readers are referred to Pudil et al.® for the detailed
procedure of the SFFS method. We chose to examine the
performance of 5, 8, 11, 14, 17, and 20 desired features and
a delta value of 5 in this study because this range encom-
passed the number of features selected by the SFS method
for all but a few extreme cases under our simulation condi-
tions.

I1.B.3. PCA

PCA transforms a number of correlated variables into a
number of uncorrelated variables, i.e., the principal compo-
nents. It performs eigenvalue decomposition of the estimated
covariance matrix of the features, projecting the multivariate
feature vectors onto the space spanned by the eigenvectors.
The order of a principal component represents its importance
in accounting for the variance in the data set. The dimension-
ality of the feature space is reduced by retaining the lower-
order principal components that are most important while
ignoring the higher-order ones. Retaining only the lower-
order principal components is essentially equivalent to ap-
proximating the data by a linear subspace using the mean
squared error criterion.*® The orders of 5, 8, 11, 14, 17, and
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20 were selected for this study, which spanned a similar
range as the number of features selected by SFS, except
when F;,=3 or 2.

I.C. Classification methods

A large number of linear and nonlinear classifiers have
been developed in the literature for various pattern recogni-
tion and machine learning problems. We selected two com-
monly used classifiers, Fisher’s LDA and the SVM with two
different kernels, as examples of linear and nonlinear classi-
fiers to compare their performance in combination with the
SFS, SFFS, and PCA methods.

II.C.1. LDA

The LDA classifier uses the means and covariance matri-
ces of the two class distributions to calculate a linear deci-
sion boundary separating the two classes. The classifier is
described as™*

— 1 — —
hi(X) = (ug = pg) TS 7IX + E(MIE’lm - w3 ), (6)

where 3 =(3;+3,)/2 and X is the feature vector. The means
and covariance matrices have to be estimated from the avail-
able training samples. A nonlinear transformation of the
sample means and covariance matrices results in the LDA
coefficients. The LDA coefficients are then linearly com-
bined with the test data to obtain the discriminant scores,
which are transformed nonlinearly into a performance mea-
sure. The variances due to the estimated parameters propa-
gate to the mean classifier performance, resulting in a bias
through the second derivative of the transformation function.
It is known that the LDA classifier is optimal for multi-
variate normal distributions with equal covariance matrices.
The classifier performance in the limit of large training
samples can be calculated by the Mahalanobis distance

1 VA2
A= ,2=J e‘”z/zdu. (7)
N2~

In this study, we set A=3 for the equal covariance matrix
condition, and thus the maximum achievable A,(ec) by the
optimal linear discriminant is 0.89 in the limit of a large
number of training samples. For the unequal covariance ma-
trix condition, we set A=1.66 for the chosen feature space,
which corresponds to A,=0.82 using Eq. (7) and A,(x)
~0.89 in terms of the Bhattacharyya distance’®** for this
second simulation condition. For the third condition that
used the clinical data with the estimated means and assumed
equal covariance matrices, it was calculated that A=4.91,
which corresponded to A,=0.94.

II.C.2. SVM

The SVM works similarly to the LDA by constructing a
decision hyperplane to separate classes using training data. A
brief overview of the SVM is given here, with more details
in the literature.> Geometrically, the SVM maps the original
data to a higher dimension space H via a kernel K. A deci-
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TaBLE |. Summary of the combinations of feature selection method and classifier that resulted in the lowest bias
on the hold-out performance under the experimental conditions in this study.

912

Covariance matrices Mean Large training sample size Small training sample size
Equal Unegual SFS or SFFS and LDA or SVM(rad) PCA and LDA
Unequal Unequal PCA and LDA or SVM(rad) PCA and LDA
Clinical Unegqual SFS or SFFS and LDA SFS or SFFS and SVM(rad)

sion hyperplane is constructed in this higher dimension such
that the distance between the training samples of both classes
and the hyperplane is maximized. This distance between a
training sample and the hyperplane is called the margin, and
the SVM calculates the hyperplane with the largest margin.

Suppose we have labeled training samples {x;,y;}, i
=1...N, yje{-1,1}, x;eRY where N is the number of
samples and d is the dimensionality of the selected feature
space (number of selected features). In the SVM formulation,
the data appear in the form of dot products x;-x;. First, the
SVM algorithm uses a mapping ® to transform the data to
some other Euclidean space H ®:R%—H. The transforma-
tion depends only on the dot products in H of the form
®(x;) ®(xj). There exist kernel functions K such that
K(xj,xj) =@ (x;)- D(x;), and only K is needed in the training
algorithm. No explicit knowledge of ® is necessary. Various
kernels have been investigated in the literature, and we chose
two commonly used ones, the radial and polynomial
kernels.®*=" In the following, the SVM with the radial and
polynomial kernels are referred to as SVM(rad) and SVM-
(poly), respectively. For the radial kernel, we set y=0.01 and
capacity C to 1, while for the polynomial kernel, we set
degree 2 and C=1. These values were chosen experimentally
based on classification studies on the clinical lung nodule
data set discussed in Sec. Il A 3. We implemented the SVM
with the freely available Mmysvm (Ref. 38) software.

[I.D. Simulation study

The number of training samples per class randomly drawn
from the class distributions was 15, 20, 30, 40, 50, 60, 80,
90, and 95. The number of test samples per class was fixed at
100 so that the variances in the hold-out classification per-
formance due to the test set size are kept relatively constant.
The dimensionality of the input feature spaces M were cho-
sen to be 50, 100, and 200.

Combinations of the three feature selection methods (SFS,
SFFS, and PCA) and three classifiers [LDA, SVM(rad), and
SVM(poly)] were trained and tested on the available
samples. For each combination, there were three different
types of feature space distributions, as discussed above. The
resulting resubstitution and hold-out A, values, in addition to
the variances were compared.

[ll. RESULTS

The results of the simulation study for various combina-
tions of feature selection and classification methods are de-
scribed below. For a given number of training samples, the
mean A, obtained by resubstitution or the hold-out perfor-
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mance is estimated by averaging the results of 1000 experi-
ments. For simplicity, mean A, will be referred to as A, in the
following discussion. Table | summarizes the combinations
with the highest hold-out performance under the various ex-
perimental conditions. The various experimental conditions
are described in more details in the following.

IlILA. Equal covariance matrices with unequal means

In Fig. 1, the three feature selection methods are com-
pared for the LDA classifier. While we do not show the com-
parisons for every combination investigated, they are dis-
cussed in the next section. The A, values for the
resubstitution and the hold-out methods are plotted as a func-
tion of 1/Nyin for M=50, 100, and 200. Figures 2 and 3
show the corresponding results for the SVM classifiers with
radial and polynomial kernels, respectively. For all three fea-
ture selection methods (SFS, SFFS, and PCA), the hold-out
A, for any number of training samples decreased as the num-
ber of features available M increased. Examples of the stan-
dard deviation values when the SFS, SFFS, and PCA feature
selection methods are used with the LDA classifier for M
=100 are shown in the first row of Fig. 4. The standard
deviations of the SVM classifiers (not shown) had similar
magnitudes.

Comparing the first and last columns of Fig. 1, the use of
PCA for feature selection for LDA appeared to be better than
use of SFS under most conditions studied if the number of
PCA components was properly chosen. This advantage di-
minished when M =200 and the training sample size was
large. In comparison, PCA is an unsupervised feature selec-
tion method. LDA with PCA achieved slightly higher hold-
out performance than SVM(rad) with PCA when the training
sample size was small (compare Figs. 1 and 2). Using SVM-
(rad) with PCA had a slight advantage for small training
sample size and small M (M=50) compared with SFS and
SFFS, but the hold-out performance with PCA was poorer
for M=100 or M =200.

Figure 3 shows the comparison of feature selection meth-
ods with the SVM(poly) classifier. The hold-out A, of the
classifier with SFS at M=200 decreased rapidly as F;, de-
creased in the range of large number of training samples, but
that was not seen with SFFS. This can be attributed to the
fact that the number of features selected by SFS could be
larger than 60 for small F;,, which was greater than the range
of the number of features set to be chosen for the SFFS. At
Fin=5, where the number of selected features was similar to
that of the SFFS, the hold-out A, was comparable to those for
SFFS. SVM(poly) with PCA had the lowest hold-out perfor-
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Fic. 3. Dependence of the performance A, of the SVM classifier with polynomial kernel on training sample size. The two class distributions were multivariate
normal with equal covariance matrices and unequal means. The effect of increasing dimensionality of the feature space available for selection (M) is shown
in each column. The comparison of the SFS, SFFS, and PCA methods for feature selection is shown in each row.

mance compared to those with SFS and SFFS under the con-
ditions shown except for M=50 and large training sample
sizes. The hold-out performances of SVM(poly) with PCA
were also substantially lower than those of LDA and SVM-
(rad) with PCA over the parameters studied.

When SFS was used as the feature selection method, the
number of selected features increased as M increased for a
given F;, (graphs not shown). Comparing the first columns
of Figs. 1-3, it can be observed that for the LDA, SVM(rad),
and SVM(poly) classifiers, the resubstitution A, increased
with increasing M, especially when there were few training
samples, whereas the hold-out A, decreased as a result of
overtraining. The hold-out performance for LDA at M =50
and for SVM(rad) at M=50 and M=100 increased as F;,
decreased, indicating that the additional selected features still
increased the discriminatory power under these conditions
although likely offset somewhat by the increased dimension-
ality. The hold-out performance of SVM(poly) was in gen-
eral worse than those of the LDA and SVM(rad) classifiers.

[11.B. Unequal covariance matrices

Comparisons of the feature selection techniques for the
SVM(rad) classifier when the two classes had unequal cova-
riance matrices and unequal means are shown in Fig. 5. The
results of comparing the classifier performances with input
features selected by SFS are shown in Fig. 6. The A, values
of the resubstitution and hold-out estimates of different
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methods are compared and plotted as a function 1/Ny.i,. EX-
amples of the standard deviation values when the SFS, SFFS,
and PCA feature selection methods are used with the LDA
classifier for M=100 are shown in the second row of Fig. 4.
The standard deviations of the SVM classifiers had similar
magnitudes.

The SVM(rad) hold-out performance was virtually the
same whether the SFS or SFFS method was used for feature
selection when the number of selected features was in the
range of five to 20. The hold-out performance with PCA was
slightly higher than those with SFS and SFFS for M =50 and
100, but the performances with all feature selection methods
were comparable for M=200. For M =200, the number of
features selected within the range studied essentially had no
influence on hold-out performance.

We have previously shown that LDA may be the preferred
classifier when the training sample size is small even under
conditions of unequal covariance matrices where it is not the
theoretically optimal classifier." A similar comparison of the
dependence of the LDA performance on feature selection
methods in the same feature space of unequal covariance
matrices shows that the dependence of the performance of
the LDA classifier on the various study conditions was very
similar to that of the SVM(rad) although the A, values may
be different (graphs not shown). The performance of the
LDA relative to that of SVM(rad) is demonstrated in Fig. 6
with the SFS method. The SVM(rad) hold-out performance
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FiG. 4. Standard deviation of the hold-out performance as a function of 1/Ny,;, for the SFS, SFFS, and PCA feature selection methods and the LDA classifier.
The number of features available for selection was M =100 for the equal covariance matrices (first row) and unequal covariance matrices (second row)
conditions, and M =61 for the condition with simulated equal covariance matrices estimated from a clinical data set.

was comparable or slightly higher than the LDA perfor-
mance, depending on the number of selected features. With a
large number of training samples available, the SVM(rad)
hold-out performance was better than that of the LDA, espe-
cially when M =200 and the number of selected features was
large.

When the SFFS method was used for feature selection
(graphs not shown), the SVM(poly) classifier had the highest
resubstitution bias for small training sample sizes. The hold-
out performance for SVM(poly) was similar to those of LDA
at small training sample sizes, and was slightly better at large
training samples sizes. SVM(rad) consistently had a slightly
higher hold-out performance than LDA, especially for M
=50 with small training sample sizes. Within the range of
number of features selected by SFFS (five to 20) in this
study, the hold-out performances of LDA and SVM(rad)
were almost independent of the number of features used. The
latter result can be seen in the middle column of Fig. 5.
Comparing the classifiers with PCA (graphs not shown), it is
observed that the SVM(poly) classifier suffered stronger bias
than the other two classifiers, especially when the dimension-
ality was high. Its hold-out performance was lower and the
resubstitution performance was higher than those of LDA or
SVM(rad), similar to those observed for the class distribu-
tions with equal covariance matrices. LDA and SVM(rad)
performed similarly.
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IlI.C. Equal covariance matrices (clinical)

In these experiments, the two classes had unequal means
but the same covariance matrix derived from the features
extracted from lung nodules on CT scans. There were M
=61 features available for selection. The A, values from the
LDA, SVM(rad), and SVM(poly) classifiers with the SFS,
SFFS, and PCA feature selection techniques are compared in
Fig. 7. Examples of the standard deviation values when the
three feature selection methods are used with the LDA clas-
sifier are shown in the third row of Fig. 4.

SVM(rad) had less optimistic resubstitution bias and less
pessimistic hold-out bias compared to LDA under the condi-
tions of small training sample size. The differences between
LDA and SVM(rad) in this feature space were greater than
those observed in the class distributions with simulated equal
and unequal covariance matrices discussed above. However,
when the training sample size approached about 100 samples
per class, LDA with SFS and SFFS provided a slightly
higher hold-out A, than SVM(rad). SVM(poly) again had the
lowest hold-out performance among the three.

PCA provided slightly higher hold-out performance than
those obtained with the SFFS method for LDA when the
training sample size was small, but comparable or lower
hold-out performances for other conditions.
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Fic. 5. Dependence of the performance A, of the SVM classifier with radial kernel on training sample size. The two class distributions were multivariate
normal with unequal covariance matrices and unequal means. The effect of increasing dimensionality of the feature space available for selection (M) is shown
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Fic. 6. Comparison of the LDA, SVM(rad), and SVM(poly) classifiers with the same input features obtained from SFS. The two class distributions were
multivariate normal with unequal covariance matrices and unequal means.
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Fic. 7. Performance of the SFS, SFFS, and PCA feature selection methods and the LDA, SVM(rad), and SVM(poly) classifiers for simulated multivariate

normal class distributions with equal covariance matrices estimated from a clinical data set (M=61).

IV. DISCUSSION

Numerous feature selection and classifier methods have
been investigated in the literature. It is difficult to determine
which combination of feature selection and classifier meth-
ods would be the most effective for a given classification
task. When a specific combination is selected based on a
limited number of samples available, as often is the case for
CAD system development, the potential for overtraining is
high, and the performance of the resulting CAD system as
predicted by the training data may not be generalizable to the
population at large. To demonstrate the effects of different
combinations, we conducted a simulation study with sample
data randomly drawn from multivariate Gaussian distribu-
tions, which allowed us to generate an arbitrarily large num-
ber of samples.

Although we investigated both resubstitution and hold-out
methods and compared the results obtained from both meth-
ods in all the graphs, the trends of the hold-out performance
are emphasized more than those of the resubstitution perfor-
mance in our discussion. The hold-out performance of clas-
sifiers is more important than their resubstitution perfor-
mance because it is generally accepted that the resubstitution
performance is optimistically biased and should not be used
in ultimate CAD system evaluation. When the number of
training samples is small, the classifier is more easily over-
trained, and this overtraining usually results in an optimistic
predicted performance when the classifier is applied to the
same data set that has been used for training, compared to
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what would be obtained if the trained classifier were applied
to the true population. The real test of whether a CAD sys-
tem is effective should be performed with samples it has not
seen before, which is modeled by the hold-out method.

A limitation to this study was that we investigated only a
small number of combinations, and the results may not be
directly applicable to features extracted from clinical data for
which the class distributions may not be Gaussian. Although
we expect that the hold-out method will have a pessimistic
bias (relative to what can be achieved if the classifier is
trained with an infinite sample size) regardless of whether
Gaussian or non-Gaussian data are used, the relative trend of
the bias may be different if samples drawn from clearly non-
Gaussian distributions are used. Given that there are large
numbers of CAD applications and a wide range of features
that can be extracted in each application, the class distribu-
tions can be extremely varied. It will not be possible to cover
even a small fraction of the distributions that may occur in
clinical data in one study. Nevertheless, through a systematic
investigation of the commonly assumed class distributions
(Gaussians with equal or unequal covariance matrices), the
trends observed will lead to better understanding of some
characteristics of the factors in classifier design, which may
serve as a guide in future developments.

When our results were examined, some unifying themes
that held for both the equal and unequal covariance matrix
conditions emerged. These themes are described next, fol-
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lowed by specific observations for the three conditions:
Equal covariance matrices, unequal covariance matrices, and
equal covariance matrices (clinical).

In Figs. 1-3, 5, and 6, the effect of increasing the feature
space dimensionality is demonstrated by comparing the
graphs along each column. For equal covariances, the con-
tribution of additional features beyond i=25 was close to
zero because the ability of feature i to separate the two
classes decreased with increasing i, the feature index, in Eq.
(2). For unequal covariances, the values of v; in Eg. (3) can
be approximated by v;=1+vma—1)(¥*"=y'"M) for large
Y. With the values of y and M used in our experiments
(y=1.5 and M=50, 100, or 200), the contribution of addi-
tional features beyond i=25 was also close to zero for the
unequal covariance condition. An effective feature selection
algorithm should be impervious to these additional features,
which were essentially noise since the difference in the
means or covariances of a given feature between the two
classes from which samples were drawn was close to zero.
The decrease in hold-out A, with the increase in the number
of features available M indicates that the presence of useless
features can interfere with the selection of the good features
when the sample size is small.

When a large dimensional feature space is available for
feature selection, it can be expected that the hold-out perfor-
mance would increase initially as the effective feature com-
binations are being found. However, when more and more
features are added, the hold-out A, would eventually de-
crease due to overtraining on the finite design sample size, a
phenomenon known as the curse of dimensionality in the
literature.®> The number of selected features, or the Fin Fout
thresholds, for which the hold-out performance reaches a
maximum will depend on the properties of the feature space
and classifier used, as seen from the examples of various
conditions included in this study. For example, for LDA with
SFS and equal covariance matrices, this peak occurs at dif-
ferent F;, values for different values of M and number of
training samples (Fig. 1). Interestingly, for most of the con-
ditions shown in Fig. 2 where the performance of SVM(rad)
with equal covariance matrices is assessed, the hold-out per-
formance increased uniformly or stayed almost unchanged
when the F;, values decreased, or the number of selected
features increased. The different trend of dependence on the
dimensionality of the selected feature space for the classifiers
can be observed more readily in Figs. 5 and 6 for the unequal
covariance matrices. For example, in Fig. 6 with M=100
(middle row), F;,=2 had worse performance compared to
larger F;, values with LDA and SVM(poly), while it had the
best performance with SVM(rad). Since all classification
methods used the same selected features, and lower F;, steers
the SFS to select a larger number of features, this provides
evidence that SVM(rad) classifier may be more immune to
overtraining with a large number of features than LDA. This
is in agreement with previous observations in the literature
that SVM is capable of circumventing the curse of
dimensionality.34 However, our study also indicates that this
capability has its limits. The last row of Fig. 2 shows that
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there exist conditions for which F;,=2 results in a worse
performance compared to larger F;, values with SVM(rad).
We observed that for different number of training samples,
the number of selected features was mostly larger than 60
under this condition.

Our study also highlighted the importance of kernel selec-
tion in SVM. Different kernels introduce different nonlin-
earities into the mapping between the original feature space
and the higher-dimensional Euclidean space H. It has been
noted in the literature that kernel selection can have an im-
portant impact on the performance of the SVMs.* There are
a large number of options for the SVM kernel. We imple-
mented only two popular kernels. Our results indicated that
within the conditions evaluated (Figs. 3 and 6), the hold-out
performance of SVM(poly) decreased uniformly when the
number of selected features increased by any feature selec-
tion methods, opposite to the trend of SVM(rad). SVM-
(poly), therefore, appeared to be more vulnerable to over-
training with a large number of input features than
SVM(rad). Overall, the radial kernel had a small but consis-
tent advantage over the polynomial kernel under most con-
ditions, and did not have a disadvantage under any of the
conditions that were included in our simulation study.

Under the conditions studied, the resubstitution A, for
SFS at a given sample size increased as the F;, and Fg
thresholds decreased, i.e., as the feature selection method
was steered to select a larger number of features. Likewise,
the resubstitution A, of SFFS increased with an increased
number of features selected. At small sample sizes, SFS had
a lower resubstitution A, than SFFS, especially at low M and
high F;, (e.g., comparing F;,=7.0 to d=5 at M=50 in Figs. 1
and 5). This may be partially attributed to the small number
of features (<5) selected by SFS under these conditions, and
partially to the fact that SFFS may be able to select features
that fit the training data better. However, comparing the hold-
out A, values for the same conditions, SFFS did not suffer a
noticeable tradeoff for its higher resubstitution bias. Con-
versely, for large M and low F;, (e.g., comparing F;,=2.0 to
d=20 at M=200 in Figs. 1 and 5), SFS had a higher resub-
stitution A, than SFFS, likely due to the large number of
features selected by SFS. For LDA, this overfitting of the
training data by SFS resulted in lower hold-out A, values
than for SFFS (e.g., comparing F;,=2.0 to d=20 at M=200
in Fig. 1). For SVM(rad), the hold-out A, values were almost
identical for the entire F;, range at M =200, indicating again
that SVM(rad) may be more tolerant than LDA to conditions
that might lead to overfitting.

IV.A. Equal covariance matrices with unequal means

For the LDA, PCA performed better with a higher hold-
out performance than SFS except when M and training
sample size were large. This is somewhat unexpected be-
cause the Wilks’ lambda condition used in this study for
feature selection was closely matched to a linear model. It is
interesting to note that given the same selected features from
the SFS method, the SVM(rad) had slightly better hold-out
performance than the LDA, especially when the number of
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available features M and the number of selected features
were large. Since the data were drawn from multivariate nor-
mal distributions with identical covariance matrices, it is ex-
pected that LDA would theoretically provide the optimal per-
formance. However, LDA estimated the means and
covariance matrices from the available training samples of
both classes, and the limited sample size could result in poor
estimates. The difference in the performance between LDA
and SVM(rad) decreased as the training sample size in-
creased. When the number of training samples reached the
highest for the experimental conditions studied (100 per
class), the LDA hold-out performance was similar to the
SVM(rad) performance when the number of selected features
was small. For the SFS method and a given training sample
size, the hold-out A, for SVM(rad) was less dependent on the
Fi, and F,, thresholds than that of LDA when the original
feature space dimensionality was high (M =100 or 200) and
vice versa when the dimensionality was low (M=50). Given
conditions similar to this study, SVM(rad) would have a
slight advantage over LDA for large dimension feature
spaces.

When the SFFS method was used for feature selection
(central columns of Figs. 1-3), it can be observed that the
general trends of the three classifiers were similar to those
using the SFS method. In the range of five to 20 selected
features, the hold-out performance for all three classifiers did
not have a strong dependence on the number of selected
features.

IV.B. Unequal covariance matrices

The SVM(rad) hold-out performance was similar for both
SFS and SFFS while that with PCA was slightly higher at
small training sample size. For all feature selection methods
at M=200, the hold-out performance was similar. Given the
design of the features, the additional features did not provide
much discriminatory power, and the SVM(rad) classifier may
have effectively disregarded them. Since the SVM(rad) clas-
sifier is nonlinear, it would be expected to perform better
than LDA in the feature spaces with unequal covariance ma-
trices. A marginally higher performance for SVM(rad) was
observed when SFS and SFFS were used. The combination
of LDA with PCA improved the performance of LDA to the
level of SVM(rad) for M=50 and 100 and slightly higher
than SVM(rad) for M=100 and 200 at small sample size
(graphs not shown).

IV.C. Equal covariance matrices (clinical)

For this class distribution, neither LDA nor SVM(rad)
with PCA seems to have an advantage over the SFS and
SFFS methods as observed for the two previous class distri-
butions for a given M (e.g., M=50). However, there was a
larger difference between LDA and SVM(rad) performance
compared to the samples drawn from the simulated equal or
unequal covariance matrices described above. When the
training sample size was large, LDA with SFS and SFFS
provided a slightly higher hold-out A, than SVM(rad) but
vice versa when the sample size was small.
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V. CONCLUSION

The LDA classifier has been used for many classification
tasks in CAD applications because of the limited number of
samples available for training and testing. A linear classifier
would less likely overfit the training data because of the rela-
tively few parameters to be trained. Recently, there has been
increased interest in the SVM. Under our simulation condi-
tions, we found that the SVM with the radial kernel per-
formed slightly better than the LDA when the training
sample size was small for the data drawn from the covari-
ance matrices estimated from clinical data. Under the other
simulated conditions in our study, PCA with LDA was effec-
tive for small training sample sizes. However, the perfor-
mance of SVM for a specific classification task depends on
many variables that need to be selected, such as the kernel
function and the parameter values. A different choice of ker-
nel, such as the polynomial function in this simulation study,
may result in lower performance than the LDA under many
of the conditions. Although we could only examine a limited
number of conditions in the current study, we demonstrated
that the relative performances of the different combinations
of classifier and feature selection method depend on the fea-
ture space distributions, the dimensionality, and the available
training sample sizes. Further investigations will be needed
to determine if there can be simple rules of thumb to guide
the choice among different classifiers, or among the kernel
functions for SVM. From the comparison of feature selection
methods, we found that the SFS and the SFFS methods are
similar while PCA can provide higher hold-out performance
than SFS and SFFS under some conditions.

Choosing effective feature selection and classification
methods is a vital part in the development of a CAD system.
Our study has revealed some interesting properties of these
methods. The knowledge of the interaction between the fea-
ture selection and classification methods may facilitate the
design of an effective CAD system under the constraint of
limited available samples.
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