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This paper presents segmentation and classification results of an automated algorithm for the de-
tection of breast masses on digitized mammograms. Potential mass regions were first identified
using density-weighted contrast enhancement (DWCE) segmentation applied to single-view mam-
mograms. Once the potential mass regions had been identified, multiresolution texture features
extracted from wavelet coefficients were calculated, and linear discriminant analysis (LDA) was
used to classify the regions as breast masses or normal tissue. In this article the overall detection
results for two independent sets of 84 mammograms used alternately for training and test were
evaluated by free-response receiver operating characteristics (FROC) analysis. The test results
indicate that this new algorithm produced approximately 4.4 false positive per image at a true
positive detection rate of 90% and 2.3 false positives per image at a true positive rate of 80%.
© 1996 American Association of Physicists in Medicine.
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I. INTRODUCTION

Breast cancer is the most common malignancy affecting
women and is second only to lung cancer in tumor related
deaths in females. It was estimated that 182 000 new cases of
breast cancer would occur in American women and 42 000
women would die from the disease in 1994.! This comprises
32% of all new cases of cancer and 18% of cancer deaths in
women.! Efforts to decrease the mortality are currently
aimed at early diagnosis and complete removal of small non-
metastatic lesions.” In an attempt to reduce cost and increase
effectiveness, investigators are developing new techniques to
improve detection of early breast cancers.® Computer-aided
diagnosis (CAD) is one technique that may achieve both
goals of lowering cost and increasing effectiveness.* CAD is
especially well suited for the digital imaging technology
which is being developed to produce digital images in full
view mammography.

Several research groups have developed computer algo-
rithms for automated detection of mammographic masses.
Kegelmeyer has reported promising results for detecting
spiculated lesions based on local edge characteristics and
Laws texture features.>® Both Lai et al.” and Qian er al.®
proposed different variations of median filtering to enhance
the digitized image prior to object identification. A thresh-
olding method for mass localization and a mass classification
algorithm using fuzzy pyramid linking have been developed
by Brzakovic et al.® Other investigators have proposed using
the asymmetry between the right and left breast images to
determine possible mass locations. Yin et al. uses both linear
and nonlinear bilateral subtraction!® while the method by
Lau er al. relies on ‘‘structural asymmetry’’ between the two
breast images.!' The above methods produced between one
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and five false detections for a true positive detection rate of
approximately 90%. However, it is difficult to compare the
effectiveness of these methods because each used a unique
set of digitized mammograms, and the results varied between
training and test. A general comparison between algorithms
is further complicated by the fact that most of these studies
were conducted using small data sets. While initial results
from the first large scale preclinical study have been
t:ncouraging,12 the performance of detection programs with
clinical samples may not match their performance in labora-
tory tests.

Our preliminary study introduced the density-weighted
contrast enhancement (DWCE) segmentation method and
found that it was capable of detecting breast masses on 25
digitized mammograms.'® In this article, a set of 168 digi-
tized mammograms is used to evaluate a modified version of
the original DWCE segmentation method in combination
with a texture classification scheme. The following proce-
dure was used to evaluate this new detection scheme. The set
of digitized mammograms was first segmented into potential
breast masses using the DWCE segmentation.'® This method
employed an adaptive filter to enhance structures within the
breast region of a mammogram and then identified the struc-
tures using a simple edge detection algorithm. Once the digi-
tized images were segmented using the DWCE, regions of
interest (ROIs) based on the detected breast structures were
extracted from each mammogram, and a set of multiresolu-
tion texture features were calculated for each extracted ROL
The feature set was then used by a linear discriminant analy-
sis (LDA) algorithm to reduce the number of false detec-
tions. Finally, the performance of the DWCE segmentation
and ROI texture classification scheme was evaluated using
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free-response receiver operating characteristics (FROC)
analysis.

il. MATERIALS AND METHODS
A. Database

The clinical mammograms used in this study were ac-
quired with American College of Radiology accredited mam-
mography systems. Kodak MinR/MRE screen/film systems
with extended cycle processing were used as the image re-
corder. The mammography systems have a 0.3-mm focal
spot, a molybdenum anode, 0.03-mm-thick molybdenum fil-
ter, and a 5:1 reciprocating grid. The mammograms were
selected from the files of patients who had undergone biopsy
at the University of Michigan in the last five years. The
selection criterion used by the radiologists was simply that a
biopsy-proven mass existed on the mammogram. This set
excluded lesions visible only by architectural distortions
(i.e., no defined mass) but included masses accompanied by
calcifications. No attempt was made to match the number of
malignant and benign mass cases, but we did try to include a
cross section of malignant masses. This led to a much larger
proportion of malignant lesions than that in the general
screening population. To avoid the effect of the repetitive
grid pattern on the texture feature calculations, all mammo-
grams with visible grid lines were excluded for the original
set. Our final data set for this preliminary study was com-
posed of 168 single-view mammograms. It included 85 ma-
lignant and 83 benign masses. The size of the masses ranged
from 5 mm to 26 mm with a mean size of 12.2 mm, and their
visibility ranged from 1 (obvious) to 10 (subtle) with a mean
visibility of 4.51. A more complete discussion of the images
selected for this study can be found in Wei ez al.'*

The mammograms were digitized with a LUMISYS DIS-
1000 laser film scanner with a pixel size of 100 um and 4096
gray levels. The digitizer logarithmically amplifies the light
transmitted through the mammographic film before analog-
to-digital conversion so that the gray levels are linearly pro-
portional to optical densities in the range of 0.1 to 2.8 optical
density units (0.D.). The O.D. range of the scanner is 0-3.5
with large pixel values in the digitized mammograms corre-
sponding to low O.D. The digitized images used in this study
were approximately 2000X2000 pixels in size. To conserve
processing time and reduce noise in the initial DWCE seg-
mentation stages, the full resolution mammograms were first
smoothed with an 8 X8 box filter and subsampled by a factor
of 8, resulting in 800-um images of approximately 256X256
pixels in size. However, the texture features used in the final
LDA classification were calculated from the original images
with a 100-um pixel size.

The location and extent of all the biopsy-proven masses
were marked on the original films by a radiologist. They
were then localized on the digitized images and stored in a
“‘truth’’ file on the computer by defining both the centroid
(approximate center) of the lesion and the smallest bounding
box (rectangle) containing the entire lesion. Both of these
‘procedures were performed by hand using the original
marked film as a guide. The centroid “‘truth’” was used to
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analyze the initial DWCE segmentation. If an object seg-
mented by the DWCE contained the centroid of the mass
within the object region, it was considered a true positive
(TP); otherwise, it was considered a false positive (FP). The
centroid provided a fast method for evaluating the DWCE
segmentation in its global and local stages. However, the
final texture classification results are based on the more pre-
cise bounding box ‘‘truth.”” A region was considered a TP
detection when at least 50% of the ‘‘truth” bounding box
was detected. The centroid and bounding box definitions for
the mass provided both an efficient mechanism for develop-
ment of the DWCE and an accurate final analysis for the
overall detection scheme.

For evaluation of the DWCE segmentation and subse-
quent texture classification, the 168 single-view mammo-
grams were randomly divided into two groups of 84 images,
groups G1 and G2, with the constraint that all images from a
single patient were kept in the same group. A single set of
DWCE segmentation parameters was applied to all images
(G1 and G2) to extract potential mass regions. The regions
extracted from the G1 and G2 images were then alternately
used as training and test sets in the texture classification as
described below.

B. Density-weighted contrast enhancement
segmentation

Edge detection applied to an unenhanced image was not
effective in detecting breast masses because of the low
signal-to-noise ratio of the edges and the presence of com-
plicated structured background. To overcome these prob-
lems, we have developed a new algorithm using DWCE fil-
tering along with Laplacian—Gaussian (LG) edge detection
for automatic segmentation of low contrast structures in digi-
tal mammograms.'> The DWCE segmentation method em-
ployed adaptive filtering, edge detection, and morphological
FP reduction to detect potential breast masses in a two-stage
approach. In the first stage, DWCE segmentation was ap-
plied globally to the entire breast region of the mammogram
to identify ROIs. In the second stage, the segmentation was
applied locally to the ROIs identified in the global stage.
Figures 1(a) and 1(b) depict the block diagrams for the glo-
bal and local stages of this algorithm. The DWCE segmen-
tation was originally introduced by Petrick er al.'® but has
been slightly modified in this study to improve its overall
performance. In the following subsections we will summa-
rize the main components of both the global and local stages,
and highlight the differences between the original and cur-
rent implementations of the DWCE technique.

1. Global stage: Density-weighted contrast
enhancement filtering

The DWCE filter was developed to accentuate mammo-
graphic structures before edge detection by adaptively en-
hancing local contrast and is an extension of the local con-
trast and mean adaptive filter proposed by Peli and Lim."
The block diagram of the filter is shown in Fig. 2, while Fig.
3 contains examples of the images produced by each filter
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FiG. 1. The block diagram of the two-stage DWCE segmentation method
used for the initial breast mass detection. The block diagram for the global
stage is depicted in (a) while the local stage is shown in (b). Note, the
outputs from the global stage, Fp(x.y), are individually processed in the
local stage.

block for a typical mammogram from our image set. All the
DWCE functions introduced in the following discussion cor-
respond to the steps illustrated in Fig. 2.

DWHCE filtering was applied to the breast region [i.e., the
breast map Fy;,,(x,y)] of each mammogram which had been
identified using thresholding and edge detection.!” Figure
3(a) shows a typical mammogram, F(x,y), at 800-um reso-
lution while 3(b) shows its breast map. The pixel intensities
from F(x.,y) within the breast map were next rescaled to be
between 0.0 and 1.0 producing a normalized breast image,
F y(x,y). This normalization reduced the gray-level variation
due to breast tissue composition and the imaging technique
so that a single set of filter parameters could be applied uni-
formly to all digitized mammograms.

The normalized image was next split into a density and a
contrast image, F ,(x,y) and F(x,y), respectively. Fp(x,y)
was produced by low-pass filtering the normalized input im-
age using G{0,0,}. a Gaussian filter with zero mean and
standard deviation 0,=8.0. Likewise, F(x,y) was pro-
duced by bandpass or high-pass filtering the normalized im-
age. In the current DWCE implementation, F ~(x,y) is cre-
ated by subtracting the density image from the normalized
input,

FC(X,)’):FN(X»Y)‘FD(XJ% (1)

or

Felx,y)=Fy(x.y) = G{0,0p}t#Fn(x.y), 2)

Fivap
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FiG. 2. The block diagram for the DWCE preprocessing filter used for image
enhancement.
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FiG. 3. (a) A typical mammogram from our image database; (b) the corre-
sponding breast map used in the DWCE segmentation; (c) the density image
(Fp(x,y)); (d) the contrast image (F(x,y)); (e) the weighted-contrast im-
age (Fxce(x,y)); (f) the rescaled weighted-contrast image ( Fg(x,y)); (g) the
detected structures remaining after the global FP reduction step; (h) the
detected structures remaining after the final splitting FP reduction step.

where * represents two-dimensional convolution. Figures
3(c) and 3(d) show the density and contrast images obtained
using this procedure.

The local density value, F(x,y), was then used to deter-
mine a multiplication factor, K,,(F(x,y)), for each pixel
(x,y) in the image. The multiplication factor was used to
either enhance or suppress the local contrast and thereby pro-
duced a new weighted contrast image:

FKC(xay):KM(FD(x’y))XFC(X7Y)' (3)

This process allowed the DWCE filter to adapt to local back-
ground characteristics within the image and was the principle
component for our adaptive signal-to-noise ratio (SNR) en-
hancement. In this case, the signal refers to breast masses or
other predominant structures within the breast. The output of
the DWCE filter was given as

Fr(x,y)=Knu(Fe(x,y)) X Fge(x,y), (4)

where each pixel, (x,v), in the weighted contrast image was
used to define a second multiplication factor,
Ky (Fre(x,y)), that nonlinearly scaled the weighted contrast
image. This nonlinear scaling was used to further suppress
the background and to separate merged structures in the
DWCE enhanced image. Figures 3(e) and 3(f) show the
weighted contrast and scaled weighted contrast images, re-
spectively, obtained with the DWCE technique.

It can be seen that the two multiplication functions, K,
and Ky, define the enhancement properties of the filter.
These functions can be tailored to suit a specific task. Figures
4(a) and 4(b) show the curves selected for K, and Ky,
respectively, in the current filter. The shape of the density-
weighted contrast function, K,,, was selected to accentuate
(K (2)>1.0, z=Fp(x,y)), the contrast at pixels in the den-
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FiG. 4. Plots of (a) the weighted-contrast multiplication function (K ,,(z))
and (b) the nonlinear rescaling function (Ky;(z)) used in the DWCE filter-
ing.

sity image with medium to high intensity, while deemphasiz-
ing (K(z)<1.0), the contrast at pixels with low intensity.
Thus, this function suppressed small structures mainly sur-
rounded by background tissue and enhanced larger structures
which are more likely to be masses. The exact shape of the
multiplication function was determined experimentally by
observing how detection was affected by variations in K, .
We chose {Ky(z)=1.0:0.25<z=<1.0} in the current
weighted contrast function so that 75% of the intensity range
was enhanced. K, was found to be effective in reducing the
background and enhancing breast structures, but it did not
provide adequate separation between the structures. The
shape of the nonlinear scaling function (Ky(z),
2= Fgc(x,y)) was selected to provide additional separation
between objects. Very low contrast regions were strongly
deemphasized, thus eliminating many low-intensity bridges
between individual structures. It was also found that a slight
suppression of the highest contrast intensities provided a
more uniform intensity distribution across detected breast
structures. Again, the specific shape of the nonlinear contrast
scaling was determined experimentally by observing the ef-
fect of different functional forms on the detection and object
separation. A complete discussion of the DWCE multiplica-
tion functions used in this study can be found in the
literature.
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2. Global stage: Object edge detection

The DWCE filtering was applied to the original mammo-
gram to facilitate the detection of structures within the image
and thus provided an estimate of their physical extent.'® The
DWCE implementation provided significant background re-
duction, as shown in Fig. 3(f), allowing for the use of a less
complex edge detector. In this study, object edges were iden-
tified from the DWCE filtered mammogram using a
Laplacian—Gaussian (LG) edge detector [Block 2 in Fig.
1(a)]. Edges in the enhanced image, F(x,v), were defined
as the zero crossing locations of

VIG{0,0p}#Fp(x,y), {5)

where G{0,0;} was a zero mean Gaussian smoothing func-
tion with standard deviation oz=2.0."" The advantages of
this edge detector are that its performance is independent of
edge direction and that it tends to produce closed regions.

After the edge detection, all enclosed structures were
filled to eliminate any holes that may have formed inside
individual objects. The edges from each of the filled objects
were tracked and identified. This edge detection is identical
to the original DWCE implementation described in the
literature.

3. Global stage: False positive reduction

The DWCE filtering and subsequent edge detection do not
differentiate between mass and normal tissues, therefore, a
large number of potential regions were usually found. Since
the shape of breast masses in general are different from those
of normal tissue, we extracted morphological features and
used a classification algorithm to identify some of these dif-
ferences [Block 3 in Fig. 1(a)]. The goal here was to reduce
the number of FP regions without losing a significant number
of true masses, thus allowing the maximum number of TP
regions to be passed on to the local processing stage. In this
study, six additional morphological features were combined
with the original set of five features used in the previous
study'® to improve the differentiation between mass and nor-
mal tissue objects. The original features were the number of
edge pixels (P), the total object area (A =area(F ,)), the ob-
ject’s contrast, circularity, and rectangularity. The new fea-
tures added in this implementation were the perimeter-to-
area ratio (PAR) and a set of five normalized radial length
(NRL) features. To define circularity and rectangularity, the
minimum sized bounding box completely containing the ob-
ject, Fyp(x,y), and a circle with an area equivalent to the
object area, F. (x,y), were calculated. F (x,y) was cen-
tered at the object’s centroid location and had radius r
given by

B area(Fobj)—\/K
reqa\/—w—~ - (6)

Circularity and rectangularity were then defined as
area( F o5 Feg)
area(F Obj)

, (M

Circularity=
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area( F ;)

®)

Rectangularity= arca(Fyy)
The five NRL features were a subset of the features defined
by Kilday ef al.'® A radial length function was defined as the
Euclidean distance from an object’s centroid to each of its
edge pixels and normalized relative to the maximum radial
length for the object. This created an NRL vector given as

r={r,:0<ks=Ng—1}, 9)

where N was the number of edge pixels in the object. The
histogram of the radial length was also calculated and cre-
ated the probability vector

p={p;:0<jsNy—1}, (10)

where Ny was the number of bins used in the histogram. The
NRL features selected in this study were the NRL mean
value, standard deviation, entropy, area ratio, and zero cross-
ing count. They are defined as

| Neo
P«NRLEN_E I;O Ties (11
Fi=T
1 E
ONRL= N, kgo (ri— mnre)?, (12)
Ny—1
Enu== 2 p;log(p)), (13)
f=
) Np—1
ARygrL= N D (ri—MNRL) ¢ Tk HNRL( >
E MNRL k=0

(14)
ZC Cngry=number of zero crossings of {r;— ,U,NRL}in 0 g

(15)

A complete description of all the NRL features used in this
study can be found in the literature.'®

The extracted morphological features were used in a se-
quential classification scheme; a simple threshold classifier,
followed by an LDA classifier, and finally followed by a
backpropagation neural network (BPN). The purpose of each
classifier was to reduce the number of FP regions with a
minimum number of TP losses. This improved reduction
scheme was selected because it has been found that sequen-
tial or parallel combinations of the different classifiers often
increased the classification accuracy over the individual
classifiers.'”? This is probably because they extract different
information from the feature space. The threshold classifier
simply set a maximum and a minimum value for each mor-
phological feature. This provided some initial reduction and
prevented the LDA and BPN classifiers from training with
nonrepresentative object features. If all the morphological
features from a detected object fell within the bounds, it was
kept as a potential mass; otherwise, it was considered to be
normal tissue and discarded. All DWCE detected objects
with features values within the defined limits were saved as
potential mass objects and passed on to the LDA classifier.
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The maximum and minimum feature limits, fr,; and fry),
respectively, were identical for both the G1 and G2 image
groups and were selected as a multiple of the individual mass
object bounds:

frng, ={k m?x(fi,j)i
j

jelindex of all detected mass objects]}, (16)
fThli:{k min(fi,j)i
J

je[index of all detected mass objects]}, (17)

where f; ; is the value of the ith feature (i [1,11]) for the jth
detected object. For this study, the multiplication factor (k)
was selected to be 1.0. The second classifier, LDA, formed a
linear combination of the morphological features and pro-
duced a single discriminant score for all remaining potential
mass object. This classification scheme will be described in

" more detail in Sec. I C. The LDA classifier applied to the

G1 objects was trained with the G2 object features and vice
versa. This provided independent LDA training for each of
the image sets. In order to minimize the probability of losing
true masses, a lax discriminant threshold was chosen to re-
tain most of the masses while achieving moderate FP reduc-
tion. The reduced sets of G1 and G2 objects with their mor-
phological features were then passed on to a final BPN
classification step. BPN formed a nonlinear combination of
the morphological features into a single discriminant score.
A complete description of the BPN morphological classifi-
cation can be found in the literature.'>*"?? In this step, a
three input node, four hidden node, single output BPN archi-
tecture was utilized. The BPN classifier was trained in a
similar fashion as the LDA but only the three most uncorre-
lated features (area, perimeter-to-area ratio, and contrast)
were used as the input features. The individual G! and G2
image sets were again used to train a pair of BPN classifiers,
and the discriminant thresholds were chosen to maximize FP
reduction while minimizing the loss of masses. All remain-
ing DWCE detected objects after the application of the three
classifiers were considered as potential mass objects and
passed on to the ROI segmentation and subsequent local
stage of the DWCE segmentation. Figure 3(g) shows the
final reduced set of objects detected by the global stage for
the original mammogram of Fig. 3(a).

4. Global stage: ROl segmentation

The final step in the global stage was the segmentation of
the detected local regions [Blocks 4,..., in Fig. 1(a)]. For
each remaining potential mass object, a ROI corresponding
to the object’s bounding box was defined on the subsampled
mammogram. The minimum size for these ROIs was chosen
to be 32X32 pixels. A bounding box of an object smaller
than this size was uniformly expanded in each direction
(horizontal and vertical) until it reached 3232 pixels. These
defined object regions were then used as input ROIs to the
local DWCE stage.
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5. Local stage: DWCE filtering, edge detection, and
local false positive reduction

The local stage of the DWCE segmentation was very
similar to the global stage and is again depicted in Fig. 1(b).
The main difference was that the processing was performed
in local regions within the image. This local processing al-
lowed the DWCE filter to adapt to the intensity distribution
within each ROI and thus refined the borders of the detected
objects. The input images to this stage, F 1,(x,y), were de-
fined from the detected objects in the global stage. This local
stage had five main components. Three of the components
had corresponding global stage counterparts, and they in-
cluded a second DWCE filter, LG edge detector, and local
FP reduction step. The local DWCE filter and LG edge de-
tector used identical parameters as their first stage counter-
parts, while the FP reduction step again used the 11 morpho-
logical features and the sequential thresholding, LDA, and
BPN classification discussed previously. The only difference
in the local FP reduction was that the feature and discrimi-
nant thresholds were adjusted to reflect the morphological
properties of the locally extracted structures. Again, the goal
of this FP reduction step was to reduce the number of poten-
tial mass regions before the regions were processed by a final
texture classification stage. Therefore, lax decision thresh-
olds were chosen to minimize additional losses of true mass
objects.

6. Local stage: Object splitting and splitting FP
reduction

The local processing of the mammograms lead to larger
objects because of the improved estimate of the local back-
ground. However, the larger objects often resulted in region
merging, (i.e., different structures within the breast merged
into a single detected region). An object splitting step was
therefore added to the local stage [Block 4 in Fig. 1(b)]. This
splitting step enabled the use of fixed sized ROls in the final
texture classification. The splitting algorithm searched for
narrowings in the cross section of an object. The algorithm
initially found the cross-section width for each column in the
object [F y(x) with length n]. Using Fy(x), three parameters
were calculated for each x. They were the area ratio of the
two created objects along with the global and local cross-
section width ratios. These ratios were defined as

min(Ag(x),A;(x))

FArea(x)E max(AR(x),AL(x)) » (18)
F
FGbl(X)E[LO_ﬁIEiZZ);: ZE[O,I’I—I]), (19)
_ Fy(x)
Frgx)= LO_WX(Z)): ze[x—2,x+2];, (20)

where Ap(x) and A;(x) were the area of the right and left
objects produced by splitting at location x. At each potential
neck location, x, a cut value F,(x) was defined as a linear
combination of the cross-section ratios and the area ratio

Fou(x)=1.5Fgu(x)+2.0F (x) + 1.0F prea(x). 2n
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After similar cut functions were computed for each row and
for the 45° and 135° directions, a maximum cut value was
found for the object and compared to a cut threshold. If this
maximum cut value exceeded this threshold, the object was
split at that point; otherwise, it was left unchanged. If the
object was split, the same algorithm was applied to the newly
formed objects until no further splitting occurred. The split-
ting algorithm incorporated area information into the split-
ting process, thereby giving preference to narrowings closer
to the center of the object and minimizing the number of
times an object was split. For a complete description of this
splitting algorithm refer to Petrick er al.'?

The final FP reduction [Block 5 in Fig. 1(b)] again em-
ployed the 11 morphological features and the sequential clas-
sification scheme described in Sec. II B 3. The feature and
discriminant thresholds were adjusted to reflect the morpho-
logical properties of the split objects. Figure 3(h) shows the
set of detected objects after the complete two-stage DWCE
segmentation for the original mammogram of Fig. 3(a).

C. Texture classification

After the DWCE segmentation identified a set of potential
mass objects in the mammograms, ROIs corresponding to
the detected object locations were extracted from the original
100-pm images and used as input to a texture classifier. The
extracted ROIs had a fixed size of 256X256 pixels and the
center of each ROI corresponded to the centroid location of a
detected object. When the object was located close to the
border of the mammogram and a complete 256X256 pixel
ROI could not be defined, the ROI was shifted over until the
appropriate edge coincided with the border of the original
image. The classification of these fixed sized ROIs was based
on a multiresolution texture analysis scheme. The approach
has been described in detail in the literature®® with the essen-
tial steps in the classification summarized below.

1. Texture features

The texture features used in the classification were de-
rived from the spatial gray-level dependence (SGLD)
matrix.”** An element of the SGLD matrix, p a.6(i,j) ,is the
joint probability that the gray levels i and j occur at a given
interpixel separation d and direction 8. A set of SGLD ma-
trices can be defined by varying the separation and direction.
Thirteen texture features were derived from each SGLD ma-
trix including correlation, energy, entropy, inertia, inverse
difference moment, sum average, sum variance, sum en-
tropy, difference average, difference variance, difference en-
tropy, and two measures of correlation information. The
mathematical definitions for the SGLD features can be found
in the literature.>>~2® These features were selected because
they were found to be effective in the classification of ROIs
containing masses or normal tissue manually identified by
radiologists.'*?3272% Each texture feature was calculated in
the 8=0°,45°,90°,135° directions. The features obtained at
0=0°,90° and #=45°,135° were averaged since no angular
bias was seen in the texture of masses, and we did not find
any significant difference in classification accuracy between
features at separate angles and their averaged values.”® The
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features calculated at adjacent pixels on axis (6=0°,90°) and
those in the diagonal direction (§=45°,135°) were not aver-
aged because of the significant v2 difference in the actual
distances.'*

Before the texture features were calculated, background
correction was performed on the individual ROIs using a
method described previously.'®?® An ROI was first low-pass
filtered and a pixel in the low-frequency background image
was estimated as a weighted sum of the pixel values sur-
rounding the ROL The difference between the original ROI
and the background thus reduced the gray-level variation due
to the low-frequency structured background within the ROI.

2. Global multiresolution SGLD features

A wavelet transform with a four coefficient Daubechies
kernel was used to decompose the individual ROIs into mul-
tiple scales after background correction.'*?* Multiresolution
ROI images were obtained using the original ROI (Scale 1)
and the first two low-pass down-sampled approximation
wavelets (Scales 2 and 4, respectively). The wavelet coeffi-
cients at Scale 8 were obtained by wavelet filtering but with-
out down-sampling so that the minimum image size was
maintained at 64X64 pixels. This minimum size was se-
lected in order to reduce the statistical uncertainty when
SGLD matrices of large pixel distances were calculated from
the Scale 8 wavelet images.

Fourteen SGLD matrices, with effective distances of
d={1,2,4,8,12,16,20,24,28,32,36,40,44,48} pixels relative to
the original ROI, were calculated in both the on-axis (6
=0°,90°) and diagonal (8=45°,135°) directions for each ROI
using the Scale 1, 2, 4, and 8 wavelet images. Figure 5 con-
tains a graphical representation of how the different wavelet
images were related to the different SGLD matrices and the
different object features. The SGLD matrices with d={1,2,4}
were calculated using a pixel distance of one in the Scale 1,
2, and 4 wavelet images, respectively. The eleven SGLD
matrices at d ={8,12,16,20,24,28,32,36,40,44,48} were calcu-
lated from the Scale 8 wavelet image with pixel distances
from 2 to 12 pixels. This process produced a total of 28
different SGLD matrices and 364 global multidistance tex-
ture features for each ROI.

3. Local multidistance SGLD features

A set of local texture features was also calculated for each
ROL*? Five rectangular subregions were segmented from
each ROI; an object subregion defined by the original
DWCE object bounding box located at the center of the ROI,
and four peripheral subregions at the corners. For a given
pixel distance d and a given direction 6, an SGLD matrix
was formed from the object subregion and another SGLD
matrix was formed from the pixel pairs in the four peripheral
subregions. These local SGLD matrices were calculated for
d={1,2,4,8} and #={0°,90°} and {45°135°. The thirteen
texture features were calculated for both the object and pe-
riphery SGLD matrices. A total of 208 local features were
defined for each ROI. They included the 104 features in the
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F1G. 5. Graphical representation of the parameters used in extracting fea-
tures from the multiresolution wavelet images. The effective pixel distance
d={1,2,4,8,12,16,20,24,28,32,36,40,44.,48} for the SGLD matrices are rela-
tive to the original image.

object region and 104 additional features defined as the dif-
ference between the feature values in the object and the pe-
riphery regions.

4. Linear discriminant analysis

Linear discriminant analysis (LDA) uses a set of feature
variables to classify an individual into one of a set of mutu-
ally exclusive classes.® We found in our previous studies
that the LDA using SGLD texture features can effectively
separate masses from normal tissue using ROIs manually
selected by radiologists.'*?* In our two class (mass and nor-
mal tissue) problem, the set of 572 global and local texture
features was used as a pool of predictor variables in a step-
wise selection procedure. This procedure selected a subset of
features from the feature space based on the maximization of
the Mahalanobis distance.?’ The stepwise selection elimi-
nates irrelevant variables and thus improves the generaliza-
tion capability of a discriminant function optimized with a
finite number of training cases.

With the DWCE segmentation and object splitting algo-
rithm, many of the extracted ROIs overlapped with one an-
other because of the adjacency of the objects. We selected
the independent ROIs (i.e., the ROIs that did not overlap
with one another) to form a training set in order to avoid
biases in the statistical distributions of the feature vectors.
Two independent sets, G1; and G2;, were formed by reduc-
ing all pairs of overlapping ROIs to single regions in G1 and
G2, respectively. If a true mass ROI overlapped with a nor-
mal tissue ROI, the true mass region was saved while the
normal region was eliminated. If two normal regions over-
lapped, one randomly selected region was eliminated. Fi-
nally, if two regions containing the full breast mass over-
lapped, the region defined by the DWCE segmented object
which contained the centroid of the true mass was saved
while the other was eliminated. These independent G1; and
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TaBLE [. The number of detected objects, the single stage reduction, the
mean object area (ua,.,). and the standard deviation of the object areas
(0ara) for the G1 data set after the global, local, and splitting stage FP

TaBLE HI. The number of FPs per image of each FROC curve at 90% and
80% TP detection fractions.

reduction steps. The single stage reduction is defined as the reduction Training Test FPs per image FPs per image
achieved by the morphological FP reduction block in each stage. set set (90% TP fraction) (80% TP fraction)
TP FP detections  Single stage Hearea O area Gl Gl mn 1.88
Stage  detections per image reduction (pixels)  (pixels) G2, G2 4.55 147
G2; Gl 3.98 2.50
Global 82 of 84 34.6 25% 63.3 109.0 Gl G2 4.72 2.08
Local 81 of 84 12.4 75% 286.4 351.6
Split 81 of 84 18.9 14% 122.0 122.1

G2, sets were individually used to train the LDA classifiers
while the full G1 and G2 sets were used for classifier evalu-
ation.

To improve the statistical properties of the feature distri-
butions, we used the entire set of segmented ROIs from both
the G1, and G2, image sets for selection of feature variables.
After feature selection, the G1 and G2 groups were used
alternately as training and test sets. For example, when the
coefficients of the linear discriminant function were opti-
mized by the feature values from the G1, set, the classifica-
tion accuracy of the linear discriminant function was tested
with the full G2 set. The Gl;-trained linear discriminant
function was also applied to the full G1 group to evaluate its
self-consistency. Therefore, a total of four groups of dis-
criminant scores were obtained: {Train:G1;, Test:Gl1},
{Train:G2,, Test:G2}, {Train:G2;, Test:G1}, and {Train:G1,,
Test:G2}.

In this study, FROC analysis32 was used to evaluate the
performance of the complete segmentation method. The
tradeoff between the TP fraction and the number of FP de-
tections per image was determined by varying the decision
threshold on the ROI discriminant scores. The raw detection
data for both the full group training and test cases are pre-
sented, along with the fitted FROC curves obtained using the
FROCFIT program.*

lll. RESULTS

The number of TP and FP objects detected in the global
and local stages of the DWCE segmentation are summarized
in Tables I and II for the G1 and G2 image sets, respectively.
A TP detection for the DWCE segmentation is again simply
defined as an object locating the centroid of a breast mass,
and a FP is any object other than the true mass (as discussed

TaBLE II. The number of detected objects, the single stage reduction, the
mean object area {ga.,). and the standard deviation of the object areas
(0area) for the G2 data set after the global, local, and splitting stage FP
reduction steps. The single stage reduction is defined as the reduction
achieved by the morphological FP reduction block in each stage.

TP FP detections  Single stage MArea Tarea
Stage  detections per image reduction (pixels)  (pixels)
Global 79 of 84 329 32% 64.4 112.4
Local 79 of 84 214 62% 219.8 289.6
Split 79 of 84 21.6 7% 108.2 91.2

in Sec. IT A). The two-stage DWCE segmentation missed
only 8 of the 168 breast masses contained in the entire image
set. Using the sets of TP and FP objects, 256X256 pixel
ROIs representing each of the detected objects were ex-
tracted from the full resolution mammograms. A total of
1690 ROIs were extracted from the set of 84 G1 images and
1874 from the G2 mammograms. The independent G1; and
G2; sets used for LDA training included 476 and 503 non-
overlapping ROIs, respectively. Stepwise feature selection
was then performed on the 572 multidistance texture features
using the combined Gl; and G2; image sets, as described
above, and 29 features were selected. These 29 features were
used in the LDA texture classification for training and testing
both the G1 and G2 image sets. Figures 6 and 7 show the
raw and fitted training FROC curves obtained using the LDA
texture classifier for the {Train:Gl;, Test:Gl} and
{Train:G2;, Test:G2} combinations. The raw and fitted
FROC curves for the test sets, {Train:G2;, Test:G1} and
{Train:G1,, Test:G2}, are likewise depicted in Figs. 8 and 9.
Finally, Table III contains the raw FROC results at TP de-
tection rates of 90% and 80%, and Table IV contains the
FROCFIT program parameters estimated for each of the fitted
FROC curves.

IV. DISCUSSION
A. DWCE segmentation

The purpose of the global processing stage was to define a
set of local regions which contained the true breast masses
and as few normal regions as possible. The initial DWCE
filtering and subsequent edge detection was able to detect
161 of the 168 true masses in this preliminary study, includ-
ing 83 of the 85 malignant masses. In addition, five of the
seven missed masses, including both malignant masses, were

TABLE IV. Summary of the FROCFIT parameters and goodness of fit values.
The headings for the table are; the two estimated FROCFIT parameters {a and
b), the standard deviation of the estimated parameters (o, and o), the area
under the alternative FROC curve (A szroc), the standard deviation of the
area (o), the normalized chi-squared value (x%), and the significance prob-
ability for the fit (Prob).

Training Test

,
set set a , b ay,

AarROC T X Prob

Gl; G1 019 011 050 0.05 057 004 139 0.04
G2; G2 028 0.11 047 005 061 0.04 092 0.6l

G2; Gt 0.1 0.1 058 005 054 004 096 0.55
Gl; G2 011 011 045 004 054 004 103 042
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FiG. 6. FROC curves obtained with the image group {Train G1;, Test G1}.
The data points are raw data obtained by varying the decision threshold on
the discriminant scores. The solid curve is obtained from the FROCFIT
program.

detected in another mammogram containing a different view
of the same breast. The image set did not include any addi-
tional views for the two remaining misses. This indicates that
the global stage is effective in the initial detection task. How-
ever, the morphological properties of the detected regions
proved to be of limited value in differentiating between TP
and FP objects in the low-resolution DWCE filtered images.
The main problem was that the global detection underesti-
mated the size of the actual structures. This can be clearly
seen in Fig. 3(g) where the detected objects are usually much
smaller than the actual structures in the image. The average
size, after FP reduction, of the global stage objects was 64.4
pixels. This underestimation can be mainly attributed to the
large intensity range over which the background suppression
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Fic. 7. FROC curves obtained with the image group {Train G2;, Test G2}.
The data points are raw data obtained by varying the decision threshold on
the discriminant scores. The solid curve is obtained from the FROCFIT
program.
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FiG. 8. FROC curves obtained with the image group {Train G2;, Test G1}.
The data points are raw data obtained by varying the decision threshold on
the discriminant scores. The solid curve is obtained from the FROCFIT
program.

was defined. This leads to inaccuracies in the object borders
affecting the morphological features and reducing the effec-
tiveness of the FP reduction. The morphological features and
sequential classification were still able to achieve a 29% re-
duction in the initial number of regions, but at the end of the
global stage an average of 34 detected regions per image
across the G1 and G2 sets still remained. In further analysis
of the detected regions, it was observed that fatty breasts had
relatively few detected structures while mammograms con-
taining dense tissue had a much larger number of regions.
The limitations of the global stage were partially over-
come by repeating the filtering and edge detection in the
local regions identified in the global stage. By allowing the
DWCE filter to adapt to the background within these much

TP Fraction
(=]
0

1 2 3 4 5 6 7 8 9 10
Number FPs/Image

FiG. 9. FROC curves obtained with the image group {Train G1;, Test G2}.
The data points are raw data obtained by varying the decision threshold on
the discriminant scores. The solid curve is obtained from the FROCFIT
program.
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smaller regions, better estimates for the true borders of the
mammographic structures were achieved without sacrificing
true mass detections. The local DWCE stage was able to
detect 160 of the 168 true masses in this preliminary study
where, again, 83 of the 85 malignant masses were detected.
The additional missed mass did not come from the DWCE
filtering and edge detection but was instead lost in the local
FP reduction. This mass was detected in a different mammo-
gram from our image set which contained a different view of
the same breast. It is evident by comparing Figs. 3(g) and
3(h) that the detected objects in the local stage match the true
borders better than the global stage objects. The average area
of the detected objects following the local FP reduction in-
creased to 253 pixels from the 64.4 pixels following the glo-
bal stage. The more accurate borders help improve the local
FP reduction which provided a 69% average reduction in the
initial number of local FP regions and a corresponding 50%
reduction in the number of FPs from the output of the global
stage. The number of detected regions following the local FP
reduction was still quite large, with an average of 16.9 re-
gions detected per image. This large number of regions can
be attributed to two factors. First, while improving the object
border estimates, the local processing still continued to un-
derestimate their true size [see Fig. 3(h)]. This limited the
effectiveness of the morphological FP reduction in distin-
guishing between the masses and many of the normal struc-
tures. In addition, the expanded object area was attributed
not only to the more precise edge characterization but also to
the merging of neighboring regions into single detected ob-
jects. The merged objects caused problems in the final tex-
ture analysis stage because the texture information for the
mass regions was often averaged with large amounts of nor-
mal tissue, thus increasing the likelihood that the true breast
masses would be missed. Object splitting partiaily solved the
problem of merged regions by estimating merge points ac-
cording to geometrical shape. However, some distortion of
the morphological features remained. Splitting also inadvert-
ently introduced additional FPs. In this study the number of
FPs increased from 16.9 FPs/image after local reduction to
20.3 FPs/image after the splitting reduction step. While the
results of this preliminary study indicate that the DWCE seg-
mentation is effective in detecting breast masses, further im-
provements in the scheme will be necessary to reduce the
total number of detected regions.

Closer evaluation of the images where a mass was not
detected highlighted a problem in the initial rescaling of
some images. As stated previously, the initial rescaling step
in the DWCE [refer to Fig. 1(a)]} is very important because it
allowed a single set of filters to be applied uniformly to all
the mammograms. The rescaling should have occurred only
within the breast region of the image. We have found that the
initial breast map included a strip of pixels belonging to a
bright edge outside the breast region of the mammogram in
two of the images with missed masses. The pixels in this
strip had a higher intensity than any of the other pixels in the
breast region of the mammogram, and their inclusion in the
rescaling caused many lower-intensity objects to be missed.
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When this strip was removed from the two images, the
masses were detected.

B. Morphological classification

Another important factor that affects the FP reduction is the
choice of morphological features. The eleven morphological
features used in this study were selected because individually
they showed some potential in differentiating between
shapes. However, they are probably not the optimal set of
morphological features for this task. The best subgroup of
the features was found to be the area, perimeter-to-area ratio,
and the contrast which provided the best BPN classifier per-
formance. No general conclusions from this preliminary
study can be made about the applicability of the individual
features because of the small size of the image set and the
suboptimal border information provided by the DWCE
detection.

The morphological classification is an important compo-
nent in the overall FP reduction. In this study, we selected
the sequential application of a thresholding, an LDA, and a
BPN classifier. The order of application was found to be
important. The investigation showed that the LDA and espe-
cially the BPN classifier were trained faster and performed
better when the initial number of FPs in the training set was
small, thus leading to the use of the sequential classification
scheme. We have not presented the exact values of the fixed
thresholds used in this study because of the small size of this
preliminary image set. With a larger, more representative
training set, the particular threshold values will need to be
adjusted. Therefore, we have instead concentrated on de-
scribing the general methodology for selecting the individual
thresholds, as outlined in Sec. II B.

C. Texture classification

The large number of regions detected in the DWCE segmen-
tation precipitated the need for additional FP reduction. This
additional reduction was achieved by classifying with multi-
resolution texture features extracted from the DWCE de-
tected regions. The LDA classification using SGLD features
was selected because it was found to be effective in differ-
entiating breast masses from normal tissue in regions identi-
fied by radiologists.!*** Again, we have not presented details
about the particular feature selected because of the small size
of the data set. However, a detailed discussion of the multi-
resolution texture features and the LDA texture classification
method can be found in the literature.!*?* The texture clas-
sification in this final step resulted in an average of 4.4 FPs/
image at a 90% TP rate and 2.3 FPs/image at an 80% TP rate
(Table III) in the test sets. These results indicate that the
overall system (i.e., DWCE segmentation plus LDA texture
classification) is capable of automatically detecting breast
masses on digitized mammograms. Table III also indicates
that the G1 and G2 image sets were reasonably well
matched. The G2 set provided slightly better performance at
a 90% TP fraction but the Gl set’s performance was better
for the 80% detection level.
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Figures 6-9 contain fitted FROC curves obtained using
the FROCFIT program developed by Chakraborty ef al.>
Table IV contains the estimated fit parameters and the good-
ness of fit characteristics obtained with the program. The
fitted curves match well visually with the raw FROC results
and the normalized x* goodness of fits only varied from 0.92
to 1.39 (optimal value is 1.0). This indicates that the FROCFIT
program may be able to fit our raw FROC results. However,
it is likely the signals detected by our method do not satisfy
the assumptions that the occurrence of an FP follows Poisson
statistics and that the FPs are independent. Further studies
are therefore needed to investigate if the good fit observed
occurs by chance and if the area under the alternative FROC
curve (A poproc) can be used as an indication of the overall
performance of the classification system.

D. Future studies

Our results indicate that DWCE segmentation can be used
to effectively detect breast structures on a mammogram. The
flexible form of the DWCE filter leaves open the possibility
that further optimization of the detection parameters may
improve overall performance. Evaluation of different DWCE
filters (e.g., modifying K,, and Ky;) will be pursued in fu-
ture studies.

One of the difficulties in the DWCE segmentation method
is the merging of regions and the subsequent need to split
objects. The splitting operation increases the number of false
regions and also adversely affects the morphological infor-
mation by introducing straight edges at the split locations. In
future studies, we will investigate alternative methods for
separating merged structures. Gray-level information will be
used in conjunction with binary shape information to guide
the splitting. The sequential change in shape obtained by
region growing at different local threshold levels will more
precisely define multiple regions within a single DWCE seg-
mented object. This approach should improve the morpho-
logical features of the split objects and increase the classifi-
cation accuracy of masses and normal tissue, thereby
reducing the FP detections. Furthermore, a fundamental im-
provement in the adaptivity of the DWCE segmentation will
be needed to reduce the number of objects extracted in the
initial stage. One possible improvement may be accom-
plished by first classifying the breast parenchyma into differ-
ent types (e.g., fatty, mixed, or dense). The DWCE filter
parameters can then be optimized specifically for each tissue
type. This would allow better background suppression and
more precise object extraction in different types of breast
parenchyma. It can be expected that the initial number of FP
objects detected in dense breasts will be reduced without
impacting the detection on fatty breasts.

Our detection scheme makes use of information on a
single mammogram. In mammographic interpretation, it has
been found that symmetry information on the left and right
mammograms of the same view often improves the detection
of subtle abnormal tissue density.>* The information can also
be used to eliminate FP detections when they appear on both
mammograms in symmetrical locations.! However, the
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symmetry information should be used with caution because
many patient mammograms are not highly symmetrical due
to variations in compression and imaging techniques, as well
as the natural asymmetry in tissue structures. We will inves-
tigate the effectiveness of the symmetry information from
paired mammograms in FP reductions in future studies.

V. CONCLUSION

We have developed an image enhancement technique
which can adaptively suppress the low-frequency structured
background and enhance the contrast of structures on an im-
age. The technique was applied to the segmentation step in a
CAD program for detection of breast masses. It was found to
be effective in enhancing masses and normal tissue structures
on mammograms. To further distinguish between masses and
normal tissue, the potential mass regions were classified with
an LDA using multiresolution texture features extracted from
wavelet coefficients at several scales. Results of FROC
analysis indicate that the current algorithm can achieve a TP
rate of 90% at 4.4 FPs/image and a TP rate of 80% at 2.3
FPs/image. The consistency in the performance of the algo-
rithm was verified by training and testing two independent
data sets. This study demonstrates the feasibility of our ap-
proach to computer-assisted detection of masses in mammo-
graphic interpretation. Further investigations are under way
to improve the detection accuracy and test its performance in
large data sets.
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