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Hurricane Isaac: A Longitudinal Analysis of Storm
Characteristics and Power OQutage Risk

Gina L. Tonn,'* Seth D. Guikema,” Celso M. Ferreira,’ and Steven M. Quiring*

In August 2012, Hurricane Isaac, a Category 1 hurricane at landfall, caused extensive power
outages in Louisiana. The storm brought high winds, storm surge, and flooding to Louisiana,
and power outages were widespread and prolonged. Hourly power outage data for the state
of Louisiana were collected during the storm and analyzed. This analysis included correlation
of hourly power outage figures by zip code with storm conditions including wind, rainfall, and
storm surge using a nonparametric ensemble data mining approach. Results were analyzed to
understand how correlation of power outages with storm conditions differed geographically
within the state. This analysis provided insight on how rainfall and storm surge, along with
wind, contribute to power outages in hurricanes. By conducting a longitudinal study of out-
ages at the zip code level, we were able to gain insight into the causal drivers of power outages
during hurricanes. Our analysis showed that the statistical importance of storm characteristic
covariates to power outages varies geographically. For Hurricane Isaac, wind speed, precipi-
tation, and previous outages generally had high importance, whereas storm surge had lower
importance, even in zip codes that experienced significant surge. The results of this analysis
can inform the development of power outage forecasting models, which often focus strictly
on wind-related covariates. Our study of Hurricane Isaac indicates that inclusion of other
covariates, particularly precipitation, may improve model accuracy and robustness across a

range of storm conditions and geography.
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1. INTRODUCTION

Hurricane Isaac hit Louisiana in August 2012
and caused substantial power outages. It was a Cat-
egory 1 hurricane at landfall and 47% of the state’s
electric customers lost power. The storm was large,
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slow-moving, and had significant storm surge asso-
ciated with it. In comparison with other hurricanes,
Isaac ranks fourth in customer power outages, be-
hind Hurricanes Katrina, Gustav, and Rita, for the
Entergy service area in Louisiana, Mississippi, Texas,
and Arkansas.() The track of the storm is illustrated
in Fig. 1?®

Power outages result in direct repair and restora-
tion costs for utility companies, and can also result in
loss of services from other types of critical infrastruc-
ture that rely on power service such as water, trans-
portation, and communications systems. This can de-
lay recovery times for a community that is impacted
by a hurricane.® Accurate predictions of power out-
ages prior to a storm can benefit both utility com-
panies and government agencies by making planning
and recovery more efficient.(*)
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Fig. 1. Hurricane Isaac track.

Power outage prediction is often accomplished
through the development of models based on wind
field estimates, along with other covariates such as
power system data, soil moisture levels, land use, and
topographical indicators.) A number of such statis-
tical models have been developed.®~) While these
models can be very accurate for some storms, they
are less accurate for others due to the differing char-
acteristics of the storms.

In addition to accuracy of models varying from
storm to storm, the causes of the outages can vary
geographically across a region, and the existing mod-
els typically do not include some potential causes of
power outages, particularly heavy rainfall. The main
goal of this article is to obtain a better understand-
ing of how storm characteristics correlate with power
outages and how this correlation varies geographi-
cally. The purpose of this study is both to improve
basic understanding of hurricane power outages and
to provide a stronger basis for improving outage fore-
casting models. Are the outage drivers the same for
a coastal area as an inland area? How important are
rainfall and surge relative to wind? Damage to power
systems is recorded by utilities, but good data on
causes of outages are not generally available, making
a longitudinal approach necessary. Statistical analy-
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sis of power outage data and covariate data is used
in this analysis to provide a better understanding of
how storm conditions correlate with power outages.
Power outages were studied longitudinally across the
state of Louisiana for Hurricane Isaac to identify how
the importance of covariates changes geographically.
The results of this analysis may inform power out-
age prediction models and help to build more re-
silient infrastructure through improved understand-
ing of power outage risk.

In Section 2, the data used for the analysis as well
as the statistical analysis methods are presented. Re-
sults and discussion are included in Section 3, and
conclusions in Section 4.

2. METHODS AND DATA

We focused on covariates related to three key
physical hazards associated with hurricanes—wind,
storm surge, and rainfall—in order to gain a better
understanding of the relative contribution of these
three storm characteristics. We analyzed all covari-
ates on an hourly basis, and so included covariates
that change over time as the storm progresses. We
obtained data for the covariates of interest from pub-
licly available sources or modeled them based on
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Table I. Summary of Covariates
Category Covariate Source Description
Precipitation Cumulative Precipitation National Climatic Data Total precipitation amount during
Center (NCDC) storm duration to hour of analysis
in centimeters
Hourly Precipitation Total NCDC Precipitation amount in hour of
analysis in centimeters
Wind Wind Speed Wind model Wind speed in meters/second for zip
code in hour of analysis
Wind Gust Duration Wind model Duration of wind gust >20 m/sec for
zip code in hour of analysis
Outages Previous Outages Entergy website Number of outages in previous hour
of analysis for zip code
Population Population U.S. Census Bureau Population estimate for zip code
Surge Average Surge ADCIRC+SWAN models Average storm surge depth for zip
code in hour of analysis in meters
Minimum Surge ADCIRC+SWAN models Minimum storm surge depth for zip
code in hour of analysis in meters
Maximum Surge ADCIRC+SWAN models Maximum storm surge depth for zip
code in hour of analysis in meters
Surge Variance ADCIRC+SWAN models Variance of storm surge depth for

zip code in hour of analysis in
meters

publicly available data. A summary of the covariates,
data sources, and a description of each covariate are
provided in Table I. While data were available in
varying time increments for each covariate, we per-
formed interpolation to obtain hourly estimates. We
chose the hourly change in outages as the response
variable, and hours that did not have a positive in-
crease in outages were removed from the analysis to
focus the analysis on only the outage occurrence por-
tion of the storm, not the outage restoration part of
the storm. A more detailed description of each cate-
gory of data and the data interpolation are provided
in Sections 2.1-2.5.

Initial analysis was done on a statewide basis,
with the remainder of the analysis done on a zip code
basis. After completing the data collection and inter-
polation, we generated a random forest model for the
entire data set including all zip codes. The most im-
portant covariates were identified through random-
forest-based importance measures for use in addi-
tional analysis as described further below. Using this
reduced set of covariates, we trained a random forest
model for each zip code separately so that impacts
could be analyzed spatially. We plotted the results in
map format for analysis of spatial trends. We used
a quantile regression forest model for selected zip
codes to gain insight into model accuracy. The mod-
eling and analysis methods are described in more de-
tail in Sections 2.6 and 2.7.

2.1. Outage Data

Power outage data were harvested from the En-
tergy Louisiana website during the duration of the
storm from August 27 to September 5, 2012.) The
data were collected on a half-hourly basis during
periods of peak outages, and were collected less fre-
quently during nonpeak outage periods. Data col-
lected included the number of current customer out-
ages by zip code. In order to standardize the data for
use in analysis, we performed linear interpolation to
estimate the number of outages for each zip code at
the top of each hour for the duration of the storm.
Some areas of Louisiana are not serviced by Entergy
and were not included in this analysis.

We chose the change in outages (termed delta
outages in this article) for each hour of analysis for
each zip code as the response variable for this anal-
ysis. Total power outages for the previous hour of
analysis (Previous Outages) for each zip code was in-
cluded as a covariate to account for the fact that the
number of customers already without power impacts
the number of power outages occurring in a given
hour.

2.2. Precipitation Data

Precipitation data were obtained from the Na-
tional Climatic Data Center (NCDC) website. Data
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were available for 36 rainfall stations in Louisiana.
The time intervals at which the precipitation data
were recorded varied by station, but were typically
hourly or half-hourly. The data obtained were the
hourly total rainfall.”) In order to standardize the
data for use in analysis, we interpolated the data
set to estimate the hourly precipitation (precipita-
tion that occurred in the previous 60-minute period)
at the top of the hour for each station. Because
our analysis was performed on a zip code basis, we
needed rainfall estimates for each zip code. Based
on the geographic coordinates of the zip code cen-
troids and on the locations of the stations, we gen-
erated hourly rainfall estimates for each zip code us-
ing inverse distance weighted interpolation based on
the spatially sparser set of rainfall stations that were
available.

2.3. Storm Surge Model

We used the coupled version of the 2-
Dimensional Depth Integrated version of the
Advanced Circulation (ADCIRC) model and the
wave model SWAN® to simulate hurricane storm
surge. The ADCIRC model® is a finite element,
shallow water model that solves for water levels and
currents at a range of scales and is widely used for
storm surge modeling!?) This version of the program
solves the Generalized Wave Continuity Equation
(GWCE) and the vertically integrated momentum
equations. SWAN is a third-generation spectral
wave model') that computes the time and spatial
variation of directional wave spectra. We used the
prevalidated numerical mesh SL15 presented in
Bunya et al.('® and validated by Dietrich et al.(*>
with resolution up to 30 m in some areas. The hurri-
cane surge model was forced by wind and pressure
fields developed by a parametric asymmetric wind
model'*) that computes wind stress, average wind
speed, and direction inside the Planetary Boundary
Layer (PBL) based on the National Hurricane
Center (NHC) best track data’® meteorological
conditions (e.g., central pressure, forward speed,
and radius to maximum wind). The simulations
for Hurricane Isaac included tides (tidal potential
components M2, S2, N2, K2, K1, O1, and Q1) and
neglected rivers inflows. Simulation results were
recorded at 15-minute intervals for every model
node in the study region. The water levels for each
model node within each zip code were extracted
from the entire model domain and inundation
levels were converted to the NAVDSS vertical

datum. Covariates based on the storm surge model
include average storm surge, maximum storm surge,
minimum storm surge, and storm surge variance.

2.4. Wind Model

The parametric wind field model of Willoughby
et al."% was used to generate wind estimates for the
duration of the hurricane at the zip code level for
Hurricane Isaac. Parametric hurricane models are
formulated from a physical understanding of hurri-
cane wind fields. That is, winds are calm in the eye of
the hurricane and they are typically at a maximum in
the eyewall. Outside the eyewall the wind decreases
with radius, although not always monotonically, and
becomes near zero at some distance from the cen-
ter of circulation. This wind field model was previ-
ously used in Han et al.®'7)) Two of the covariates are
based on output from this model. The first is maxi-
mum wind speed in meters per second in the previ-
ous hour. The second is wind gust duration greater
than 20 m/sec, with duration being taken cumula-
tively over the life of the storm for each zip code.
Both of these covariates are simulated for the cen-
troid of each zip code polygon based on running the
wind field model every 60 minutes over the duration
of the storm.

2.5. Other Data

Population estimates for each zip code were ob-
tained from the U.S. Census Bureau American Com-
munity Survey. These estimates were based on the
U.S. Census Bureau data for the year 2011. Because
the U.S. Census Bureau does not track population
on a zip code basis, the population data are estimates
based on census tract data.!®)

2.6. Random Forest and Quantile Regression
Forest Methods Overview

A random forest is a nonparametric ensemble
data mining method.") In the method, a large num-
ber of regression trees are developed, with each tree
based on a bootstrapped sample of the data set. Ran-
dom forest models are good for data sets with non-
linear data, outliers, and noise. Two types of output
from the random forest model fit very nicely with the
objectives of this analysis. The first is variable im-
portance, which is a measure of the contribution of
a given covariate to the model prediction accuracy.
The second is the partial dependence plot. These
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plots show the marginal effect of a covariate on the
response variable. The randomForest package in R
was used for this analysis.??)

Quantile regression forests provide a nonpara-
metric way of estimating conditional quantiles based
on an underlying random forest model. Quantiles
give more information about the distribution of the
response variable as a function of the covariates
than just using the conditional mean as a stan-
dard random forest model does. In this method,
regression trees are grown as in the random forest
method. Then the weighted distribution of the
observed response variables is used to estimate a
conditional distribution. The difference between
random forest models and quantile regression forest
models is that random forest models keep only the
mean predictions and disregard other information.
Quantile regression forests estimate the quantiles
of the predictions based on the trained forest.>!)
The quantregForest package in R was used for this
analysis.*”) Predictions made using this package
are based on out-of-bag data generated through the
standard random forest bootstrapping process.??)

2.7. Statistical Analysis

A statewide random forest model was run using
the data for all covariates and zip codes. Only posi-
tive delta outages were included, to limit the analysis
to the occurrence of power outages, not the restora-
tion of power. In order to better understand the pre-
dictive accuracy of the random forest model, a quan-
tile regression forest model was run on 10 selected
zip codes. The zip codes were chosen so that differ-
ent geographic areas in the state were represented.

Variable importance was reviewed to identify
the variables that were most significant for predictive
accuracy. Based on the variable importance, one co-
variate from each category of covariates (precipita-
tion, wind, storm surge, and outages) was retained
for individual zip code analysis in order to better
understand the influences of the different variables.
Partial dependence plots were generated for each of
these covariates, and were reviewed to understand
the marginal effects of these covariates on the re-
sponse variable.

In order to understand the relative importance
of the four covariates, and how that importance
varied geographically, plots of importance for each
of the covariates were generated. Because the
magnitude of variable importance was not the same
for each random forest run, comparing the variable
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importance between zip codes would not be useful.
Instead, we calculated a percent variable impor-
tance for each zip code. The variable importance
for the four covariates (wind speed, cumulative
precipitation, maximum storm surge, and previous
outages) was summed to calculate the total impor-
tance value for each zip code. Then the percent of
total importance accounted for by each covariate
was calculated. For each of the four covariates, we
plotted the percent variable importance by zip code.
We visually reviewed these plots to identify how
the percent importance for each covariate differed
geographically. The plots were also evaluated in
light of the plots of the covariate values, so that the
magnitude of the covariates was accounted for in
evaluating the percent importance trends.

3. RESULTS AND DISCUSSION

3.1. Quantile Regression Forest

We ran a quantile regression forest model on
10 selected zip codes in order to better understand
the predictive accuracy of the random forest model.
These zip codes were selected to cover the geograph-
ical range of the state and to include zip codes with
varying numbers of outages. Plots of the quantile
regression forest results for three zip codes are
shown in Fig. 2. These plots show the 90% prediction
confidence intervals and whether predictions using
out-of-bag data fall inside or outside of the predic-
tion intervals. As shown on the plots, the majority of
the predictions fall within the prediction intervals.

Table II shows the percent of predictions that
fall between the 10% and 90% quantiles for the
10 zip codes analyzed using the quantile regression
forest model. The percent coverage (percent of
predictions within the 80% confidence interval) was
calculated for three ranges of delta outages: low
(0-2), medium (2-75), and high (75 and above),
so that we could understand how the predictive
accuracy varied across a range of values. In some
cases, no prediction values fell within the low or high
range, and this is indicated with an N/A in Table II.
The model predictive accuracy is poor within the low
range, except for in one zip code. In the medium and
high range, the predictive accuracy is generally good,
with the exception of predictions for two zip codes in
each range. None of the zip codes have a high cover-
age of the 80% interval throughout the low, medium,
and high ranges. However, six of the zip codes have
high coverage (75% or greater) in two of the ranges.
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Table II. Percent of Predictions Within 80% Confidence Interval
Delta Outage Range

Zip Code Region Maximum Outages Low (0-2) Medium (2-75) High (75+)
70129 Southeast 3,364 0% 88% 57%
70454 Southeast 11,314 N/A 100% 96%
70546 Southwest 356 0% 100% N/A
70560 South 1,684 3% 39% 50%
70607 Southwest 415 N/A 75% 100%
70806 South 11,616 N/A 100% 100%
71055 Northwest 367 N/A 100% 83%
71070 West 437 88% 69% N/A
71220 North 2,896 3% 76% 100%
71351 East 3314 100% 20% 96%

For low values of delta outages (0-2), four of the
zip codes did not have values in this range. With the
exception of two zip codes, the coverage of the 80%
interval is very low; the model has little reliability at
the lowest level of delta outages. For middle of the
range values of delta outages (2-75), the model con-
fidence interval coverage is fairly high for eight of the
zip codes, ranging from 69% to 100%. However, the
other two zip codes had only 20% and 39% of pre-
dictions within the 80% confidence interval. At the
high end of the delta outages range (75+), the cov-
erage accuracy varies significantly. This makes sense
given the nature of power outages and the covariates
used in the model. Very low increases in power out-
ages are not likely well correlated to storm character-
istics, and are more likely caused by random events
occurring at individual houses. Very high increases
in power outages can sometimes be correlated with
high precipitation or wind, but could also occur due
to sudden problems in the power grid.

Given the low percentage of predictions within
the 80% confidence interval for several analyzed zip
codes, we decided to investigate whether changing
the data set from including all positive delta out-
ages to only delta outages greater than one would
increase predictive accuracy. Table III shows this
comparison. Increased percent predictions within
the 80% confidence interval occurred for nine of the
zip codes, while a slight decrease was observed in
zip code 71351. Based on this marked improvement,
we decided to include only delta outages greater
than one for the remainder of the analysis. This
created a more accurate model, without reducing
functionality, since prediction of very low delta
outages (<1) is unnecessary.

3.2. Variable Importance

The variable importance results for the random
forest model with all covariates included are shown
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Table III. Percent of Predictions Within 80% Confidence
Interval, Delta Outages Greater Than 0 Versus Greater Than 1

Percent Predictions Within 80%
Confidence Interval

Zip Code Delta Outages 0+ Delta Outages 1+
70129 59% 85%
70454 96% 96%
70546 65% 100%
70560 24% 74%
70607 82% 100%
70806 100% 100%
71055 96% 100%
71070 73% 91%
71220 75% 100%
71351 69% 67%

in Fig. 3. Variable importance is a measure of the
contribution of a given covariate to the model pre-
diction accuracy, and the magnitude of the impor-
tance is based on the data set. In Fig. 3, the variable
importance is presented as the increase in node pu-
rity resulting from splitting over each variable, aver-
aged over all trees. Cumulative precipitation, wind
speed, and previous outages are the most impor-
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tant variables, followed by population and hourly
precipitation. All of the surge variables, along with
wind gust duration, had considerably lower variable
importance. This differs from some previous work
where wind gust duration was shown to be an impor-
tant variable('”) and may be specific to this hurricane,
for which wind speeds were lower than in the hurri-
canes included in the Han et al.'") work.

Based on these results, four covariates were se-
lected as part of a reduced covariate set to be used
for the remainder of the analysis. These covariates
were: cumulative precipitation, wind speed, previous
outages, and maximum surge. Maximum surge depth
was selected over average surge depth in each zip
code because it had a clearer physical interpretation
than the average surge depth yet had nearly the same
importance score. Population was not included be-
cause the remainder of the analysis was done on an
individual zip code basis wherein population is con-
stant. The random forest model for the entire state
was rerun with this reduced set of covariates. The re-
sulting variable importance plot is included as Fig. 4.
In this model, the cumulative precipitation covariate
has the highest variable importance, followed closely
by previous outages and wind speed. Maximum surge

Cum. Precipitation
Wind Speed
Previous Outages
Population
Precipitation

Avg. Surge o

Max. Surge o

Surge Variance o
Wind Duration (o)

Min. Surge fe)

Fig. 3. Variable importance, all co-
variates included.

T T T
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Wind Speed |
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Fig. 4. Variable importance, reduced
covariate set.
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and the y-axis represents the marginal influence of the covariate on delta outages.

has a lower importance, as should be expected since
only a small portion of the state was impacted by
storm surge.

3.3. Partial Dependence

Partial dependence plots were generated for the
four covariates in the reduced set, and are provided
as Fig. 5. Partial dependence provides insight into
the marginal impact of the covariate on the response
variable, increase in outages.

The marginal influence of the cumulative pre-
cipitation covariate is highest for about 0-10 cm of
precipitation. This is primarily due to the timing of
the storm, with the highest values of delta outages
generally occurring in the earlier part of the storm.
Cumulative precipitation continued for days after
the initial power outages occurred, with limited num-
ber of power outages occurring later in the storm.
This resulted in a higher marginal influence for lower
values of cumulative precipitation. Additionally,
only a small percentage of zip codes experienced the
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Fig. 6. Covariate values for (a) cumulative precipitation (cm), (b) maximum wind speed (m/sec), (c) maximum surge (m), and (d) maximum
number of outages 1,000s. Zip codes not colored are not part of the utility’s service area (colors visible in on-line version).

highest cumulative precipitation totals (30+ cm).
The marginal influence of wind speed generally in-
creases with increasing wind speed, which is intuitive.
The influence of maximum surge is more variable,
which may be due to the fairly low number of zip
codes that experienced storm surge. The influence
is higher at lower values of surge, likely because few
zip codes experienced maximum surge values above
5 m. The marginal influence of the previous outages
covariate increases up to around 10,000 outages, and
then slightly decreases, since once a high number
of outages occurs in a zip code, additional outages

may be small in magnitude, as most customers have
already lost power.

3.4. Geospatial Analysis

In order to analyze spatial trends across the state,
we generated plots to get a sense of the magnitude of
precipitation, wind speed, storm surge, and outages,
and how the magnitude varied across the state. These
plots are presented as Fig. 6. Total precipitation
(cumulative precipitation) was highest in the south-
eastern part of the state, with more than 30 cm of
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Fig. 7. Percent importance plots for (a) cumulative precipitation, (b) wind speed, (c) maximum surge, and (d) previous outages.

precipitation recorded in some locations. Maximum
wind speed was also highest in the southeastern part
of the state, where the hurricane made landfall. Max-
imum storm surge was highest in zip codes bordering
the Gulf of Mexico, as well as in several zip codes
bordering the Mississippi River. The maximum num-
bers of power outages were observed in zip codes in
the southeast, around New Orleans, where the pop-
ulation is greatest and the storm impacts were more
pronounced.

Fig. 7 illustrates the relative importance of cu-
mulative precipitation, wind speed, maximum storm

surge, and previous outages for all zip codes ana-
lyzed in Louisiana. In the northern part of the state,
both cumulative precipitation and previous outages
had high relative importance. Moderate amounts of
precipitation occurred in this area, while wind speeds
and total number of outages in the northern zip codes
were lower than in other parts of the state. In the east
central part of the state (Baton Rouge area), mod-
erate to high precipitation, winds, and outages were
experienced. Wind speed generally had the highest
importance in this region, but precipitation and pre-
vious outages were also important. In the southeast
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(New Orleans area), high wind speeds, precipita-
tion, and outages occurred. Precipitation and previ-
ous outages had the highest importance in this re-
gion, and wind speed was also of importance. In the
southwest and south central portions of the state,
low to moderate precipitation and winds were expe-
rienced. High storm surge occurred in some coastal
zip codes. The overall number of outages was low
in most zip codes in this region, and the relative im-
portance of each covariate varied considerably by zip
code.

Cumulative precipitation was of moderate to
high importance in most zip codes throughout the
state, including those with relatively low precipi-
tation. Conversely, wind speed generally only had
high importance in areas that experienced high wind
speeds. With the exception of a few zip codes, the
percent importance for maximum storm surge was
less than 30%, even in coastal areas. The relative im-
portance of previous outages was moderate to high
in most zip codes, and the maximum number of out-
ages in a zip code does not seem directly related to
the importance of previous outages in that zip code.

These results indicate that the importance of
covariates varies geographically. This is due to the
storm’s track and characteristics, but also potentially
due to the interaction of other factors pertaining to
the topography and power system. Both wind speed
and cumulative precipitation were highest in the east
central and southeastern part of the state, due to
the storm’s track; however, wind speed generally had
greater importance in those areas than precipitation.
In the northern part of the state, where precipitation
was moderately high, but wind speeds were low, pre-
cipitation was of greater importance. The previous
outages covariate was generally more important in
areas that had a low to moderate maximum outages
value.

4. CONCLUSIONS

The purpose of this analysis was to provide
insight on how rainfall and storm surge, along with
wind, contribute to risk of power outages in hurri-
canes. By conducting a longitudinal study of outages
at the zip code level, we were able to gain insight
into the causal drivers of power outages during
hurricanes. Our analysis showed that the correlation
of storm characteristics with power outages and the
importance of the covariates can vary geographi-
cally. In Louisiana, during Hurricane Isaac, rainfall
and previous outages were the most important
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covariates in the north, while both rainfall and wind
were important in the southeast. Rainfall, wind, and
previous outages were all relatively important in the
southwest. With the exception of a few zip codes,
storm surge was generally not an important variable
in predicting power outages, reinforcing the findings
of Guikema et al.,*® which also found that hurricane
storm surge was not a particularly important variable
in predicting power outages from hurricanes. The
geographical variation of the correlation between
storm characteristics and power outages is likely due
to physical characteristics of the location and of the
storm. In areas where the highest wind speeds are
experienced, wind is likely to be the most important
covariate. Elsewhere, the importance of covariates
differs geographically.

While a random forest model proved to offer
good out-of-sample predictive accuracy for this data
set, a quantile regression forest provided additional
information about the uncertainty in and accuracy of
the estimates. We found that modeling only hours
with delta outages greater than one resulted in im-
proved predictive accuracy. The low-outage periods
proved to be difficult to model accurately, as one
would expect. Hours with small but positive increases
in outage counts at the zip code level are more likely
associated with random events than the types of
larger-scale system damage that cause higher magni-
tude outages.

Based on previously published modeling efforts
that focused on wind-related covariates to predict
power outages, one might expect that wind speed
would be the most significant covariate in our model,
particularly in areas that experienced high wind
speeds. Wind speed was of high importance in areas
with high wind speeds, but cumulative precipitation
was of moderate to high importance in more parts
of the state, and was also important in the areas that
experienced high winds. Storm surge was of limited
importance in most areas, including those that expe-
rienced storm surge. These results point to the con-
clusion that the use of only wind-related variables
in power outage forecasting models may result in a
less accurate model than one that includes additional
variables such as precipitation and perhaps surge in-
undation, especially in areas outside of the highest
wind areas. Storm characteristics and their impor-
tance vary from storm to storm, and while many out-
ages may be driven by wind, power outage modelers
should include other covariates, particularly precipi-
tation, to improve their model’s robustness to differ-
ing storm conditions.
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In addition to storm characteristics differing
from storm to storm, our findings indicate that cor-
relation of storm characteristics with power outages
can vary geographically. It is unclear if this variation
is due to characteristics of the storm, or other ge-
ographic considerations such as topography, power
system characteristics, vegetation, and soil types.*)
Completing this type of analysis over multiple storms
might clarify the reasons for this variation. Anal-
ysis of multiple hurricanes would also help assess
the robustness of this analysis, and would be use-
ful in informing the development of a power outage
model for a state or region. This type of longitudi-
nal analysis could result in a better understanding of
the drivers of power outages and in better predictive
models.
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