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Abstract In August 2012, Hurricane Isaac, a Category 1 hurricane at landfall, caused extensive power 

outages in Louisiana. The storm brought high winds, storm surge and flooding to Louisiana, and power 

outages were widespread and prolonged. Hourly power outage data for the state of Louisiana was 

collected during the storm and analyzed. This analysis included correlation of hourly power outage 

figures by zip code with storm conditions including wind, rainfall, and storm surge using a non-

parametric ensemble data mining approach. Results were analyzed to understand how correlation of 

power outages with storm conditions differed geographically within the state. This analysis provided 

insight on how rainfall and storm surge, along with wind, contribute to power outages in hurricanes. By 

conducting a longitudinal study of outages at the zip code level, we were able to gain insight into the 

causal drivers of power outages during hurricanes.  Our analysis showed that the statistical importance of 

storm characteristic covariates to power outages varies geographically.  For Hurricane Isaac, wind speed, 

precipitation, and previous outages generally had high importance, whereas storm surge had lower 

importance, even in zip codes that experienced significant surge.  The results of this analysis can inform 

the development of power outage forecasting models, which often focus strictly on wind-related 

covariates.  Our study of Hurricane Isaac indicates that inclusion of other covariates, particularly 

precipitation, may improve model accuracy and robustness across a range of storm conditions and 

geography. 
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1.  INTRODUCTION 

 

Hurricane Isaac hit Louisiana in August 2012 and caused substantial power outages.  It was a 

Category 1 hurricane at landfall and 47% of the state’s electric customers lost power.  The storm was 

large, slow-moving, and had significant storm surge associated with it.  In comparison with other 

hurricanes, Isaac ranks fourth in customer power outages, behind Hurricanes Katrina, Gustav, and Rita, 

for the Entergy service area in Louisiana, Mississippi, Texas and Arkansas.(1)  The track of the storm is 

illustrated in Figure 1.(2) 

Power outages result in direct repair and restoration costs for utility companies, and can also 

result in loss of services from other types of critical infrastructure that rely on power service such as 

water, transportation, and communications systems.  This can delay recovery times for a community that 

is impacted by a hurricane.(3)  Accurate predictions of power outages prior to a storm can benefit both 

utility companies and government agencies by making planning and recovery more efficient.(4) 

Power outage prediction is often accomplished through the development of models based on 

wind field estimates, along with other covariates such as power system data, soil moisture levels, land use 

and topographical indicators.(4)  A number of such statistical models have been developed.(3,4,5)  While 

these models can be very accurate for some storms, they are less accurate for others due to the differing 

characteristics of the storms.  

In addition to accuracy of models varying from storm to storm, the causes of the outages can vary 

geographically across a region, and the existing models typically do not include some potential causes of 

power outages, particularly heavy rainfall.  The main goal of this paper is to obtain a better understanding 

of how storm characteristics correlate with power outages and how this correlation varies 

geographically.   The purpose of this study is both to improve basic understanding of hurricane power 

outages and to provide a stronger basis for improving outage forecasting models.  Are the outage drivers 

the same for a coastal area as an inland area?  How important are rainfall and surge relative to wind?  

Damage to power systems is recorded by utilities, but good data on causes of outages are not generally 
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available, making a longitudinal approach necessary.  Statistical analysis of power outage data and 

covariate data is used in this analysis to provide a better understanding of how storm conditions 

correlate with power outages.  Power outages were studied longitudinally across the state of Louisiana 

for Hurricane Isaac to identify how the importance of covariates changes geographically.  The results of 

this analysis may inform power outage prediction models and help to build more resilient infrastructure 

through improved understanding of power outage risk. 

In Section 2, the data used for the analysis as well as the statistical analysis methods are 

presented.  Results and Discussion are included in Section 3, and Conclusions in Section 4. 

 

2.  METHODS AND DATA 

 

We focused on covariates related to three key physical hazards associated with hurricanes: wind, 

storm surge, and rainfall, in order to gain a better understanding of the relative contribution of these 

three storm characteristics. We analyzed all covariates on an hourly basis, and so included covariates that 

change over time as the storm progresses.  We obtained data for the covariates of interest from publically 

available sources or modeled them based on publically available data.  A summary of the covariates, data 

sources, and a description of each covariate are provided in Table I. While data were available in varying 

time increments for each covariate, we performed interpolation to obtain hourly estimates.  We chose the 

hourly change in outages as the response variable, and hours that did not have a positive increase in 

outages were removed from the analysis to focus the analysis on only the outage occurrence portion of 

the storm, not the outage restoration part of the storm. A more detailed description of each category of 

data and the data interpolation is provided in Sections 2.1 through 2.5.  

 

Table I Summary of Covariates 

 

Category Covariate Source Description 

Precipitatio Cumulative National Climatic Total precipitation amount during storm 
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n Precipitation Data Center (NCDC) duration to hour of analysis in centimeters 

Hourly 

Precipitation 

Total 

NCDC Precipitation amount in hour of analysis in 

centimeters 

Wind 

Wind Speed Wind model Wind speed in meters/second for zip code in 

hour of analysis 

Wind Gust 

Duration 

Wind model Duration of wind gust >20 meters/second for 

zip code in hour of analysis 

Outages Previous Outages Entergy website Number of outages in previous hour of 

analysis for zip code 

Population Population US Census Bureau Population estimate for zip code 

Surge 

Average Surge ADCIRC+SWAN 

models 

Average storm surge depth for zip code in 

hour of analysis in meters 

Minimum Surge ADCIRC+SWAN 

models 

Minimum storm surge depth for zip code in 

hour of analysis in meters 

Maximum Surge ADCIRC+SWAN 

models 

Maximum storm surge depth for zip code in 

hour of analysis in meters 

Surge Variance ADCIRC+SWAN 

models 

Variance of storm surge depth for zip code in 

hour of analysis in meters 

 

Initial analysis was done on a statewide basis, with the remainder of the analysis done on a zip 

code basis.  After completing the data collection and interpolation, we generated a Random Forest model 

for the entire data set including all zip codes.  The most important covariates were identified through 

Random Forest based importance measures for use in additional analysis as described further below.  

Using this reduced set of covariates, we trained a Random Forest model for each zip code separately so 

that impacts could be analyzed spatially.  We plotted the results in map format for analysis of spatial 

trends. We used a Quantile Regression Forest model for selected zip codes to gain insight into model 

accuracy.  The modeling and analysis methods are described in more detail in Sections 2.6 and 2.7. 

 

2.1. Outage Data 
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Power outage data were harvested from the Entergy Louisiana website during the duration of the 

storm from August 27 to September 5, 2012.
(6)

  The data were collected on a half-hourly basis during periods of 

peak outages, and were collected less frequently during non-peak outage periods.  Data collected included the 

number of current customer outages by zip code.  In order to standardize the data for use in analysis, we 

performed linear interpolation to estimate the number of outages for each zip code at the top of each hour for 

the duration of the storm.  Some areas of Louisiana are not serviced by Entergy and were not included in this 

analysis. 

We chose the change in outages (termed delta outages in this paper) for each hour of analysis for each 

zip code as the response variable for this analysis.  Total power outages for the previous hour of analysis 

(Previous Outages) for each zip code was included as a covariate to account for the fact that the number of 

customers already without power impacts the number of power outages occurring in a given hour. 

 

2.2.  Precipitation Data 

 

Precipitation data were obtained from the National Climatic Data Center (NCDC) website.  Data were 

available for 36 rainfall stations in Louisiana.  The time intervals at which the precipitation data were recorded 

varied by station, but were typically hourly or half-hourly.  The data obtained were the hourly total rainfall.
(7)

  

In order to standardize the data for use in analysis, we interpolated the data set to estimate the hourly 

precipitation (precipitation that occurred in the previous 60 minute period) at the top of the hour for each 

station.  Because our analysis was performed on a zip code basis, we needed rainfall estimates for each zip 

code. Based on the geographic coordinates of the zip code centroids and on the locations of the stations, we 

generated hourly rainfall estimates for each zip code using inverse distance weighted interpolation based on the 

spatially sparser set of rainfall stations that were available. 

 

2.3.  Storm Surge Model 
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We used the coupled version of the 2-Dimensional Depth Integrated version of the Advanced 

Circulation (ADCIRC) model and the wave model SWAN
(8)

 to simulate hurricane storm surge. The ADCIRC 

model
(9)

 is a finite element, shallow water model that solves for water levels and currents at a range of scales 

and is widely used for storm surge modeling (e.g., Ferreira et al.
(10)

). This version of the program solves the 

Generalized Wave Continuity Equation (GWCE) and the vertically integrated momentum equations. SWAN is a 

third generation spectral wave model
(11) 

that computes the time and spatial variation of directional wave 

spectra. We used the pre-validated numerical mesh SL15 presented in Bunya et al.
(12)

 and validated by Dietrich 

et al.
(13)

 with resolution up to 30 meters in some areas. The hurricane surge model was forced by wind and 

pressure fields developed by a parametric asymmetric wind model
(14)

 that computes wind stress, average wind 

speed and direction inside the Planetary Boundary Layer (PBL) based on the National Hurricane Center (NHC) 

best track data
(15)

 meteorological conditions (e.g., central pressure, forward speed and radius to maximum 

wind). The simulations for Hurricane Isaac included tides (Tidal potential components M2, S2, N2, K2, K1, O1 

and Q1) and neglected rivers inflows. Simulation results were recorded at 15-minute intervals for every model 

node in the study region. The water levels for each model node within each zip code were extracted from the 

entire model domain and inundation levels were converted to the NAVD88 vertical datum. Covariates based on 

the storm surge model include average storm surge, maximum storm surge, minimum storm surge, and storm 

surge variance. 

 

2.4.  Wind Model 

 

The parametric wind field model of Willoughby et al.(16) was used to generate wind estimates for 

the duration of the hurricane at the zip code level for Hurricane Isaac.  Parametric hurricane models are 

formulated from a physical understanding of hurricane wind fields. That is, winds are calm in the eye of 

the hurricane and they are typically at a maximum in the eyewall. Outside the eyewall the wind decreases 

with radius, although not always monotonically, and becomes near zero at some distance from the center 

of circulation. This wind field model was previously used in Han et al.(3, 17)  Two of the covariates are 

based on output from this model. The first is maximum wind speed in meters per second in the previous 

hour. The second is wind gust duration greater than 20 meters per second, with duration being taken 

cumulatively over the life of the storm for each zip code. Both of these covariates are simulated for the 
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centroid of each zip code polygon based on running the wind field model every 60 minutes over the 

duration of the storm.   

 

2.5.  Other Data 

 

Population estimates for each zip code were obtained from the US Census Bureau American 

Community Survey.  These estimates were based on the US Census Bureau data for the year 2011.  Because the 

US Census bureau does not track population on a zip code basis, the population data are estimates based on 

census tract data.
(18)

 

 

2.6.  Random Forest and Quantile Regression Forest Methods Overview 

 

A Random Forest is a non-parametric ensemble data mining method.
(19)

  In the method, a large number 

of regression trees are developed, with each tree based on a bootstrapped sample of the data set.  Random 

Forest models are good for data sets with non-linear data, outliers, and noise.  Two types of output from the 

Random Forest model fit very nicely with the objectives of this analysis.  The first is variable importance, which 

is a measure of the contribution of a given covariate to the model prediction accuracy.  The second is the partial 

dependence plot.  These plots show the marginal effect of a covariate on the response variable.  The 

randomForest package in R was used for this analysis.
(20)

 

Quantile Regression Forests provide a non-parametric way of estimating conditional quantiles based 

on an underlying Random Forest model.  Quantiles give more information about the distribution of the response 

variable as a function of the covariates than just using the conditional mean as a standard Random Forest 

model does.  In this method, regression trees are grown as in the Random Forest method.  Then the weighted 

distribution of the observed response variables is used to estimate a conditional distribution. The difference 

between Random Forest models and Quantile Regression Forest models is that Random Forest models keep 

only the mean predictions and disregard other information.  Quantile Regression Forests estimate the quantiles 

of the predictions based on the trained forest.
(21)

  The quantregForest package in R was used for this analysis.
(22)

 

Predictions made using this package are based on out-of-bag data generated through the standard random 

forest bootstrapping process.
(20)

 

 

2.7.  Statistical Analysis 
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A statewide Random Forest model was run using the data for all covariates and zip codes.  Only 

positive delta outages were included, to limit the analysis to the occurrence of power outages, not the 

restoration of power. In order to better understand the predictive accuracy of the Random Forest model, a 

Quantile Regression Forest model was run on ten selected zip codes.  The zip codes were chosen so that 

different geographic areas in the state were represented. 

Variable importance was reviewed to identify the variables that were most significant for predictive 

accuracy.  Based on the variable importance, one covariate from each category of covariates (precipitation, 

wind, storm surge, and outages) was retained for individual zip code analysis in order to better understand the 

influences of the different variables. Partial dependence plots were generated for each of these covariates, and 

were reviewed to understand the marginal effects of these covariates on the response variable. 

In order to understand the relative importance of the four covariates, and how that importance varied 

geographically, plots of importance for each of the covariates were generated.  Because the magnitude of 

variable importance was not the same for each Random Forest run, comparing the variable importance between 

zip codes would not be useful.  Instead, we calculated a percent variable importance for each zip code.  The 

variable importance for the four covariates (wind speed, cumulative precipitation, maximum storm surge, and 

previous outages) was summed to calculate the total importance value for each zip code.  Then the percent of 

total importance accounted for by each covariate was calculated.  For each of the four covariates, we plotted 

the percent variable importance by zip code.  We visually reviewed these plots to identify how the percent 

importance for each covariate differed geographically.  The plots were also evaluated in light of the plots of the 

covariate values, so that the magnitude of the covariates was accounted for in evaluating the percent 

importance trends. 

 

3.  RESULTS AND DISCUSSION 

 

3.1. Quantile Regression Forest 
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We ran a Quantile Regression Forest model on ten selected zip codes in order to better understand the 

predictive accuracy of the Random Forest model.  These zip codes were selected to cover the geographical 

range of the state and to include zip codes with varying numbers of outages.  Plots of the Quantile Regression 

Forest results for three zip codes are shown in Figure 2.  These plots show the 90% prediction confidence 

intervals and whether predictions using out-of-bag data fall inside or outside of the prediction intervals.  As 

shown on the plots, the majority of the predictions fall within the prediction intervals. 

Table II shows the percent of predictions that fall between the 10% and 90% quantiles for the ten 

zip codes analyzed using the Quantile Regression Forest model.  The percent coverage (percent of 

predictions within the 80% confidence interval) was calculated for three ranges of delta outages: low (0 

to 2), medium (2 to 75), and high (75 and above), so that we could understand how the predictive 

accuracy varied across a range of values.  In some cases, no prediction values fell within the low or high 

range, and this is indicated with an N/A in Table II.  The model predictive accuracy is poor within the low 

range, except for in one zip code.  In the medium and high range, the predictive accuracy is generally 

good, with the exception of predictions for two zip codes in each range.  None of the zip codes have a high 

coverage of the 80% interval throughout the low, medium, and high ranges.  However, six of the zip codes 

have high coverage (75% or greater) in two of the ranges. 

For low values of delta outages (0 to 2), four of the zip codes did not have values in this range.  

With the exception of two zip codes, the coverage of the 80% interval is very low; the model has little 

reliability at the lowest level of delta outages.  For middle of the range values of delta outages (2 to 75), 

the model confidence interval coverage is fairly high for eight of the zip codes, ranging from 69% to 

100%.  However, the other two zip codes had only 20% and 39% of predictions within the 80% 

confidence interval.  At the high end of the delta outages range (75+), the coverage accuracy varies 

significantly.  This makes sense given the nature of power outages and the covariates used in the model.  

Very low increases in power outages are not likely well correlated to storm characteristics, and are more 

likely caused by random events occurring at individual houses.  Very high increases in power outages can 

sometimes be correlated with high precipitation or wind, but could also occur due to sudden problems in 

the power grid. 
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Table II Percent of Predictions within 80% Confidence Interval 

 

   Delta Outage Range 

Zip Code Region Maximum 

Outages 

Low (0-2) Medium (2-

75) 

High (75+) 

70129 Southeast 3,364 0% 88% 57% 

70454 Southeast 11,314 N/A 100% 96% 

70546 Southwest 356 0% 100% N/A 

70560 South 1,684 3% 39% 50% 

70607 Southwest 415 N/A 75% 100% 

70806 South 11,616 N/A 100% 100% 

71055 Northwest 367 N/A 100% 83% 

71070 West 437 88% 69% N/A 

71220 North 2,896 3% 76% 100% 

71351 East 3,314 100% 20% 96% 

 

Given the low percentage of predictions within the 80% confidence interval for several analyzed 

zip codes, we decided to investigate whether changing the data set from including all positive delta 

outages to only delta outages greater than one would increase predictive accuracy.  Table III shows this 

comparison.  Increased percent predictions within the 80% confidence interval occurred for nine of the 

zip codes, while a slight decrease was observed in zip code 71351.  Based on this marked improvement, 

we decided to include only delta outages greater than one for the remainder of the analysis.  This created 

a more accurate model, without reducing functionality, since prediction of very low delta outages (<1) is 

unnecessary. 
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Table III Percent of predictions within 80% confidence interval,  

Delta Outages greater than 0 versus greater than 1 

 

 Percent Predictions within 80% Confidence 

Interval 

Zip Code Delta Outages 0+ Delta Outages 1+ 

70129 59% 85% 

70454 96% 96% 

70546 65% 100% 

70560 24% 74% 

70607 82% 100% 

70806 100% 100% 

71055 96% 100% 

71070 73% 91% 

71220 75% 100% 

71351 69% 67% 

 

 

3.2.  Variable Importance 

 

The variable importance results for the Random Forest model with all covariates included are 

shown in Figure 3.  Variable importance is a measure of the contribution of a given covariate to the model 

prediction accuracy, and the magnitude of the importance is based on the data set.  In Figure 3, the 

variable importance is presented as the increase in node purity resulting from splitting over each 

variable, averaged over all trees.  Cumulative precipitation, wind speed, and previous outages are the 

most important variables, followed by population and hourly precipitation.  All of the surge variables, 

along with wind gust duration, had considerably lower variable importance. This differs from some 

previous work where wind gust duration was shown to be an important variable (e.g., Han et al.) and may 
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be specific to this hurricane for which wind speeds were lower than in the hurricanes included in the Han 

et al.(17) work. 

Based on these results, four covariates were selected as part of a reduced covariate set to be used 

for the remainder of the analysis.  These covariates were: cumulative precipitation, wind speed, previous 

outages, and maximum surge.  Maximum surge depth was selected over average surge depth in each zip 

code because it had a clearer physical interpretation than the average surge depth yet had nearly the 

same importance score.  Population was not included because the remainder of the analysis was done on 

an individual zip code basis wherein population is constant.  The Random Forest model for the entire 

state was rerun with this reduced set of covariates.  The resulting variable importance plot is included as 

Figure 4.  In this model, the cumulative precipitation covariate has the highest variable importance, 

followed closely by previous outages and wind speed.  Maximum surge has a lower importance, as should 

be expected since only a small portion of the state was impacted by storm surge. 

 

3.3.  Partial Dependence 

 

Partial dependence plots were generated for the four covariates in the reduced set, and are provided as 

Figure 5.  Partial dependence provides insight into the marginal impact of the covariate on the response 

variable, increase in outages. 

The marginal influence of the cumulative precipitation covariate is highest for about 0 to 10 

centimeters (cm) of precipitation.  This is primarily due to the timing of the storm, with the highest values 

of delta outages generally occurring in the earlier part of the storm.  Cumulative precipitation continued 

for days after the initial power outages occurred, with limited number of power outages occurring later in 

the storm.  This resulted in a higher marginal influence for lower values of cumulative precipitation.  

Additionally, only a small percentage of zip codes experienced the highest cumulative precipitation totals 

(30+ cm).  The marginal influence of wind speed generally increases with increasing wind speed, which is 

intuitive.  The influence of maximum surge is more variable, which may be due to the fairly low number of 

zip codes that experience storm surge.  The influence is higher at lower values of surge, likely because few 

zip codes experienced maximum surge values above 5 meters.  The marginal influence of the previous 
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outages covariate increases up to around 10,000 outages, and then slightly decreases, since once a high 

number of outages occurs in a zip code, additional outages may be small in magnitude, as most customers 

have already lost power. 

 

3.4.  Geospatial Analysis 

 

In order to analyze spatial trends across the state, we generated plots to get a sense of the 

magnitude of precipitation, wind speed, storm surge, and outages, and how the magnitude varied across 

the state.  These plots are presented as Figure 6.  Total precipitation (cumulative precipitation) was 

highest in the southeastern part of the state, with more than 30 cm of precipitation recorded in some 

locations.  Maximum wind speed was also highest in the southeastern part of the state, where the 

hurricane made landfall.  Maximum storm surge was highest in zip codes bordering the Gulf of Mexico, as 

well as in several zip codes bordering the Mississippi River.  The maximum numbers of power outages 

were observed in zip codes in the southeast, around New Orleans, where the population is greatest and 

the storm impacts were more pronounced. 

Figure 7 illustrates the relative importance of cumulative precipitation, wind speed, maximum 

storm surge, and previous outages for all zip codes analyzed in Louisiana.  In the northern part of the 

state, both cumulative precipitation and previous outages had high relative importance. Moderate 

amounts of precipitation occurred in this area, while wind speeds and total number of outages in the 

northern zip codes were lower than in other parts of the state.  In the east central part of the state (Baton 

Rouge area), moderate to high precipitation, winds, and outages were experienced. Wind speed generally 

had the highest importance in this region, but precipitation and previous outages were also important.  In 

the southeast (New Orleans area), high wind speeds, precipitation, and outages occurred.  Precipitation 

and previous outages had the highest importance in this region, and wind speed was also of importance.  

In the southwest and south central portions of the state, low to moderate precipitation and winds were 

experienced.  High storm surge occurred in some coastal zip codes.  The overall number of outages was 
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low in most zip codes in this region, and the relative importance of each covariate varied considerably by 

zip code.  

Cumulative precipitation was of moderate to high importance in most zip codes throughout the 

state, including those with relatively low precipitation.  Conversely, wind speed generally only had high 

importance in areas that experienced high wind speeds.  With the exception of a few zip codes, the 

percent importance for maximum storm surge was less than 30%, even in coastal areas.  The relative 

importance of previous outages was moderate to high in most zip codes, and the maximum number of 

outages in a zip code does not seem directly related to the importance of previous outages in that zip 

code.  

These results indicate that the importance of covariates varies geographically.  This is due to the 

storm’s track and characteristics, but also potentially due to the interaction of other factors pertaining to 

the topography and power system.  Both wind speed and cumulative precipitation were highest in the 

east central and southeastern part of the state, due to the storm’s track; however, wind speed generally 

had greater importance in those areas than precipitation.  In the northern part of the state, where 

precipitation was moderately high, but wind speeds were low, precipitation was of greater importance.  

The previous outages covariate was generally more important in areas that had a low to moderate 

maximum outages value.   

 

4.  CONCLUSIONS 

 

The purpose of this analysis was to provide insight on how rainfall and storm surge, along with 

wind, contribute to risk of power outages in hurricanes. By conducting a longitudinal study of outages at 

the zip code level, we were able to gain insight into the causal drivers of power outages during hurricanes.  

Our analysis showed that the correlation of storm characteristics with power outages and the importance 

of the covariates can vary geographically.  In Louisiana, during Hurricane Isaac, rainfall and previous 

outages were the most important covariates in the north, while both rainfall and wind were important in 

the southeast.  Rainfall, wind, and previous outages were all relatively important in the southwest.  With 
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the exception of a few zip codes, storm surge was generally not an important variable in predicting power 

outages, reinforcing the findings of Guikema et al.(23) which also found that hurricane storm surge was not 

a particularly important variable in predicting power outages from hurricanes.  The geographical 

variation of the correlation between storm characteristics and power outages is likely due to physical 

characteristics of the location and of the storm.  In areas where the highest wind speeds are experienced, 

wind is likely to be the most important covariate.  Elsewhere, the importance of covariates differs 

geographically. 

While a Random Forest model proved to offer good out of sample predictive accuracy for this 

data set, a Quantile Regression Forest provided additional information about the uncertainty in and 

accuracy of the estimates. We found that modeling only hours with delta outages greater than one 

resulted in improved predictive accuracy. The low-outage periods proved to be difficult to model 

accurately, as one would expect. Hours with small but positive increases in outage counts at the zip code 

level are more likely associated with random events than the types of larger-scale system damage that 

cause higher magnitude outages. 

Based on previously published modeling efforts that focused on wind-related covariates to 

predict power outages, one might expect that wind speed would be the most significant covariate in our 

model, particularly in areas that experienced high wind speeds.  Wind speed was of high importance in 

areas with high wind speeds, but cumulative precipitation was of moderate to high importance in more 

parts of the state, and was also important in the areas that experienced high winds.  Storm surge was of 

limited importance in most areas, including those that experienced storm surge.  These results point to 

the conclusion that the use of only wind related variables in power outage forecasting models may result 

in a less accurate model than one that includes additional variables such as precipitation and perhaps 

surge inundation, especially in areas outside of the highest wind areas.  Storm characteristics and their 

importance vary from storm to storm, and while many outages may be driven by wind, power outage 

modelers should include other covariates, particularly precipitation, to improve their model’s robustness 

to differing storm conditions. 
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In addition to storm characteristics differing from storm to storm, our findings indicate that 

correlation of storm characteristics with power outages can vary geographically.  It is unclear if this 

variation is due to characteristics of the storm, or other geographic considerations such as topography, 

power system characteristics, vegetation, and soil types.(24)  Completing this type of analysis over multiple 

storms might clarify the reasons for this variation.  Analysis of multiple hurricanes would also help assess 

the robustness of this analysis, and would be useful in informing the development of a power outage 

model for a state or region. This type of longitudinal analysis could result in a better understanding of the 

drivers of power outages and in better predictive models. 
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Fig. 1 Hurricane Isaac Track 
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Fig. 2 Quantile Regression Forest plots for a) zip code 70129, b) zip code 71220, and c) zip code 70546 
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Fig. 3 Variable Importance, all covariates included 
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Fig. 4 Variable Importance, reduced covariate set 
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Fig. 5 Partial Dependence Plots: a) partial dependence on cumulative precipitation, b) partial dependence 

on wind speed, c) partial dependence on maximum surge, and d) partial dependence on number of 

previous outages.  The x-axis represents the value of the covariate and the y-axis represents the marginal 

influence of the covariate on delta outages. 
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Fig. 6 Covariate values for a) cumulative precipitation (cm), b) maximum wind speed (m/sec), c) 

maximum surge (m), and d) maximum number of outages (thousands). Zip codes not colored are not part 

of the utility’s service area.  
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Fig. 7 Percent Importance Plots for a) cumulative precipitation, b) wind speed, c) maximum surge, and d) 

previous outages 

 


