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ABSTRACT 35 

Purpose: We are developing a computer-aided detection system for bladder cancer on CT 

urography (CTU). In this study, we focused on developing a system for detecting masses fully or 

partially within the contrast-enhanced (C) region of the bladder. 

Methods: With IRB approval, a data set of 70 patients with biopsy-proven bladder lesions fully or 

partially immersed within the contrast-enhanced region (C region) of the bladder was collected for 40 

this study: 35 patients for the training set (39 malignant, 7 benign lesions), and 35 patients for the 

test set (49 malignant, 4 benign lesions). The bladder in the CTU images was automatically 

segmented using our Conjoint Level set Analysis and Segmentation System (CLASS), which we 

developed specifically to segment the bladder. A closed contour of the C region of the bladder was 

generated by maximum intensity projection using the property that the dependently layering 45 

contrast material in the bladder will be filled consistently to the same level along all CTU slices 

due to gravity.  Potential lesion candidates within the C region contour were found using our 

Straightened Periphery ANalysis (SPAN) method. SPAN transforms a bladder wall to a straightened 

thickness profile, marks suspicious pixels on the profile, and clusters them into regions of interest to 

identify potential lesion candidates. The candidate regions were automatically segmented using our 50 

Auto-Initialized Cascaded Level Set (AI-CALS) segmentation method. Twenty-three morphological 

features were automatically extracted from the segmented lesions. The training set was used to 

determine the best subset of these features using simplex optimization with the leave-one-out case 

method. A linear discriminant classifier was designed for the classification of bladder lesions and 

false positives. The detection performance was evaluated on the independent test set by FROC 55 

analysis. 

Results: At the prescreening step, our system achieved 84.4% sensitivity with an average of 4.3 

false positives per case (FPs/case) for the training set, and 84.9% sensitivity with 5.4 FPs/case for 
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the test set. After LDA classification with the selected features, the FP rate improved to 2.5 FPs/case 

for the training set, and 4.3 FPs/case for the test set without missing additional true lesions.  By 60 

varying the threshold for the LDA scores, at 2.5 FPs/case, the sensitivities were 84.4% and 81.1% 

for the training and test sets, respectively. At 1.7 FPs/case, the sensitivities decreased to 77.8% and 

75.5%, respectively. 

Conclusions: The results demonstrate the feasibility of our method for detection of bladder lesions 

fully or partially immersed in the contrast-enhanced region of CTU. 65 

 

Key Words: Computer-Aided Detection, CT Urography, Bladder, Malignancy. 

 

1. INTRODUCTION 

Bladder cancer is the fourth most common cancer diagnosed in men, with 1 in 26 men 70 

developing bladder cancer during their life. The American Cancer Society estimates that during 

2014, around 15,580 deaths (11,170 men, 4,410 women) will occur due to bladder cancer, and about 

74,690 new cases (56,390 in men, 18,300 in women) will be diagnosed in the United States
1
. Early 

detection and treatment of bladder cancer increases patient survivability. If the bladder cancers are 

detected and treated while the cancer is confined within the bladder’s inner lining and has not 75 

invaded the muscular bladder wall, the 5-year survival rate is 88%, but drops to 63% if the cancer is 

detected after it has invaded the bladder wall but is still confined to the bladder; however, only about 

half of the patients are diagnosed before the cancer has invaded the muscular bladder wall
1
. 

Multi-detector row CT urography (CTU) has become the imaging modality of choice for most 

urinary track abnormalities.  CTU, as a single exam, can be used to evaluate the kidneys, intrarenal 80 

collecting systems, and ureters and therefore may spare the patients from having to undergo other 

imaging studies, resulting in reduced health care costs 
2-6

. 
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Interpretation of a CTU study requires thorough image analysis, often requiring extensive time. 

On average, 300 slices are generated for each CTU scan at a slice interval of either 1.25 mm or 

0.625 mm (range: 200 to 600 slices). The radiologist interpreting the study must visually determine 85 

the presence of lesions within the urinary tracts on a display workstation, frequently adjusting the 

brightness, contrast, and zoom levels. The radiologist must pay close attention throughout the entire 

urinary tract as multiple lesions may be present. In addition, many different urinary anomalies may 

be found in a single CTU study. Not only do the radiologists have to identify these anomalies, they 

must also determine their likelihood of being an urothelial neoplasm. The challenges of analyzing a 90 

CTU study leads to a substantial variability among radiologists in detection of bladder cancer, with 

reported sensitivities ranging from 59% to 92%
7, 8

. The chance that the radiologist misses a subtle 

lesion may not be negligible due to the workload of analyzing CTU studies, thus any technique that 

may help radiologists identify urothelial neoplasms will be useful. Computer-aided detection (CAD), 

used as an adjunct, may reduce the chance of oversight by the radiologists. We are developing a 95 

CAD system that detects bladder cancer in CTU to be used for such purposes. 

Few investigators have worked on CAD for bladder cancer to-date. Duan et al
9
 used an 

adaptive window setting to segment bladder tumor surfaces for magnetic resonance (MR) 

cystography. They generated multiple windows that covered the inner wall of the bladder and from 

which features were extracted. Using quadratic discriminant analysis, they determined if a window 100 

contained a true positive or false positive in a data set of 10 patients. Jaume et al
10

 detected bladder 

tumors in abdominal CT images by estimating the bladder wall thickness using inner and outer 

bladder surface meshes generated using the Marching Cubes algorithm. They separated each of the 

26 bladders in their data set into 6 regions and created an atlas to distinguish between normal and 

diseased regions. Hadjiiski et al
11

 performed a pilot study in detecting lesions within the contrast-105 
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enhanced region of the bladder in 15 patients in CTU. They used a rule-based system based on shape 

measures and uniformity measures to identify lesion candidates. 

Automatic detection of bladder lesions in CTU is challenging. The imaged bladders, along 

with their lesions, can assume a variety of shapes and sizes. Bladders may also be partially or fully 

filled with intravenous (IV) contrast material that opacifies a portion of the bladder. The lesions in 110 

the bladder region that is filled with contrast material have much different contrast relative to the 

surroundings than those in the bladder region what is not filled with contrast material. This 

requires different strategies for the detection of lesions in the contrast enhanced (C) and non-

contrast (NC) regions of the bladder. 

In this study, we focused on developing a system for detection of bladder lesions fully or 115 

partially immersed in the C region of the bladder. We designed the system and evaluated its 

performance using free-response receiver operating characteristic (FROC) analysis using a data set 

of 70 cases.  Although the data set was still small, to our knowledge it was the largest data set 

compared to those used in other reported studies.  

 120 

2. MATERIALS AND METHODS 

The bladder within the CTU images was automatically segmented within a manually marked 

bounding box, then as part of the prescreening step, the C region was delineated from the segmented 

bladders. The bladder wall of the C region was transformed into a wall thickness profile that was 

analyzed to determine lesion candidates. These candidates were automatically segmented, and 125 

morphological features were extracted. The best subset of these features was determined and a linear 

discriminant classifier was designed with a training set for classification of the bladder lesions and 

false positives. The block diagram of the detection system is presented in Figure 1. The detection 

performance was evaluated in an independent test set by FROC analysis.  
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Figure 1. Block diagram of the detection system.  

 130 

2.1 Data set 

With approval of the Institutional Review Board, a data set of 70 patients undergoing CTU 

who subsequently underwent cystoscopy and biopsy was collected retrospectively from the 

Department of Radiology at the University of Michigan. The CTU scans were acquired with GE 

Healthcare LightSpeed MDCT scanners at a slice interval of 1.25 mm or 0.625 mm using 120 kVp 135 

and 160-560 mAs, and reconstructed with filtered back projection using the standard reconstruction 

kernel. The excretory phase images used were obtained 12 minutes after the initiation of the first 

bolus of a split-bolus intravenous contrast injection and two minutes after the initiation of the second 

bolus of 175 ml of nonionic contrast material at a concentration of 300 mg iodine per ml.  Since 

patients were not turned prior to image acquisition, dependently layering IV contrast material that 140 

had been excreted into the renal collecting systems partially or fully filled the bladder on the CTU 

images.  

All lesions were marked by experienced radiologists in the CTU volumes as reference 

standard. Two radiologists (26 years of experience, 16 years of experience) marked the lesion by 

placing an ROI over the lesion, indicating the starting and ending slice of the lesion, measuring the 145 

longest diameter of the lesion, and giving a subtlety rating. Consensus was obtained if the lesion 
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locations were different, and the final call was correlated with radiology and pathology reports and 

biopsy results. The size and subtlety of the lesions given by the single, more experienced radiologist 

were reported to illustrate the detection performance of the system for lesions of different degrees of 

difficulty as seen by an experienced radiologist. 150 

A total of 99 biopsy-proven bladder lesions were identified in the fully or partially contrast-

enhanced region of the bladder. The cases were split evenly into independent training and test sets. 

The training set contained 35 subjects having 38 malignant and 7 benign lesions with an average size 

of 20.1 mm (range: 4.2–61.7 mm), measured as the longest diameter on an axial slice (Fig. 2(a)). 

The test set contained 35 subjects having 49 malignant and 4 benign lesions with an average size of 155 

18.8 mm (range: 1.4–61.1 mm) (Fig. 2(a)). The average lesion subtlety ratings in both sets were 2.2 

(scale 1 to 5, 5 very subtle) (Fig. 2(b)). 

 

  

(a) (b) 

Figure 2. Histograms of lesion size (a) and lesion subtlety (b) for lesions in the training and test 

set. The average lesion size was 20.1 mm (range: 4.2–61.7 mm) for the training set, and 18.8 

mm (range: 1.4–61.1 mm) for the test set.  The average lesion subtlety ratings in both sets 

were 2.2 (scale 1 to 5, 5 very subtle). 
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For image processing purposes, all CT voxel values in terms of Hounsfield Units (HU) are 

linearly shifted into gray level, where gray level = HU + 1024 so that all image voxel values are 160 

positive. 

 

2.2 Bladder segmentation using CLASS 

A critical component of CAD system that detects bladder cancer is accurate bladder 

segmentation that isolates the bladder from the surrounding anatomical structures. An axial CTU 165 

scan of the bladder is shown in Figure 3. The bladder shown is partially filled with IV contrast 

material and a malignant lesion can be identified in the lower, contrast-enhanced portion of the 

bladder. The presence of the two distinct regions that have very different attenuation values: a 

region filled with IV contrast material and a region without contrast material, poses a challenge for 

segmentation algorithm that needs to go across the strong boundary.  170 

 

Figure 3. An axial slice of a CTU scan in which the bladder is partially filled with IV contrast 

material. A malignant lesion is present in the contrast-enhanced region of the bladder, indicated 

by the bold arrow. 

Bladder 
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 175 

We are developing a software package, referred to as the Conjoint Level set Analysis and 

Segmentation System (CLASS), for segmenting the bladder in CTU. We introduced CLASS 

previously
12, 13

. CLASS consists of four stages: (1) preprocessing and initial segmentation, (2) 3D 

level set segmentation, (3) 2D level set segmentation, and (4) local contour refinement. CLASS 

segments the non-contrast and the contrast-enhanced regions of the bladder by applying the level 180 

sets to each region separately, refining the contours, and then automatically conjoins them. The 

CLASS segmentation is initialized by two manually placed approximate bounding boxes (ROIs) for 

the contrast and non-contrast regions of the bladder. The boxes were generated by a single 

researcher who was trained by the radiologists and has been involved in the development of the 

system for 2 years. More details of the bladder segmentation methods can be found in the 185 

literature
12, 13

. An example of a bladder and its segmentation is shown in Figures 4(a) and 4(b), 

respectively. 
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Figure 4. Bladder lesion candidate prescreening and segmentation – example of true positive. (a) 

ROI of the CTU slice that includes the lesion. (b) Bladder segmentation of the slice 190 

encompassing the bladder wall. (c) Maximum Intensity Projection (MIP) of the bladder used to 

determine the boundary between the contrast-enhanced and non-contrast regions. (d) 

Segmentation of the contrast-enhanced region of the bladder (L contour). The horizontal line on 

top of the contour is the boundary between the NC and C regions of the bladder, B1. The arrow 

on the left side of the bladder indicates the starting point for the wall thickness profile. The arrow 195 

on the right points to a true lesion.
 
(e) Magnified C region image after adaptive thresholding. (f) 

Bladder wall profile. The pixels marked in green were removed during the false positive 

reduction of voxel candidate. The left section of the profile was removed using location-based 

rules as described in section 2.3.3. (g) Bladder wall profile used for candidate detection. The line 

is the threshold used to determine lesion candidates. The arrow points to a lesion candidate, 200 

which is mapped onto the bladder in (h). (i) Magnified image of the region around the lesion 

candidate. The windowing of the image was adjusted to better visualize the bladder wall. (j) 

Lesion candidate segmentation. The segmentation refines the initial region (in pink), resulting in 

a better representation of the lesion. 

 205 

2.3 Bladder wall profile generation and lesion candidate identification with SPAN 

 Bladder lesion candidates are identified by first isolating the contrast-enhanced region of the 

bladder, and then by using our newly developed method, referred to as Straightened Periphery 

ANalaysis (SPAN). SPAN consists of three stages: (1) wall thickness profile generation, (2) false 

positive reduction of voxel candidate, and (3) lesion candidate identification. 210 

 

2.3.1 Isolating the contrast-enhanced region of the bladder 

 The contrast-enhanced region of the bladder is separated from the non-contrast region 

using the property that the dependently layering IV contrast material in the bladder will be filled 

to the same level consistently along all CTU slices due to gravity. We use maximum intensity 215 

projection (MIP) along the slices of the bladder to estimate the upper boundary of the contrast 

enhanced region. The ROIs initializing the segmentation of the C and NC regions of the bladder 

are used to determine the range of the CTU slices for the MIP. As the bladder is located on top of 

the pelvic bones when the patient lies in a supine position, it is common that the bones intrude into 

the bladder’s ROI towards the bottom of the bladder. If the bright bones show up on the MIP image, 220 
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its interference makes it difficult to accurately determine the upper level of the contrast material. 

Therefore, only a portion of the slices included in the ROI is used. We experimentally determined 

that 30% of the slices towards the bottom of the bladder from the best slice (to avoid the pelvic 

bones) and 90% of the slices towards the top of the bladder from the best slice (to avoid other 

organs above the bladder) worked the best. The best slice is the slice that best represents the bladder 225 

region, e.g., where the bladder is seen the largest. It was selected manually when the ROIs were 

defined. An MIP image is shown in Figure 4(c). 

 From the MIP image, a gray level profile is generated as described below. The two ROI 

boxes marked for the NC and C region segmentations are combined to create a rectangular box such 

that the width of the box is the width of intersection of the NC and C boxes and the height is the 230 

union of the heights of the NC and C boxes. Then the box’s width is reduced by 50% while keeping 

the same center (Fig. 5(a)) to minimize the negative effects of the peripheries of the irregularly 

shaped bladders on the estimation of the transition point between the contrast and non-contrast 

regions. For every row of the box, the gray levels of the pixels belonging to the row are averaged 

and recorded into a profile (Fig. 5(b)). The profile is analyzed to find the first row R1 whose average 235 

gray level is greater than a gray level threshold Thp. By using the training data set the Thp was 

determined experimentally as 1330 which provided adequate separation of the NC and C regions for 

the training cases. A horizontal line B1 at row R1 that intersects with the bladder boundary is 

determined as the boundary between the NC and C regions of the bladder (Fig. 4(d)).  The portion of 

the C region of the bladder contour and the B1 boundary then form a new closed contour, referred to 240 

as the L contour, that encloses the C region (Fig. 4(d)). The image pixels that are within the L 

contour, i.e., the C region of the bladder, are analyzed in the subsequent steps. 
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2.3.2 Wall thickness profile generation with SPAN 

 Generating the bladder wall thickness profile using the previously obtained C region image 245 

and L contour involves two steps: (1) adaptive thresholding of the contrast material, and (2) 

transformation of the L contour to a straightened wall profile. 

 Adaptive thresholding. The contrast material within the C region is removed by adaptive 

thresholding. Using a constant threshold for the contrast material may result in missing lesions that 

have relatively high gray levels in some cases, and may also lead to portions of the contrast material 250 

not being eliminated that may become false positives in other cases. Using adaptive thresholding 

method resolves these potential issues. 

 For each slice within the C region, the mean and the standard deviation of the pixel gray 

levels are calculated. For pixels whose gray level was greater than 1800, their gray level was set to 

1800 for calculating the average. The average gray level, GLAvg, is stratified into four different 255 

groups which are used to determine the initial threshold, Thinit, using the following decision rules:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

(a) (b) 

Figure 5. Estimation of boundary (row R1) between the NC and C regions. (a) The box used to 

calculate the average bladder GL profile shown in (b). The arrow points to the row of which 

the y-coordinate was determined to be that of R1. (b) Profile of the average GL values for 

each row of the box in (a). The arrow indicates the average GL of the first row that has value 

above the 1330 threshold and therefore identified as R1. 
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𝑇ℎ𝑖𝑛𝑖𝑡 =

{
 
 

 
 
𝑇ℎ𝐼

𝐻      𝐺𝐿𝐴𝑣𝑔 ≥ 𝑇ℎ𝐼
𝐻

𝑇ℎ𝐼
𝑀𝐻      𝑇ℎ𝐼

𝑀𝐻 ≤ 𝐺𝐿𝐴𝑣𝑔 < 𝑇ℎ𝐼
𝐻

𝑇ℎ𝐼
𝑀𝐿      𝑇ℎ𝐼

𝑀𝐿 ≤ 𝐺𝐿𝐴𝑣𝑔 < 𝑇ℎ𝐼
𝑀𝐻

𝑇ℎ𝐼
𝐿      𝐺𝐿𝐴𝑣𝑔 < 𝑇ℎ𝐼

𝑀𝐿

 (1) 

where 𝑇ℎ𝐼
𝐻 , 𝑇ℎ𝐼

𝑀𝐻, 𝑇ℎ𝐼
𝑀𝐿, and 𝑇ℎ𝐼

𝐿 are the high, medium high, medium low, and low gray level 

thresholds, respectively. The thresholds were determined after analyzing the histogram of pixel gray 

levels within the C region using the training set. The histograms of pixel gray levels within the C 

region for both the training and test sets are shown in Figure 6. Assuming a Gaussian mixture 260 

distribution, multiple Gaussians were fit to the histogram for the training set (Fig. 6(a)), and the 

peaks of the Gaussians, (𝑇ℎ𝐼
𝑀𝐻, 𝑇ℎ𝐼

𝐿) along with intersections of the Gaussians that corresponded to 

a sharp drop in the histogram (𝑇ℎ𝐼
𝐻, 𝑇ℎ𝐼

𝑀𝐿) were used as the thresholds after adjusting for outlier 

cases (Table 1). The peak of the Gaussian whose gray level was above 1330 was not used as a 

threshold, as our analysis during the isolation of the C region showed that these pixels are generally 265 

part of the contrast material and not the bladder wall. For slices with high GLAvg, 𝑇ℎ𝑖𝑛𝑖𝑡  is set to be 

𝑇ℎ𝐼
𝐻 to ensure most of the contrast material is removed after thresholding. For slices with average 

contrast enhancement between 𝑇ℎ𝐼
𝐻 and 𝑇ℎ𝐼

𝑀𝐻, setting 𝑇ℎ𝑖𝑛𝑖𝑡 to be 𝑇ℎ𝐼
𝑀𝐻 will remove the majority 

of the contrast material in the slice (Table 1 and Fig. 6).  𝑇ℎ𝑖𝑛𝑖𝑡 is set to be 𝑇ℎ𝐼
𝑀𝐿 for slices with 

GLAvg within the range of 𝑇ℎ𝐼
𝑀𝐻 to 𝑇ℎ𝐼

𝑀𝐿 which are usually near the end of the bladder. The amount 270 

of contrast material in these slices is generally less than the amount in slices near the center of the 

bladder, resulting in lower intensity of the contrast region. The slices whose GLAvg is less than 𝑇ℎ𝐼
𝑀𝐿 

typically are those with C regions that were not well-enhanced by the contrast material. These slices 

require a smaller gray level threshold or the contrast material would not be removed, thus their 

𝑇ℎ𝑖𝑛𝑖𝑡  is set to be 𝑇ℎ𝐼
𝐿.   275 
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Table 1. Parameter values for adaptive thresholding in wall thickness profile generation 

𝑇ℎ𝐼
𝐻 𝑇ℎ𝐼

𝑀𝐻 𝑇ℎ𝐼
𝑀𝐿 𝑇ℎ𝐼

𝐿 ε λ τ 𝑇ℎ𝐺𝐿
𝐻  𝑇ℎ𝐺𝐿

𝐿  

1400 1300 1200 1150 15 -60 20 100 80 
 

 

 The gray level threshold for the contrast material, ThC, is then refined adaptively by both 

Thinit and the standard deviation of the pixel gray levels, GLStDev, within the C region as follows: 

 

𝑇ℎ𝐶 =

{
 

 𝑇ℎ𝑖𝑛𝑖𝑡 −
𝐺𝐿𝑆𝑡𝐷𝑒𝑣
𝜀

𝐺𝐿𝑆𝑡𝐷𝑒𝑣 ≥ 𝑇ℎ𝐺𝐿
𝐻

𝑇ℎ𝑖𝑛𝑖𝑡 − 𝜆 𝑇ℎ𝐺𝐿
𝐿 ≤ 𝐺𝐿𝑆𝑡𝐷𝑒𝑣 < 𝑇ℎ𝐺𝐿

𝐻

𝑇ℎ𝑖𝑛𝑖𝑡 + 𝜏 𝐺𝐿𝑆𝑡𝐷𝑒𝑣 < 𝑇ℎ𝐺𝐿
𝐿

 (2) 

where ε, λ, and τ are constants, and 𝑇ℎ𝐺𝐿
𝐻 , and 𝑇ℎ𝐺𝐿

𝐿  are the high and low thresholds for GLStDev, 280 

respectively. Using the training set, the constants were determined experimentally, while the 

thresholds were determined by analyzing the histogram of the GLStDev. The histogram of GLStDev for 

both the training and test set are shown in Figure 7. After fitting two Gaussians to the histogram of 

the training set 𝐺𝐿𝑆𝑡𝐷𝑒𝑣 (Fig. 7(a)), the peak of one of the Gaussians, 𝑇ℎ𝐺𝐿
𝐿 , and the intersection of 

 
 

 
 
 

(a) (b) 

Figure 6. Histogram of gray level values of pixels within the C region of the (a) training set and (b) 

test set. The multiple Gaussians that were fitted to the training set to determine threshold 

values are shown with dotted lines in (a). 
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the Gaussians corresponding to a sharp drop, 𝑇ℎ𝐺𝐿
𝐻 , on the histogram were used as the thresholds, 285 

leading to three different categories. For slices with GLStDev greater than 𝑇ℎ𝐺𝐿
𝐻 , the C region is 

usually very inhomogeneous and requires a lower threshold to ensure most of the contrast material 

is removed. For slices with GLStDev values in the range of 𝑇ℎ𝐺𝐿
𝐿  to ℎ𝐺𝐿

𝐻 , they generally also contain 

pixels with high gray levels so that the Thinit is also lowered to ensure that sufficient contrast 

material is removed for the subsequent stages. Slices with GLStDev values lower than 𝑇ℎ𝐺𝐿
𝐿   usually 290 

contain fairly homogenous C region. The dependent layering of the contrast material on these slices 

is not as prevalent as other slices with higher GLStDev, thus their gray level are lower. These cases 

need a higher threshold to ensure that lesions are not removed along with the contrast material. The 

values of the chosen constants and thresholds are shown in Table 1. 

 295 

 Once 𝑇ℎ𝐶  is determined, the contrast material is eliminated from within the C region by 

setting the gray level to 0 for all pixels whose gray level is greater than 𝑇ℎ𝐶. Examples of C region 

images after adaptive thresholding are shown in Figures 4(e), 8(b), and 9(b). Comparison of the C 

 
. 
 
 
 

 

 
 
 

(a) (b) 

Figure 7.  Histogram of standard deviation values of pixel gray level within the C region of a CTU 

slice, GLStDev for the (a) training set and (b) test set.  The multiple Gaussians that were fitted to 

the training set to determine threshold values are shown with dotted lines in (a). 
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region with and without the adaptive thresholding for cases in the three different GLStDev categories 

is shown in Figure 10. Notice that without the adaptive thresholding (Fig. 10(d-f)), much of the 300 

contrast material remains within the C region image, which would lead to incorrect wall thickness 

profiles and thus missing lesion candidates and false positive detections. With adaptive thresholding, 

well-defined bladder wall can be obtained (Fig. 10(g-i)). 

 Wall profile generation. Once the contrast material is removed from the slice, a straightened 

profile of wall thickness is generated by mapping all of the points along the L contour, Li, i=1, …, n, 305 

sequentially to the X-axis of a new coordinate system such that Li(xi ,yi) has the coordinate  (Xi,0). 

The origin of this new coordinate system is defined at the top left of the profile, with Y-values 

increasing in the downward direction. For a given pixel Li(xi ,yi), the path normal to the point 

towards the interior of the L contour is calculated using the normal angle 𝜃 defined as: 

 
𝜃 = 90˚ +

1

2
(tan−1 (

𝑦𝑖 − 𝑦𝑖−1
𝑥𝑖 − 𝑥𝑖−1

) + tan−1 (
𝑦𝑖+1 − 𝑦𝑖
𝑥𝑖+1 − 𝑥𝑖

)), (3) 

where (xi+1,yi+1) and (xi-1,yi-1), respectively, are the coordinates of the next Li+1  and previous Li-1  310 

neighboring points of Li,. The pixels along the normal path are sequentially mapped onto the profile 

at increasing Y-values such that the new coordinates of the pixels are given by (Xi,Yj)  j=1,…im, 

while Xi is fixed.  The path along the normal ends when four black pixels are encountered 

consecutively, indicating that the path reaches the lumen of the C-region where the pixel gray level 

has been set to 0. The number of pixels along the normal path at Li is denoted by im.  Figures 4(f), 315 

8(c), and 9(c) show examples of the transformation. Pixels that will be removed by the following 

false reduction step are also marked on the figures. 
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Figure 8. Bladder lesion candidate prescreening and segmentation at a slice near the end of the 

bladder – example of false positives. (a) Segmentation of the C region of the bladder (L contour). 320 

(b) C region image after adaptive thresholding. (c) Bladder wall profile. The pixels marked in 

green were removed during the false positive reduction of voxel candidate. (d) Bladder wall 

profile used for candidate detection. The line is the threshold used to determine lesion 

candidates. The arrows point to lesion candidates. (e) Lesion candidates projected onto the 

bladder. Arrows point to lesion candidates. (f,g) Magnified image of the region around the lesion 325 

candidate. (h,i) Lesion candidate segmentation. Two single pixel lesion candidates shown in (e) 

and (g) were discarded during the lesion candidate determining stage using the size criteria. The 

two remaining candidates were both false positive lesions and were removed by the LDA 

classifier. 

 330 

(c) 

(a) (d) 

(e) 

(f) (g) 

(h) (i) 

(b) 
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Figure 9. Bladder lesion candidate prescreening and segmentation for a lesion along B1 – example of 

true positive. (a) Segmentation of the C region of the bladder (L contour). (b) C region image 

after adaptive thresholding. (c) Bladder wall profile. The pixels marked in green were removed 

during the false positive reduction of voxel candidate. (d) Bladder wall profile used for candidate 335 

detection. The line is the threshold used to determine lesion candidates. The arrows point to 

lesion candidates. (e) Lesion candidates projected onto the bladder. Arrows point to lesion 

candidates. (f) Magnified image of the region around the lesion candidate. The windowing of the 

image was adjusted to better visualize the lesion. (g) Lesion candidate segmentation. The three 

candidate pixel regions at the bottom of the bladder were discarded during the lesion candidate 340 

determining stage using the size criteria. 

(b) 

(f) 

(g) 

(d) 

(e) 

(c) 

(a) 
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2.3.3 False positive reduction of voxel candidate with SPAN  

 False positive reduction is applied to the straightened bladder wall profile. One step for 

reducing false positives is to remove pixels with gray level values above 1100 on the profile in the 345 

section corresponding to B1 of the L contour. Columns on the profile in the section whose starting 

points, (Xi,0), has a gray level value above 1100 are also removed. Because the B1 section is the 

border separating the C region and the NC region of the bladder, the gray level of the region along 

B1 is often lower than other regions within the C region of the bladder. This may cause many false 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 10. C region images with and without adaptive thresholding for cases that fall within the 

different categories of 𝐺𝐿𝑆𝑡𝐷𝑒𝑣 . (a-c) Bladder slices with L contour with different standard 

deviations, 𝐺𝐿𝑆𝑡𝐷𝑒𝑣: (a) 𝐺𝐿𝑆𝑡𝐷𝑒𝑣 = 133, (b) 𝐺𝐿𝑆𝑡𝐷𝑒𝑣 = 89, (c) 𝐺𝐿𝑆𝑡𝐷𝑒𝑣 = 77. (d-f) C region after 

hard thresholding slices in (a-c) using ThC of 1330 without adaptive thresholding.  (g-i) C region 

after adaptive thresholding with rules in Eq (3) for slices in (a-c). (g) ThC = 1191, (𝐺𝐿𝑆𝑡𝐷𝑒𝑣 ≥
𝑇ℎ𝐺𝐿

𝐻 ), (h) ThC = 1140, (𝑇ℎ𝐺𝐿
𝐿 ≤ 𝐺𝐿𝑆𝑡𝐷𝑒𝑣 < 𝑇ℎ𝐺𝐿

𝐻 ),  (i) ThC = 1220, (𝐺𝐿𝑆𝑡𝐷𝑒𝑣 < 𝑇ℎ𝐺𝐿
𝐿 ). 
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positive findings, as the darker regions transformed onto the profile may be marked as lesion 350 

candidates. After studying lesions in the training set that are located near B1, we found that the 

pixels of lesions within the B1 region typically have gray level values less than 1100. By applying 

this criterion, we can reduce false positive findings that may be caused by the lower pixel gray levels 

of the profile along the B1 boundary neighboring the non-contrast region. 

 Sharp peaks along the bladder wall profile that are likely caused by noise are also removed. 355 

Since noise is random and forms small peaks, we set a criterion to exclude peaks less than three 

pixels in width and greater than five pixels in height relative to its surroundings. Examples of SPAN 

for a true lesion, false positive lesions, and a lesion located along B1 are shown in Figures 4(f), 8(c) 

and 9(c), respectively. 

 360 

2.3.4 Lesion candidate identification with SPAN 

Lesion candidates are found by analyzing the bladder wall profile. For a given bladder 

profile, the average height of the profile (μ) is calculated, excluding the pixels from the B1 section 

(the border between the NC and C regions) and locations whose height is greater than 10 pixels. The 

standard deviation (σ) of the pixels used is also calculated, and a height threshold (H), in pixels, is 365 

set using the following equation, which was determined experimentally to maximize the number of 

true positives found while keeping the false positive findings low: 

 𝐻 = 𝑓𝑙𝑜𝑜𝑟 (𝜇 −
𝜎

2
+ 0.8) + 2 (4) 

where the floor function represents the rounding down operation. On the profile, pixels with heights 

larger than H are considered to be lesion candidate pixels (Fig. 4(g), Fig. 8(d), Fig. 9(d)). After the 

lesion candidate pixels are identified, they are mapped back to the original bladder slices as lesion 370 

candidate voxels (Fig. 4(h, i), Fig. 8(e-g), Fig. 9(e-f)).  
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 The lesion candidate voxels are then grouped into regions. Candidate voxels that are one 

slice apart, and within five voxels apart in 3D space are clustered into the same region. A candidate 

voxel is ignored if there are no other candidate voxels that are within five voxels on the same slice. 

Regions that contain less than five candidate voxels or greater than 50,000 candidate voxels are 375 

ignored. This size range was determined by analyzing the training cases. Each of the regions 

retained is enclosed with a 3D bounding box to indicate an ROI for a lesion candidate. 

 

2.4 Lesion candidate segmentation, feature extraction, and classification 

2.4.1 Lesion segmentation with Auto-Initialized Cascaded Level Set (AI-CALS) 380 

 Using the ROI obtained for a lesion candidate, the lesion is segmented from the surrounding 

tissue using the AI-CALS segmentation system
14

. The AI-CALS system consists of three stages: 

preprocessing, initial segmentation, and level set segmentation. While this process seems similar to 

the CLASS system used for bladder segmentation, AI-CALS uses a different method for initial 

segmentation, and different sets of parameters, which were specifically developed for segmentation 385 

of bladder lesions. In the first stage, preprocessing techniques are applied in 3D to the ROI obtained 

from the candidate prescreening process above. Smoothing, anisotropic diffusion, gradient filters 

and the rank transform of the gradient magnitude are applied to the slices within the ROI to obtain a 

set of smoothed images, a set of gradient magnitude images, and a set of gradient vector images. The 

set of smoothed images is used in the second stage, while the other two sets are used during level set 390 

propagation in the third stage. 

We modified the AI-CALS method in the second stage to improve the lesion segmentation 

performance for this study. In the second stage, the system automatically labels a subset of voxels in 

the ROI for analysis based on the attenuation, gradient, and location of the voxels. First, voxels with 

gray level value below 600 are removed. The voxels with gradient values in the top 50 percentile of 395 
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all voxels in the ROI are identified using the gradient magnitude image and removed from the ROI. 

In order to distinguish between the contrast material and the lesion candidate that may be present 

within the ROI, a step that uses Otsu’s method is added, which is not part of the original AI-CALS. 

The region with voxel gray level values between 1024 and the threshold gray level determined by 

the Otsu’s method is marked by a binary mask. An elliptical cylinder whose radius is 0.8 of the 400 

width and height of the ROI, centered at the centroid of the binary mask, is placed within the binary 

mask. The intersection of the binary mask and the elliptical cylinder is labeled as the object region. 

In the original AI-CALS, an ellipsoid centered at the ROI is to determine the object region; however, 

we found that using an ellipsoid causes the lesions to be under-segmented towards the first and last 

slices of the ROI, while using an elliptical cylinder, as described above, alleviate this problem. A 405 

morphological dilation filter with a spherical structuring element of 2 voxels in radius, 3D flood fill 

algorithm, and a morphological erosion filter with a spherical structuring element of 2 voxels in 

radius are applied to the object region to connect neighboring components and extract an initial 

segmentation surface.  

In the third stage, the initial segmentation surface is propagated towards the lesion boundary 410 

using cascading level sets. Our chosen level set implementation evolves according to the equation: 

 𝜕

𝜕𝑡
𝛹(𝑥) = −𝛼𝐴(𝑥) ∙ 𝛻𝛹(𝑥) − 𝛽𝑃(𝑥)|𝛻𝛹(𝑥)| + 𝛾𝜅(𝑥)|𝛻𝛹(𝑥)| (5) 

where  ,  , and   are the coefficients for the advection, propagation, and curvature terms, 

respectively, A(x) is a vector field image (assigning a vector to each voxel in the image) which 

drives the contour to move towards regions of high gradient, P(x) is a scalar speed term between 0 

and 1 causing the contour to expand at the local rate, and 𝜅(𝑥) = 𝑑𝑖𝑣 (
𝛻𝛹(𝑥)

|𝛻𝛹(𝑥)|
) is the mean curvature 415 

of the level set at point x. The symbol 𝛻 denotes the gradient operator and div is the divergence 

operator
15

.  
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Three 3D level sets with predefined sets of parameters are applied in series to the initial 

segmentation surface. The corresponding parameters of the 3 level sets are presented in Table 2. 

Table 2. Parameters for the AI-CALS level sets 

Level set: α β γ n 

First 1 2 1 10 

Second 1 0.4 q 100 

Third 0 1.0 0 20 

2D slices 4.0 0.3 0.5 100 
 

 420 

The first 3D level set slightly expands and smoothes the initial contour. The second 3D level 

set brings the contour towards the sharp edges, but also expands it slightly in regions of low gradient. 

The parameter “q” in Table 1 is defined to be a linear function 𝜎𝑀 + 𝜙 of the 2D diagonal distance 

M of the ROI box in millimeters (mm), where 11.0  ,06.0    as shown previously
15

. The third 

3D level set further draws the contour towards sharp edges. As a final step, a 2D level set is applied 425 

to every slice of the segmented object to refine the 3D contours using the 3D level set contours as 

the initial contour. Further details on the AI-CALS method can be found in the literature
14

. 

Examples of true and false segmented bladder lesion candidates are shown in Figures 4(j), 8(h, i), 

and 9(g). 

 430 

2.4.2 Feature extraction and classification  

For each segmented lesion candidate, 23 morphological features are automatically extracted 

from the central slice of the segmented lesion. Five of the morphological features are based on the 

normalized radial length, which is defined as the Euclidean distance from the object’s centroid to 

each of its edge pixels, i.e., the radial length, normalized relative to the maximum radial length of 435 

the object
16

. Table 3 lists the features that were used. The definitions of these features can be found 
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in the literature
17

. These features are studied because we found that these features are useful for 

lesion classification from our previous experience with breast masses. 

Table 3. Table of morphological features used 

NRL Shape-based Gray level-based 

NRL Mean Perimeter 10 Contrast Features 

NRL Standard Deviation Area Gray Level Average 

NRL Entropy Circularity Gray Level Standard 

Deviation 

NRL Area Ratio Rectangularity  

NRL Zero Crossing Count Perimeter-to-area Ratio  

 

Fourier Descriptor  

 

 

Using the training set, stepwise feature selection is used to select the best feature subset. 440 

Using simplex optimization with leave-one-out case method, the best combination of values for the 

feature selection parameters, Fin, Fout, and tolerance, is determined from the training set. Features for 

classification are then selected from the entire training set with the best thresholds. The six features 

selected were normalized radial length area, rectangularity, area, average gray level, and two 

contrast features. More details about these features and the feature selection can be found in the 445 

literature
18

. A linear discriminant (LDA) classifier was then designed with the training set for 

classification of the bladder lesions and false positives using the selected features as input predictor 

variables. The trained LDA classifier was applied to the test set for independent testing.  

 

2.5 Evaluation Methods 450 

 The performance of the lesion candidate prescreening steps was evaluated by determining 

the sensitivity and specificity. The overall performance of the bladder lesion detection CAD system 
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with feature extraction and FP reduction by the LDA classifier was evaluated using free-response 

receiver operator characteristics (FROC) analysis using our in-house developed package that 

calculated the sensitivity and specificity at specific operating points. The FROC curve was 455 

generated by varying the decision threshold for the LDA discriminant scores. 

 

3. RESULTS 

At the prescreening step, our system achieved 84.4% (38/45) sensitivity with an average of 

4.3 false positives per case (FPs/case) for the training set, and 84.9% (45/53) sensitivity with 5.4 460 

FPs/case for the test set. The prescreening step generated 215 lesion candidates for the training set, 

(66 true lesion candidates, 149 false positive lesion candidates), which were used to train the LDA 

classifier. 

Tables 4 and 5 summarize the detected lesions during prescreening by size and subtlety, 

respectively. For both the training and test sets, most of the lesions that were missed had subtlety 465 

ratings of greater than 3 and were smaller than 10 mm; however, the detection system was able to 

find the majority of the lesions that fit into these categories. For lesions smaller than 10 mm, 66.7% 

(10/15) and 71.4% (15/21) were found by the system in the training and test sets, respectively (Table 

4). For lesions with subtlety ratings greater than 3, 60.0% (9/15) of them were detected in the 

training set, while 78.9% (15/19) of them were detected in the test set (Table 5). The system detected 470 

86.8% (33/38) and 85.7% (42/49) of the malignant lesions in the training and test sets. 

Table 4.  Detected lesions at the prescreening stage for  lesions of different sizes  

 
Lesion Size (mm) 

0-10 10-20 20-30 30-40 40-50 50-60 60-70 

Training 

set 

66.7% 

(10/15) 

100% 

(14/14) 

50.0% 

(2/4) 

100% 

(6/6) 

100% 

(3/3) 

100% 

(1/1) 

100% 

(2/2) 

Test 

set 

71.4% 

(15/21) 

100% 

(11/11) 

85.7% 

(7/8) 

85.7% 

(6/7) 

100% 

(3/3) 

100% 

 (2/2) 

100% 

(1/1) 
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Table 5. Detected lesions at the prescreening stage for lesions of different subtleties 

 
Lesion Subtlety (1-5, 5 very subtle) 

1 2 3 4 5 

Training set 
100% 

(18/18) 

84.6% 

(11/13) 

100% 

(5/5) 

50.0% 

(4/8) 

0% 

(0/1) 

Test set  
90.0% 

(18/20) 

85.7% 

(12/14) 

90.0% 

(9/10) 

83.3% 

(5/6) 

33.3% 

(1/3) 
 

 

Using feature extraction and LDA classifier, the false positive (FP) rate improved to 2.5 

FPs/case for the training set and 4.3 FPs/case for the test set without missing additional true lesions. 475 

By varying the threshold for the LDA scores, the FROC curve was generated as shown in Figure 11. 

At 2.5 FPs/case, the training set achieved a sensitivity of 84.4%, while the test set achieved 81.1%. 

At 1.7 FPs/case, the sensitivities were 77.8% and 75.5% for the training and test sets, respectively. 

Table 6 shows the sensitivities of the system at different false positive rates for the training and test 

sets. 480 
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Figure 11. FROC curves for automatic computer detection after feature classification with LDA. 

After prescreening, the system achieved 84.4% sensitivity with 4.3 FPs/case for the training 



  28 

 

set, and 84.9% sensitivity with 5.4 FPs/case for the test set.  After LDA classification, at 1.7 

FPs/case the sensitivities were 77.8% and 75.5% for the training and test sets, respectively. 485 

 

 

Examples of true positive lesions detected are shown in Figure 12. Figure 13 shows 

examples of false positive detections, while Figure 14 shows lesions that were missed. 

  490 

Table 6. Sensitivity at a given FP rate after using LDA classifier 

 
False positive rate (FPs/case) 

0.5 1.0 1.5 2.0 2.5 3.0 

Training 

set 
48.9% 64.4% 70.0% 77.8% 84.4% 84.4% 

Test 

set 
36.6% 54.7% 70.6% 80.0% 81.1% 83.0% 
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(a) (b) (c) 

Figure 12. Examples of detected bladder lesion. Lesions of varying sizes and shapes were 

correctly identified by the CAD system. (a) Small lesion located at the bottom of the bladder. 

(b) Large lesion partially obstructing the ureterovesical junction. (c) Lesion covering large 

amount of the bladder wall. All three lesions were malignant. 

 

  
(a) (b) 

Figure 13. Examples of false positives. (a) Prostate protruding onto the bladder was detected as a 

lesion candidate. (b) Ureterovesical junction detected as a lesion candidate. Neither was 

removed by the LDA classifier. 

 

  
(a) (b) 

Figure 14. Examples of lesions missed by prescreening. The inhomogeneous contrast material in 

both (a) and (b) prevented the prescreening steps from identifying these lesion candidates. 

Both were malignant lesions. 



  30 

 

4. DISCUSSION 

 In this study, we developed a system that can automatically detect bladder lesions of a wide 

range of sizes and subtleties within the contrast-enhanced region of the bladders in CTU that only 495 

requires two ROI boxes as inputs. At the pre-processing stage, the system detected over 80% of the 

lesions in both the training and test sets, while having about 5 false positives per case.  

Our system was able to detect lesions of various shapes and sizes at different locations within 

the contrast-enhanced region of the bladder. Small lesions protruding out from the bladder wall, 

large lesions that occupy a large portion of the contrast-enhanced region, and bladder masses that 500 

look like an extension of the bladder wall were all detected by the system (Fig. 12). 

During the prescreening stage, a relative large number of false positive lesions appeared 

close to the ends of the bladder. This may be caused by the fact that the CT slices at these locations 

are close to or even intersect the bladder wall in some regions; the partial volume effects may 

contribute to the inhomogeneous and low contrast appearance of the bladder region (Fig. 7(e)). 505 

However, the LDA classifier was able to correctly remove the two false positives shown in that 

example. A common false positive finding that the LDA classifier has difficulty to differentiate from 

true lesions is the prostate in male patients. For some cases, the prostate protruding into the bladder 

has a similar appearance as a lesion (Fig. 13(a)). The bladder segmentation may also leak into the 

prostate due to the interface between the bladder and the prostate being difficult to distinguish. The 510 

detection system, therefore, identifies the portions of the prostate that are segmented as lesion 

candidates. Another common cause of false positive findings not removed by the LDA classifier is 

the ureterovesical junction (UVJ). When the location near the UVJ is imaged, the ureter wall at the 

junction between the ureter and the bladder may appear as a protrusion from the bladder wall, 

similar to a lesion (Fig. 12(b)), which the system detects as a lesion candidate. A common cause for 515 
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false negatives is the non-uniformity of the contrast material that camouflages the lesions as a part of 

the bladder wall (Fig. 14). 

Our system detected the majority of both the malignant and the benign lesions. For both the 

training and the test sets, more malignant lesions were detected than benign lesions. However, the 

number of benign lesions was much smaller than the number of malignant lesions in our data set. 520 

Therefore, we cannot draw a conclusion on whether the system detection performance is related to 

lesion malignancy. 

With feature extraction and FP reduction by LDA, our system achieved 84.4% sensitivity 

with an average of 2.5 FPs/case for the training set, and 84.9% sensitivity with 4.3 FPs/case for the 

test set. Our radiologist and urologist co-investigators expect that a CAD system with 85-90% 525 

sensitivity with 2 FP/case for the entire bladder would be useful in their practice. We were close to 

reaching this goal for our training set, but the system needs to be improved to meet our performance 

goals for unknown cases. 

Our system takes approximately 2 to 5 minutes to run for a case on a system with an Intel 

Xeon 5160 processor at 3 GHz, depending on the bladder size. It takes approximately 2 minutes per 530 

case for manual input, which includes loading the case and marking the two ROIs. 

We have performed a sensitivity analysis of our CAD system by changing the ROI box size, 

ROI centroid and best slice locations. The size of the ROI box was changed in the range from -5% 

up to 20% in the X-Y direction. The centroid of the ROI box was randomly shifted by 5% in the X 

or Y direction. The best slice of the ROI box was randomly moved by -5% or 5%. The sensitivity of 535 

each ROI box change was estimated at the operating points used for the original box for the training 

(2.5 FP/case) and test (4.3 FP/case) sets, and shown in Tables 7 and 8. Overall, we observed stable 

performance for lesion detection within the ranges of ROI box sizes and locations studied. 
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Table 7. Detection sensitivity at 2.5 FP/case for training set 

ROI 

Change 
Original 

XY 

-5% 

XY 

+5% 

XY 

+10% 

XY 

+15% 

XY 

+20% 

Best 

Slice 

±5% 

XY 

Centroid 

±5% 

Sensitivity 84.4% 77.8% 82.2% 82.2% 86.7% 86.7% 82.2% 84.4% 
 

 540 

Table 8. Detection sensitivity at 4.3 FP/case for test set 

ROI 

Change 
Original 

XY 

-5% 

XY 

+5% 

XY 

+10% 

XY 

+15% 

XY 

+20% 

Best 

Slice 

±5% 

XY 

Centroid 

±5% 

Sensitivity 84.9% 84.9% 83.0% 81.1% 84.9% 73.6% 86.8% 84.9% 
 

 

 It is difficult to make a direct comparison with the previous methods by other investigators 

described in the Introduction due to the differences in the data sets, lesion sizes and subtlety, and the 

performance evaluation methods. In the study by Jaume et. al
10

, they delineated each bladder in their 

data set into 6 different zones, and measured the performance by determining whether or not a zone 545 

was diseased or not. Duan et. al
9
 measured their performance by determining the percentage in 

which the lesions in their data set was covered by windows marking a region representing a part of a 

lesion. In comparison to our pilot study
11

, in which 83% of bladder lesions were detected with 1.4 

FPs/case using a data set of 15 cases, the current system had sensitivities of 84.4% and 84.9% at an 

FP rate of 2.5 FPs/case and 4.3 FPs/case for the training and test sets, respectively. When the system 550 

from our pilot study was applied to the larger data set used in this study, it had sensitivities of 77.8% 

and 50.9% at an FP rate of 2.6 FPs/case and 2.7 FPs/case for the training and test sets, respectively. 

Our current system achieved a higher sensitivity when using a data set of 70 patients compared to 

the system in our pilot study. 

 This study has several limitations. First, the detection method was designed for detection in 555 

the contrast-enhanced region of the bladder. As the contrast between the lesion and its surroundings 

is much smaller in the non-contrast region, a different method will have to be developed for 
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detection in the non-contrast region. Second, this study was directed towards detection of bladder 

masses, but not bladder wall thickenings. Wall thickening that was found by the system was not 

considered to be a true lesion and excluded as a false positive in this study. A different method may 560 

need to be developed to detect wall thickenings accurately, as wall thickenings possess different 

characteristics than masses. We will develop methods to detect bladder lesions in the non-contrast 

region and bladder wall thickenings in future studies as components of a complete CAD system for 

detection of bladder cancer. 

  565 

5. CONCLUSION 

This study demonstrates the feasibility of our method for detection of bladder lesions located 

fully or partially in the contrast-enhanced region of the CTU scans for lesions of a variety of shapes 

and sizes. The prescreening stage detected most of the true lesions, but also many false positive 

lesions. Using feature extraction and a trained classifier, the false positives were reduced while 570 

keeping the sensitivity high. The results indicate the usefulness of the methods for bladder lesion 

detection for lesions partially or fully within the contrast-enhanced region of CTU. Further work is 

underway to increase the sensitivity, detect lesions within the non-contrast enhanced region and 

detect lesions manifested as bladder wall thickening. This study is a step towards the development of 

a CAD system for detection of urothelial lesions imaged with CT urography. 575 
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