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We conducted a study to evaluate the effectiveness of twelve different similarity measures in
matching the corresponding masses on temporal pairs of current and prior mammograms. To per-
form this comparison we implemented each of the twelve similarity measures in the final stage of
our multistage registration technique for automated registration of breast lesions in serial mammo-
grams. The multistage technique consists of three stages. In the first stage an initial fan-shape
search region was estimated on the prior mammogram based on the geometrical position of the
mass on the current mammogram. In the second stage, the location of the fan-shape region was
refined by warping, based on an affine transformation and simplex optimization. A new refined
search region was defined on the prior mammogram. In the third stage, a search for the best match
between the lesion template from the current mammogram and a structure on the prior mammogram
was carried out within the search region. Our data set consisted of 318 temporal pairs. We per-
formed three experiments, using a different subset of the 318 temporal pairs for each experiment. In
each experiment we further tested how the performance of the similarity measures varied as the size
of the search region increased or decreased. We evaluated the twelve similarity measures based on
four criteria. The first criterion was the mean Euclidean distance, which was the average distance of
the true location of the mass to the location detected by the similarity measure. The second criterion
was the percentage of temporal pairs that were aligned so that 50% or more of the lesion area
overlapped. The third criterion was the percentage of pairs that were aligned so that 75% or more
of the lesion area overlapped. The fourth and final criterion was the robustness of the similarity
measure. Our results showed that three of the similarity measures, Pearson’s correlation, the cosine
coefficient, and Goodman and Kruskal’s Gamma coefficient, provide significantly higher accuracy
(p<0.05)in the task of matching the corresponding masses on serial mammograms than the other
nine similarity measures. @005 American Association of Physicists in Medicine

[DOI: 10.1118/1.1851892]

INTRODUCTION breast. A correspondence between these control points was
established based on a search in a local neighborhood around
Mammography is currently the most effective method forthe control point of interest.
detection of breast cancer. One of the important methods The previous techniques depend on the identification of
used by radiologists to detect developing malignancy incontrol points. However, because the breast is mainly com-
mammographic interpretation is the analysis of intervalposed of soft tissue that can change over time, there are no
changes between serial mammograms. A variety Obbvious invariant landmarks on mammograms. Furthermore,
computer-aided diagnosi€AD) techniques have been de- pecause of the elasticity of the breast tissue, there is large
veloped to detect mammographic abnormalities and to disyariability in the positioning and compression used in mam-
tinguish between malignant and benign lesions. We arenographic examination. As a result, the relative positions of
studying the use of CAD techniques to assist radiologists inhe breast tissues projected onto a mammogram vary from
interval change analysis. one examination to the other. Techniques that depend on
A few approaches to lesion registration between currenjdentification of control points will not be generally appli-
and prior mammograms have been studied bycable to registration of breast images.
investigators:® Sallamet al.* have proposed a warping tech- Gopalet al® and Hadjiiskiet al*® have developed a mul-
nique for mammogram registration based on manually identistage technique that defines a transformation to locally map
tified control points. A mapping function was calculated for the position of the mass on a current mammogram to that on
mapping each point on the current mammogram to a point othe prior mammogram. A local search for the mass is then
the prior mammogram. Vujoviet al? have proposed a performed on the prior mammogram. Goetal® have also
multiple-control-point technique for mammogram registra-developed a technique that defines a transformation to map
tion. They first determined several control points indepen-all points from the current mammogram onto a prior mam-
dently on the current and prior mammograms based on thmogram. The current mammogram is then subtracted from
intersection points of prominent anatomical structures in thehe prior mammogram. S. Van Engelaaamlal.8 and Hadijiiski
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et al? used warping methods to align the current and prior
mammograms. More detailed overview of the above meth-
ods can be found in the literatufé.

In this study we focused on the multistage technique for
automated registration of breast lesions in temporal pairs,
developed by Hadijiiskiet al® In this method, initially, an l
automated procedure is used to detect the breast boundary on L
the current and prior mammograms. In the first stage of the
process the location of the mass on the current mammogram
is determined in a polar coordinate system with the nipple as
the origin. By using the radial distand&.,, between the @ ®)
nipple and mass centroid an arc is drawn which intersects the
breast boundary. Angles are estimated at the radial distance
R..ir between thenipple, mass centroidand (nipple, inter-
sections with the breast boundamxis. The location of the
current mass is determined B, and the obtained angles.
Using the radial distancB,, to draw an arc centered at the
nipple centroid on the prior mammogram, the two intersect
points with the breast boundary on the prior mammogram are
determined. Based on the angles obtained on the current
mammogram and radial distanBg,,,, the initial position of
the lesion on the prior mammogram is estimated. An initial
fan-shaped search region is then defined on the prior mam- (© (@
mogram centered at the predicted location of the mass cen- -

. . 1G. 1. Examples of templates containing the current masses and the corre-
troid. A fan'Shaped template centered at the mass is als&)onding search regions containing the prior masses for two pati@ts:
defined on the current mammogram. This fan-shaped regiome search region containing the mass in the prior mammogpatient 1),
is then refined in the second stage by warping. The affingb) current mass templatgatient 1),(c) the search region containing the
transformation in combination with simplex optimization Mas$ in_the prior mammogrartpatient 2), (d) current mass template
was iteratively used to warp the fan-shaped template an(ci)atlent 2
further maximize the correlation measure with the breast
structures on the prior mammogram. In the third stage the
mass template from the current mammogram is matched to
the corresponding lesion on the prior mammogram. Thehe prior year mammograrfFigs. 1(a)and 1(c)]and the
mass location on the prior mammogram is determined byurrent mass templafigs. 1(b)and 1(d)]for two patients.
maximizing the correlation similarity measure between thein the following discussion|,qenfi.j) represents the array
template and the structures within the search region. containing the pixel values of the lesion template from the

In the current study we compared the effectiveness ofyrrent mammogram ankl,(i,j) represents an array con-
correlation, as it is used in this technique as a :~:imilaritytaining the pixel values of a sub-region within the search
measure, to eleven other similarity measures. Our goal is tPegion on the prior mammogram, having the same dimen-
select the most effective similarity measures for locating thesions ad enfi»j). The location of the sub-region is moved

_corre_spondmg_mass in the t_h|r_d s_tage of the automated "€%ne pixel at a time over the entire search region on the prior
istration techmqu@.Twere similarity measures were com- ) o
mammogram, and at each location thg,(i,j) array takes

pared in this study. The similarity measures included: Corre- . : o
lati 4 . . the pixel values of the current sub-region. The similarity be-
ation, mutual information (scaled version), mutual weenl (i.j) andl (i j) is calculated using one of the
information (unscaled version), increment sign correlation,t ele C“r_re”_l 'J't priorl .} This is basi "g ‘ lat
gradient difference, pattern intensity, ordinal correlation,Wevlf_ simuiarity mgasurss.h hIS IS t?smaf)é a .emplae
rank transform, cosine coefficient, Gamma coefficient, correMatching operation in which the matching index Is calcu-

lation standardized by the median, and the extended Jaccal@ed using one of the twelve similarity measures. For a

measure. In addition to the accuracy of matching the masséiven similarity measure, the best match between the current
using these similarity measures, we further tested their roTass template and a structure within the search region on the

matching on the size of the search regions. measure betweehyen(i,j) andlyioli,j) is at a maximum.
The structure is then considered to be the mass on the prior

mammogram that corresponds to the mass of interest in the

SIMILARITY MEASURES current mammogram. The mass found by a given similarity
In this section we will describe briefly the twelve similar- measure is compared to the ground truth, which was identi-
ity measures that were compared in this study. Figure 1 prefied by an experienced radiologist based on available diag-
sents an example of a search region containing the mass mostic and biopsy information, using the accuracy measures
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described below. The average accuracy of a given similarity 1 (gurenfis] 1) = leyren(isi))
measure over the entire data set is then compared with those by = 0 (I (ij+D <l )
obtained with the other similarity measures. eurrent edrrent

. N 3)
. b = 1 (Iprior(|vJ + 1) = Iprior('J))
Correlation 1710 Uproi + D) < lprioninf))
The similarity measure that was originally used in the
automated registration methbig Pearson’s correlation coef- 1
ficient fler= ———— > Ih.b +(L=b:)(1-b 4
o o IsC (N—l)(M—l)in{ i +(1-b)L -k}, (4
— 2i,j(lcurren(I rJ) B |curren)(|prior(| ,]) B Iprior) (1)
\/zi,j(lcurrenﬂvj) —TcurrenPZ\/Ei,j(|pnor(i,i) —|_pri0r)2’ whereN and M are the horizontal and vertical size of the

— ) current template. The principle here is to map the change in
wherel yrent@ndlpior are the mean pixel values of the masspjghiness of the template and of the corresponding sub-
template and the sub-region being evaluated on the prigiegion in the search region. This is achieved by building the
mammogram, respectively. two arrayshj; andbj; each consisting of zeroes and ones. A
value of one is assigned to each pixel that is greater in value
Mutual information than the one preceding it, and a zero is assigned to each pixel

This similarity measure is widely considered to be highlythat is smaller than the one preceding it. The coefficiait

effective for multimodal image reglstratlolﬂ.12 It is a deri- measures the §|m|Iar|ty bgtween the two arraysnd b'J' If .
., the corresponding values in the two arrays are the same, i.e.,
. : . = 15 1%5th one or both zero, then a value of one is accumulated in
maximize the information redundancy between the pixel in- : :
. : : . o the sum. On the other hand if the corresponding values are
tensity values contained ifgyenfi,j) and lyiodli,j). The . . ;
s . L different, a value of zero is accumulated in the sum. The sum
definition for the mutual information is given as e o .
is finally divided by the number of values in the array to

S= > P currenti+ 1) prior(i 1)) yield a value between zero and one.

ICUI’ren{i ,j ),| prior(i :J)

p(lcurren(i1j)r|prior(i1j)) 2
p(lcurren(i1j))p(|prior(inj)) , ( ) Gradient difference

Xlog

wherep denotes probability. In order to calculate the prob- The gradient difference measure compares the gradients

abilities in (2) we constructed a joint histogram of intensities of the template and the search region at each corresponding

with the pixel values of enfi,j) Used as the indices of the pixel™

x axis of the histogram and the pixel valuesl gf, (i, ) used

as the indices of thg axis. We studied how the similarity A, A,

measure performed when the original pixel values were usef = E e T 2 2 (5)
o i At Uairv (5D 57 An+ (i (1))

to construct the joint histograrfreferred to as the unscaled

version)as well as when the pixel values were linearly scaled

between their minimum and maximum within the subregions o dlyior  dleyrrent o dlgior dleurrent
being matched and then used to construct the joint histograrhity(i.]) = —gl— T i (1,]) = —(;L TR
(the scaled version). We also varied the number of bins on J J

the histogram. We have searched for the optimal number of (6)

bins independently for two different data subsets containing
the small current templatég4 templates smaller or equal to WhereA, andA;, are constants, which were selected to be the
10 mm)and the large current templatés7 templates larger Vertical and horizontal variance of the prior gradient image.
or equal to 20 mm). We found that the best results for bothl'his similarity measure is related to increment sign correla-
data subsets occurred when the histogram was set to 5 bitien, except that, instead of assigning only the discrete values
per axis for the scaled version and to 32 bins per axis for th@f zero and one, the actual derivatives are estimated in the
unscaled version. These were also the optimal number ¢nd] direction at each pixel location for both arrays. Each
bins when the entire data set of 318 pairs was used for th@erivative in the template is subtracted from the derivative
optimization. that is in the corresponding location and direction in the
search region. Thus two new arrays are created containing
information on the differences in the gradients of the two
images. The goal is to find the maximum value of the coef-
This similarity measure is one that was designed to bdicient G, which corresponds to that the differences in the
robust for brightness change and occlusidhe formula gradients in the corresponding directions are at a minimum
for the increment sign correlatiofhSC) coefficient is given when the template has been aligned with the matching loca-
by tion in the search region.

Increment sign correlation
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Pattern intensity 2 mafL,d,

k(I lpior) =1 ——7—. 12
Pattern intensity is a similarity measure which utilizes the (lourrentlpriod) (/2] (12)

differences between the corresponding pixel values of the
template and the search regijd‘nThe coefficient for pattern
intensity is given by Rank transform

i+r/2 2 o2 For the rank transform similarity meastte window of
PWT:E __2 _2 2+ (g (i,]) = L (v, W))2" ) dimensiona X a pixels, wherea is an odd integer greater
W vsimr2 wejmri2 it i than one and smaller than the size of the template subregion,

ool ) is moved over the templatg,enfi,j) and the corresponding

diff = Tprior— Teurrent location I yioi,j) in the search region. At each position of
Here we create a matrixg(i,j), consisting of the differ- this window the number of pixels residing within the win-
ences in the pixel values of the template and a subregiodow that are greater in brightness than the pixel in the center
within the search region. We then take a sliding frame ofof the window are counted. This number is subtracted from
dimensions X r and move it throughout(i ,j). Each pixel  the total number of pixelsa?, within the moving window
value within the sliding frame is subtracted from the pixeland is defined as the pixel's rank transformation. In this way
value in the center of the sliding frame. The squared valuethe images yqren(i. ) andlcyren(i,j) are rank transformed to
of these differences are then added up for each location gfroduce the arrays,renX,y) andrio(X,y). These transfor-
the sliding frame. The constantis used to weigh the func- mations are given by
tion and plays a role in filtering out the noise. For our ex-

_ 2_ . .
periment we evaluated different values@fand determined Feuren{X,Y) = @ (iDEEWU[ICU"en(XJ' Ly+J)
that =10 yields the most favorable results. For coarser im- ’
ages the dimensions of this frame can be increased. For the ~leurentX Y1, (13)
mass images, we found that 3 for the sliding window, i.e.,
a 3Xx 3 sliding frame, provided the best matching. MoriorX,Y) = a’- UllpriorX + 1,y + ) = LpriorX, V)1,
(i.p)ew
14
Ordinal measure (14)
This is a measure of the similarity between the rankings U[t] = 1, t=0 (15)
of the pixel values of the template image and the sub-region “lo t<o

within the search region. We used an ordinal measure of

associatior® The first step is to copy all pixel values from WhereU[t] is a unit step function and, j) e Wis the neigh-
both images into one-dimensional arrays;er and | g urens borhood of the rank window. To find the best match between

The next step is to set up the arrays;o and meyren Where the current and the prior images we find where the sum of the
- is the rank of the gray level valu@ ) of pixel i absolute differences of the rank transforms between the cor-
curren

ar?ﬁlg;ngtj thel qurrenedata. Larger gray level value will result in "€SPonding pixels is a minimum

2 ke o en el St s A S ) T,

vectors by: The value ofa in this study was selected to be 3, similar to
§'=mion  Wherek= (150 en)'- (9 the selection for the sliding window in the pattern intensity

ng,remis defined as the inverse permutation®f,ent measure.

1 _ _1 i _
If 7Tlcurrent_]! then(ﬂ'curren?l =1 (10) Cosine measure

This vectors represents the ranking &f;,, with respect to

the rankingl ¢,rene Under ideal situations when the rankings For the cosine measurewe arrange the pixel values of

of the pixel values within both images is the same, in Otheﬁoih |magiﬁs |tnt0 vec:ors. Th?n Itn cf).rdder trc]) fmdﬂ:he bFSt rr}at':]ch
words whenmyio = merem then the vectors should equal etween Ihe two vectors we try to find where the value ot the
cosine of the angle between the vectors is at a maximum.

(1,2,3,4,..n). The next step is to define a vecta,, o - .
which functions as a distance measure between the actugpe cosine is calculated by finding the dot product and di-

value of the vectos and its ideal value of1,2,3,4,...n) viding it by the norm of each vector
A i Cos = Ei,j(lcurren(iaj))(lprior(i vJ)) .
dy=i-2dd <i), (11) Vi UeurentisD)2VE (I prordi, 1))
=t The cosine similarity measure is very closely related to Pear-
where J(B) is indicator function of evenB, i.e., J(B)=1  son’s correlation coefficient discussed earlier. The most no-

when B is true andJ(B)=0 whenB is false. The ordinal table difference is that the mean here is not subtracted from
measure of associatiot(l cyrens | prior) iS NOW calculated by each value in order to center both sets of data about zero.

(17)
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Goodman and Kruskal's gamma coefficient resents the probability that the rank ordering disagrees, and
P, represents the probability of ties. The main advantage of
this similarity measure over the previously discussed ordinal
measure is that here we account for the case of ties between
the pixel values.

The Gamma coefficielft'® belongs to the family of ordi-
nal measures. The Gamma coefficient is given by
P.— Py
=, 18
Y= (18)
Correlation standardized by the median
i We defined a similarity measure, the correlation standard
Pe=2 21 gl p‘J(_,E_ 2 pi’i’>’ (19) ized by the median, which is a variation of Pearson’s corre-
N lation coefficient discussed earlier. Here instead of subtract-
ing the mean to center and standardize the two sets of data

r Cc
p,=23 > p”_(E D pi,j,), (20) Wwe subtract the median

i=1 j=1 i’>ij’<j

_ Ei,j(lcurren{i 1J) — Icurreng(lprior(i vJ) ~ Iprior)
F'med™ \/ T - 2\/ . ~ 5"
z"i,j(lcurren“vJ) - Icurreng Ei,j(lprior(I rJ) - Iprior)

PFi(é pij) +§Cl<§rlpij) ‘iipﬁ (21) (22)

i=1 \j=1 i=1j=1

The medians of the pixel values of the template and the
subregion in a corresponding location in the search region

are represented by, rreni@nd | prior

where p;; represents the probability that a pixel with gray
level valuei on the current imagél ¢ yen(X,y)=i] will cor-
respond to the pixel with gray level valdeon the prior
image[lio(X,y)=]]. r andc are the total number of possible
values for the pixel gray levels ofqen(X,y) andl yio(X,y),
respectively.P. represents the probability that the rank or-  This similarity measurd is related to the previously dis-
dering of the pixel values of the two images agré@srep-  cussed cosine measure. It is given by

Extended Jaccard similarity measure

Ei,j(I curren{i vj))(lprior(i aJ))
Ei,j(I curren(i rj))z + 2i,j(I prior(i 'j))Z - Ei,j(lcurren£i rj))(lprior(i aJ)) -

Jacc= (23)

Unlike the cosine measure, the extended Jaccard measypat from both digitizers was linearly converted so that large
also takes into account the magnitudes of the two vectorpixel values corresponded to a low optical density. Current
when evaluating similarity, in addition to their directions.  and prior mammograms of the same patient were digitized
with the same digitizer. Since the mammographic masses are
DATA SET relatively large objects that do not require high resolution,

The twelve similarity measures were evaluated on a dat e evaluated the similarity measures at a pixel size of
set consisting of 318 temporal pairs. Each pair of mammo- 00_'“m>< 800_ um to r_educe the processing time and r_educe
grams contained two mammograms taken at different timel® IMage noise. The images were averaged using a filter that
of the same breast. The time interval between the two man1@S constant weights over the entire filter kernel, which is
mograms ranged from 3 to 48 months. Our data set Conr_.eferred to as a box fi_Iter, and were then.down-sampled to the
tained 510 digitized mammograms from 120 patients. Thirty-inal resolution. The images digitized with the LUMISCAN
five of the mammograms were digitized with a LUMISYS 85 digitizer were averaged with a ¥616 box filter and were
DIS-1000 laser scanner at a pixel resolution of 100 then down-sampled by a factor of 16. The images digitized
X 100 um. The digitizer had a 4096 gray level resolution With the DIS-1000 digitizer were averaged with an 8 box
and an optical densit§OD) range of 0-3.5. The pixel values filter and were then down-sampled by a factor of 8. All im-
were linearly proportional to the OD within the range of ages thus had a pixel size of 8@®n < 800 um.
0.1-2.8 OD units, with a slope of 0.001 OD/pixel value. The Of the 120 cases, 119 contained biopsy-proven masses
slope of the calibration curve decreased gradually outsid@nd one was determined to be benign after a two-year
this optical density range. The rest of the mammograms werollow-up. The 510 mammograms contained different mam-
digitized with a LUMISCAN 85 laser scanner at a pixel size mographic views and multiple years of the masses including
of 50 umXx50 um and again 4096 gray levels. The pixel the year when the biopsy was performed. 172 of the 318
values were linearly proportional to the OD range of 0—4 ODtemporal pairs were malignant and the remaining 146 were
units, and again with a slope of 0.001 OD/pixel value. Out-benign. A malignant temporal pair contains the mammo-
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EVALUATION METHODS

The starting point of the registration algorithm was the
biopsy-proven mass location on the current mammogram,
and the result of the algorithm was the location or the region
of interest found by our algorithm using one of the twelve
similarity measures. We evaluated the twelve similarity mea-
sures based on four criteria. The first criterion was the mean
Euclidean distance. This refers to the average distance from
the location where the similarity measure reports the best
match between the current template and the sub-region on
the prior mammogram, to the center of the bounding box of
the mass, as marked by the radiologist. The second and the
third criteria were based on the overlap between the current
mass template at the best-match location and the bounding
box of the true mass on the prior image, which is defined as:

best-match~ Ttrue
| dalE

current prior (24)

overlap = ,
P min(l'best—match true
current 1! prior

Tbestmatchyyas the current mass template at the best-

Where current _

match location on prior image aritgﬁfjr was the bounding
box of the true mass on the prior image. The second criterion
was the 50% overlap threshold criterion, defined as the per-
centage of pairs for which, at the best-match location, the
overlap between the current mass template and the bounding
box of the true mass on the prior image was 50% or more.
The third criterion was the 75% overlap threshold criterion,
defined as the percentage of pairs for which, at the best-
match location, the overlap between the current mass tem-
plate and the bounding box of the true mass on the prior
image was 75% or more. These first three criteria were used
to judge the accuracy of matching using a given similarity
measure. We also estimated the statistical significance of the
difference between the mean Euclidean distances obtained

lignant and(b) 136 benign temporal pairs. The diagonal line on the graphfrom the different similarity measures by the Student’s paired

represents the case when the current and the prior mass sizes are identi
The dashed lines are the linear regression lines defined/#y.366x
+3.913 for(a) and byy=0.721x1.935 for(b). The correlation coefficient
for the malignant masses is 0.39 and for the benign masses is 0.73.

%test. The last criterion was designed to evaluate the robust-

ness of the similarity measure. It estimated the change in the
accuracy of matching using the similarity measure as a func-
tion of the search region size. To obtain a numerical repre-
sentation of robustness we first calculated the slope between
the successive points along the mean Euclidean distance-

graphic images of a biopsy proven malignant mass or a ma
that was followed up and was found to be malignant whe
biopsy was performed in a future year. 154 of the 318 tem-
poral pairs were CC-view pairs, 138 were MLO-view pairs,
and 26 were lateral view pairs. The masses on each of the

Srersus-search region size curve for each similarity measure.
For a given similarity measure, a smaller slope will reflect
smaller change in the Euclidean distance between two differ-

original mammograms were marked with a bounding box byTasLe 1. Number of temporal pairs used for each search region size in

a Mammography Quality Standards ABMQSA) radiologist.

Experiment 1.

The radiologist also provided a description of the character=
istics of each mass and marked the nipple location on every
film. The mass size, defined as the longest dimension of the

Search region sidelength

Number of temporal pairs

mass, was measured by the radiologist on both the current
and prior mammograms. Figure 2 shows the distribution of
the mass sizes. Only 251 temporal pairs were plotied
malignant and 136 benigmiue to the fact that the masses on
the prior mammograms in the remaining 67 temporal pairs
were too subtle for the radiologist to estimate their bound-

(mm) within search region
16.8 234
20.0 249
24.8 269
28.0 280
32.8 287
40.8 303
48.8 309

aries.
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TasLE Il. Mean Euclidean distance and standard deviation of twelve similarity measures using a different subset of pairs for each search (ejertsize
Table I). (Experiment 1. The rank of each similarity measuteetween 1 and )2at each window size is also shown.

Size (mm) 16.8 20 24.8 28 32.8 40.8 48.8

err rnk err rnk err rnk err rnk err rnk err rnk err rnk
Correlation 3.1+3.2 1 3.4+3.9 1 4.1+4.9 2 45+55 1 4.9+6.1 1 6.3+8.3 1 7.5+9.8
Cosine 3.3+£35 3 3.7+4.1 3 4.0+4.6 1 4.6+5.8 2 5.2+6.5 2 7.0+£9.0 2 8.9+115
Median 3.2+3.3 2 3.7x4.1 2 4.4+£5.3 3 5.4+£6.5 4 6.9+8.0 6 10.5+11.1 6 15.8+14.2
Gamma 3.5+3.7 4  3.8+4.2 4 4.6+5.1 4 5.0+5.6 3 5.6+6.4 3 7.0+8.4 3 9.8+11.2
Mutual 3.5+3.7 5 4.0+4.2 5 4.6+5.3 5 5.4+6.5 5 6.4+7.6 5 9.5+10.7 4 12.1+12.7
Information
(Scaled)
Ordinal 3.7+3.8 6 4.0+4.4 6 4.9+5.6 6 5.6+6.4 6 6.3+7.3 4 10.1+£11.3 5 15.0£15.2
Measure
Mutual 4.0+£4.0 7 4.7+4.7 7 5.7+6.1 7 7.0+7.4 7 8.1+8.3 7 11.2+10.9 7 14.4+12.7
Information
(Unscaled)
Increment 4.9+4.0 10 5.4+4.7 8 6.3+5.8 8 7.2+6.5 8 8.2+7.3 8 11.2+9.8 8 15.1+12.7
Sign
Correlation
Pattern 4.6+4.4 9 5.4+5.3 9 6.5+6.5 9 7.3+x7.2 9 8.8+8.3 9 11.2+10.1 9 13.4+11.6
Intensity
Rank 4.2+4.0 8 55+55 10 7.5+£7.1 10 9.7+8.6 11 11.6+£9.7 11 17.3£12.9 11 24.0+14.2
Transform
Extended 5.6£4.9 11 6.2+5.5 11 7.6£6.5 11 8.6+7.6 10 10.0+8.8 10 13.2+10.9 10 16.7+£13.3
Jaccard
Gradient 79144 12 9.4+5.3 12 11.7+£6.2 12 13.4+£7.1 12 15.6+£8.2 12 19.6+£9.7 12 22.6+11.2
Difference

ent search region sizes, thereby indicating that the similaritfRESULTS
measure is less dependent on the search region size. To sum-
marize the absolute change of the Euclidean distance for sev- For this study we used a total of 318 temporal pairs. The
eral successive search region sizes, we computed the su@verage size of the current templates, was 17> mm.
squares of the slopes along the curve. The sum of the squar¥de conducted three experiments with different subsets of the
slopes provided a measure of how sensitive the similarity318 temporal pairs and different sizes of the search regions
measure was to a change in the search region size and th(Eable 1). The results for the 12 similarity measures for all

the search region sizes are given in Tables II-VI and Figs.

could serve as an index for robustness.

TaBLE Ill. Percentage of pairs that surpass the 50% overlap threshold, using a different subset of pairs for each search régiter siv@able 1).

(Experiment 1. The rank of each similarity measufieetween 1 and )2at each window size is also shown.

Size (mm) 16.8 20 24.8 28 32.8 40.8 48.8
% rnk % rnk % rnk % rnk % rnk % rnk % rnk

Correlation 92 1 90 1 87 1 84 1 83 1 78 1 76 1
Cosine 89 3 87 3 84 3 82 2 80 2 75 2 70 2
Median 91 2 88 2 84 2 79 4 73 6 60 6 47 6
Gamma 88 6 87 4 81 4 79 3 76 3 73 3 65 3
Mutual Information(Scaled) 89 4 85 6 81 5 77 6 74 5 65 4 59 4
Ordinal Measure 87 7 86 5 80 6 78 5 76 4 63 5 51 5
Mutual Information(Unscaled) 83 8 79 8 74 7 66 7 62 7 54 7 47 7
Increment Sign Correlation 79 10 73 10 69 8 64 8 61 8 52 43

Pattern Intensity 79 9 75 9 68 10 64 9 59 9 50 9 46 8
Rank Transform 88 5 79 7 68 9 57 10 50 11 35 11 24 11
Extended Jaccard 70 11 67 11 59 11 55 11 52 10 45 10 39 10
Gradient Difference 55 12 45 12 32 12 28 12 24 12 18 12 16 12
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TaBLE IV. Percentage of pairs that surpass the 75% overlap threshold, using a different subset of pairs for each search régifer giz&able 1).
(Experiment 1. The rank of each similarity measufieetween 1 and )2at each window size is also shown.

Size (mm) 16.8 20 24.8 28 32.8 40.8 48.8
% rnk % rnk % rnk % rnk % rnk % rnk % rnk

Correlation 82 1 81 1 78 1 75 2 74 2 70 1 68 1
Cosine 81 2 80 2 77 2 76 1 74 1 69 2 65 2
Median 79 3 78 3 74 3 69 3 64 5 52 6 41 7
Gamma 76 5 76 5 70 5 69 4 67 3 64 3 58 3
Mutual Information(Scaled) 76 6 73 6 69 6 66 6 64 6 56 4 50 4
Ordinal Measure 77 4 76 4 70 4 68 5 66 4 55 5 46 5
Mutual Information(Unscaled) 71 7 67 7 63 7 59 7 55 7 49 7 42 6
Increment Sign Correlation 61 10 59 10 54 9 51 9 49 9 43 9 36 9
Pattern Intensity 68 8 64 8 59 8 55 8 49 8 43 8 40 8
Rank Transform 68 9 60 9 50 10 42 11 39 11 29 11 19 11
Extended Jaccard 56 11 53 11 48 11 46 10 43 10 38 10 32 10
Gradient Difference 18 12 13 12 9 12 8 12 8 12 6 12 5 12

3-9. The results for the mean Euclidean distance were plotwvere shown in Fig. 4. In the tables we also presented the
ted as two groups of six similarity measures each, for clarityperformance ranks of the similarity measures for each spe-
of the presentation. The division into these two groups wasgific size of the search region.

based on the mean Euclidean distances of the similarity mea- In order to study the accuracy and robustness of the
sures at the 24.8 mm24.8 mm search region size. The twelve similarity measures we used seven search region sizes
measures with the six lowest mean Euclidean distances fdifable I). The original size of the search region, chosen in
this size were shown in Fig. 3 and those with the six highesbur previous study based on the performance of the three-

TasLE V. Comparison of the performance of the twelve similarity measures in terms of the mean Euclidean
distance and standard deviation, percentages of pairs with the 50% overlap and 75% overlap threshold criteria
for the 269 and 318 temporal pairs of using a search region size of 24.8 24n8 mm.

Mean Euclidean 50% overlap 75% overlap

distance(mm) threshold(%) threshold(%)
Experiment # 2 3 2 3 2 3
No. of pairs 269 318 269 318 269 318
Correlation 4.1+4.9 6.4+8.9 87 79 78 70
Cosine 4.0+4.6 6.4+8.9 84 76 77 69
Median 4.4+5.3 6.9+9.3 84 76 74 66
Gamma 4.6+5.1 6.9+8.9 81 74 70 64
Mutual 4.6+5.3 7.0+9.1 81 73 69 61
Information
(Scaled)
Ordinal 4.9+5.6 7.3+9.5 80 72 70 62
Measure
Mutual 5.7+6.1 8.4+10.2 74 66 63 56
Information
(Unscaled)
Increment Sign 6.3+£5.8 8.9+9.7 69 62 54 48
Correlation
Pattern 6.5+6.5 8.7+9.09 68 61 59 53
Intensity
Rank 75+7.1 10.2+£10.6 68 60 50 44
Transform
Extended 7.6+£6.5 9.4+8.9 59 54 48 44
Jaccard
Gradient 11.7+6.2 13.8+9.1 32 30 9 9
Difference
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TaBLE VI. Robustness index of the twelve similarity measures in the three E
different experiments. E
) 8 2 -
Experiment # 1 2 3 -
Region size B
No. of pairs dependent 269 318 g 15 F
]
')
Pearson’s Correlation 0.08 0.04 0.03 =2
Cosine 0.16 0.09 0.08 5 10 [
Median Correlation 0.84 0.63 0.64 e
Gamma 0.18 012 o011 E 5 [
Mutual Information(Scaled) 0.36 0.22 0.23 I5 20 25 30 35 40 45 50
Ordinal Measure 0.66 0.47 0.49 Search Region Sidelength (mm)
Mutual Information(Unscaled) 0.53 0.41 0.34
Increment Sign Correlation 0.49 0.34 0.32 —— Mutual Information (Unscaled)
. —o— Increment Sign Cormelation
Pattern Intensity 0.32 0.29 0.17 —v— Pattern Intensity
Rank Transform 1.85 1.55 1.4 —o— Rank Transform
—t— Extended Jaccard
Extended Jaccard 0.53 0.41 0.37 —o— Gradient Difference
Gradient Difference 0.88 0.76 0.66

Fic. 4. Mean Euclidean distance of the remaining (@t of twelve)simi-
larity measures for Experiment 1, in which the number of prior masses
inside the search region varied with the region sizder to Table ).

stage registration techniqﬁeuas 24.8 mnx 24.8 mm (31

X 31 pixels) We defined six additional search region sizes.
Four of them: 28 mnx28 mm, 32.8 mnx32.8 mm,
40.8 mmx 40.8 mm, and 48.8 mixi48.8 mm, were larger
than the original size of 24.8 mm24.8 mm. The remaining

therefore varied and was given in Table |I. The performance
results of the twelve similarity measures are presented in

. - Tables 1I-1V and Figs. 3—-6. The mean Euclidean distance for
two search region sizes: 16.8 mn16._8 mm, gnd 20 mm Pearson’s correlation coefficient was 3.1 mm for the smallest
X 20 mm, were smaller than the original size. The new

sgarch region size, 4.1 mm for the original search region size

shearch _reglions Wﬁre d_efineg byhcent_erin?] at _tgel Centr:oi(;lsh 4.8 mmx 24.8 mm)and 7.5 mm in the largest search re-
the original search regions by changing the sidelength of t ion size, while for mutual informatiofscaled)the results

Square region. were 3.5, 4.6, and 12.1 mm for the smallest, original and

In the first experiment for each search region size we ; : :
) argest search regions, respectivelable Il and Fig. 3). The
analyzed thg subset of the 318 temporal pairs tha}t had tW‘;‘ercentage of pairs surpassing the 50% overlap threshold
mass centroids on the prior mammogram located inside th

\Were 92%, 87%, and 76% in the smallest, original, and larg-

search region. We studied the performance of_the S_'m'la”%st search regions, respectively, using correlation, and 89%,
measures with the seven different search region sizes. The

centroid locations of the original search regions were defined
after the first two stages of the registration procetf’uﬂae
number of temporal pairs used for each search region size

50% or Greater Overlap (%)
a¥ 83823828

15 2 25 30 35 40 45 %0
Search Reglon Sidelength (mm)

Mean Euclidean Distance (mm)

16
15
14
13
12
11 4
10
a
8
7
[:3
5
4
3

——e&—— Coralation
" T v T A T T —=— Cosiﬂe
——a—— Madian
15 20 25 30 35 40 45 50 —mctm== Gamma
Search Reglon Sldelength (mm) = Mutual ion (Scaked)
—8— Ondinal
—— Corelation Mutual Ink tion {Unscaled)
——8=—  Cosine —o— Increment Sign Correlation
——i——  Median ——— Pattern Intensily
——=t=== Gamma =—=0=— Rank Transform
——8—-— Mulual Information {Scaled) Extended
—#— Ordinal —o0—— Gradient Difference

Fic. 3. Mean Euclidean distance of six of the twelve similarity measures forFic. 5. Percentage of pairs that surpass the 50% overlap threshold for Ex-
Experiment 1, in which the number of prior masses inside the search regioperiment 1, in which the number of prior masses inside the search region
varied with the region sizérefer to Table I). varied with the region sizérefer to Table I).
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Fic. 8. Percentage of pairs that surpass the 50% overlap threshold for search
Rank Transfom

region size of 28 mnx 28 mm in Experiment Xnumber of prior masses
inside the search region varied with the region size: for 2828 mm,
280 temporal pairs were usedExperiment 2(269 temporal paifs and
Xlgxperiment 3(318 temporal paiys

Aad | d

Ex
Gradient Difference

Fic. 6. Percentage of pairs that surpass the 75% overlap threshold for E
periment 1, in which the number of prior masses inside the search region
varied with the region sizérefer to Table ).

mogram was inside the 24.8 nx24.8 mm search regions.

The location of the search regions was defined by the first
81%, and 59%, respectively, using mutual informati®able  two stages of the registration procedfiy using these 269
Il and Fig. 5). For the 75% overlap threshold the percentageemporal pairs we studied the performance of the similarity
of pairs were 82%, 78%, and 68% using correlation, andneasures with the additional four larger different search re-
76%, 69%, and 50% using mutual informatiGrable IV and  gion sizes. The results are presented in Table V and Figs.
Fig. 6). 7-9. In order to limit the number of tables and figures in this

In the second experiment we used a fixed subset of 26Baper we presented only the results for the original search

pairs of the total 318 pairs applied to five different searchregion size of 24.8 mm 24.8 mm(Table V) and the search
region sizes. In this way we studied the effect of the increasregion of 28 mnx 28 mm (Figs. 7-9). These search regions
ing search area over the performance of the similarity meawere selected because they were found to be in the range of
sures for the same data set. The 269 temporal pairs were thest performance when we plotted the entire curves. For the
ones for which the centroid of their mass on the prior mam-discussion of the performance of the similarity measures

©
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@ Experiment 3
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Fic. 7. Comparison of mean Euclidean distance of the twelve similarityFic. 9. Percentage of pairs that surpass the 75% overlap threshold for search

measures for search region size of 28 m@8 mm in Experiment Inum-

region size of 28 mrnx 28 mm in Experiment Inumber of prior masses

ber of prior masses inside the search region varied with the region size: fanside the search region varied with the region size: for 28x%8 mm,

28 mmx 28 mm, 280 temporal pairs were ugeBxperiment 2269 tempo-

ral pairs), and Experiment 318 temporal pains
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with the remaining search region sizes we will use the relarobust. The correlation similarity measure shows the best
tive ranks of the similarity measures compared to Experitobustness among all twelve similarity measures in all ex-
ment 1. The mean Euclidean distance for Pearson’s correlg@eriments.

tion coefficient was 4.1 mm in the smallest search region For all experiments described above, the current mass

size for this experimern{24.8 mmx 24.8 mm) Table V)and template was determined by the bounding box marked by the
6.6 mm in the largest search region siz48.8 mm radiologist. We performed additional experiments to investi-

gate the effects of a change in the current mass template size
4.6 and 10.6 mm for the smalle¢Table V) and largest and in the position on the similarity measure results. For this

search regions, respectively. The percentage of pairs with {HRHrPose, we increased the size of the current mass template

L . and also shifted its center within a specified range from the
0, 79 /89
50% overlap threshold criterion were 87% and 78% in the ter of the | ndi X rked | y the radioloaist. T

smallest and largest search regions, respectively, using C0%ize of the template was increased in two different ways. The

relation, and 81% and 62%, respectively, using mutual inforgj ot methods was to add a fixed number of pixels to each
mation (Table V). For the 75% overlap threshold criterion, gjge of the bounding box—five and 10 pixé# and 8 mm,

the percentage of pairs were 78% and 70% using correlatioRespectivelywere added to the bounding box in each direc-
and 69% and 54% using mutual informatirable V). The  tion. The second method was to increase the size of the
mean Euclidean distance for all the similarity measures wapounding box of the current mass by a percentage of its
slightly smaller than the corresponding one in Experiment 1dimensions—an increase of 15% and 30% were evaluated.
except for those of the 24.8 mr24.8 mm region size Thus, overall, five different template sizes were generated,
which were identical. The percentage of pairs with the 50%ncluding the original bounding box marked by the radiolo-
and the 75% overlap threshold criteria were also slightly in-gist. The current template centers were shifted uniformly
creased compared to the Experiment 1. However, the rankingithin specified bounds in both theandy directions. The

of the similarity measures was largely the same as in the caf@unds in thecandy directions were determined as 20% and
of the Experiment 1. Occasionally, there was a swap in tha0% of the respective dimensions of the original bounding

ranking by one position for a small number of the similarity °0%. Including the original unshifted bounding box, there
measures and for some of the search region sizes were three experiments based on shifting the current tem-
In the third experiment we used all 318 tempo'ral pairspla'[e. Thus, these three experiments in combination with the
. o : five experiments for increasing the size of the template
when evaluating the similarity measures. When using this .

let t of 318 pairs it is i ant t te that ielded a total of fifteen trials. The trials were carried out for
complete set o pairs 1t1s important to note that Some oh, 5g | 28 mm prior search region. The results for these

the masses were actually Iogated outside of the search regiom;teen experiments for five of the similarity measures-

The smaller the search region was, the more masses Would|ation, cosine, gamma, mutual information, and increment
be located outside of it. When a mass falls outside of thejgn correlation)are given in Table VII. A relatively small
search region the function of the Slmllarlty measure is fUtile,Change in the Euclidean distance error was observed when
since there is no chance for it to match with the prior massthe template was enlarged. The largest change was obtained
and as a result large errors may occur. Here we tested althen 10 pixels were added to each side of the current tem-
seven search region sizes as in the Experiment 1. The resulttate. A larger effect was observed when the centroids of the
are presented again as in the above experiment for the origturrent templates were shifted. A combination of an enlarged
nal search region size of 24.8 mn24.8 mm(Table V)and template and a larger shift gave better results than a smaller
the search region of 28 mm28 mm (Figs. 7-9). The mean template and the same amount of shift. A possible reason for
Euclidean distance slightly increased at all correspondinghis observation is that when it is shifted, the enlarged tem-
search region sizes when compared to the results from thiate more likely will enclose a larger portion of the mass,
first two experiments, i.e., with the different subset of pairshich will result in a more successful matching within the
for each search region siz&xperiment 1)and the fixed S€arch region on the prior mammogram.

subset of 269 pair$Experiment 2), respectively. However,

the ranking of the similarity measures was very similar to thep|scuUsSsION

;ar;klng of the first experiment, as can be seen from Figs. Each one of the three experiments serves a different pur-

. se. In the first experiment only the temporal pairs that had
) The performange for the three exper|ment_s are presentqpffe prior mass inside the search region were included in the
in Figs. 7-9, using the search region size of 28 MM,y sis and the number of pairs will increase with increas-
X 28 mm. In addition, a comparison between the results fof,y search region size. The second experiment was similar to
the Experiment 2 and Experiment 3 for the original searchne first in that all temporal pairs would have the prior mass
region size of 24.8 mm 24.8 mm are shown in Table V. jnside the search region. However, it differed in that we had
The robustness results for all similarity measures and théixed the masses being analyzed to be those inside the search
three experiments are presented in Table VI. A smaller valugegion of 24.8 mnx 24.8 mm. In other words, the same 269
of the robustness index indicates that the similarity measurgemporal pairs of masses were analyzed for all sizes of the
is less dependent on the search region size and thus is masearch regions. This experiment separated the increased

X 48.8 mm) while for mutual information the results were
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TasLE VII. Mean Euclidean distance and standard deviation of correlation, cosine, gamma, mutual information
and increment sign of correlation for the increased size of the current mass template and shifted template center
within a specified range from the center of the bounding box marked by the radiologist. The current mass
template was increased by adding 5 and 10 pilsim and 8 mm, respectivelyo the bounding box in each
direction and by increasing the bounding box by 15% and by 30% of the template dimension. The current
template centers were shifted using a shift amount uniformly distributed within 20% and 30% of the respective
dimensions of the original bounding box in both thandy directions. Additionally, the results of the original
unshifted bounding boxes are included.

Displacement Change in

from the template Mutual
centroid size Correlation Cosine Gamma Information ISC
0% 0 45+55 4.6+5.8 5.0+5.6 5.4+6.5 7.2+6.5
5 pixels 4.7+5.5 5.2+5.8 5.0+5.8 6.3+6.5 7.6+6.6
10 pixels 5.4+5.9 5.7+£6.0 5.7+5.8 6.7£6.5 8.0£6.5
15% 4.4+5.1 4.9+6.0 4.5+5.2 5.5+6.1 7.5%+6.7
30% 4.7+5.3 5.0+5.5 4.9+5.4 5.9+6.2 7.5+6.4
20% 0 5.4+5.7 5.7+6.1 6.1+6.2 6.916.6 7.5+£6.3
5 pixels 5.4+55 5.7+5.8 5.9+£6.0 7.3£7.0 7.7£6.1
10 pixels 5.9+5.8 6.1+5.8 6.1+5.6 7.5+6.8 8.2+6.3
15% 5.4+55 5.7+6.1 5.6+5.8 6.7+6.6 7.9%£6.3
30% 5.2+5.2 5.6+5.6 5.8+5.8 6.8+6.7 8.0+6.3
30% 0 6.5+5.8 6.8+6.4 7.0£6.2 8.1£6.9 8.4+£6.5
5 pixels 6.2+5.7 6.6+6.1 6.7+6.1 7.7+6.8 8.5+6.3
10 pixels 6.5+5.7 6.8+5.9 6.7+5.7 8.0+6.7 9.0+6.4
15% 6.2+5.5 6.9+6.4 6.9+6.1 7.7+6.7 8.2+6.1
30% 6.1+5.4 6.6£5.9 6.6£6.0 7.6+£6.6 8.5+6.3

chance of false matching due to the increased region size@easures. In the discussion that follows we simply chose to
from the increasing number of masses included in the searalse the first experiment to arrive at our conclusions.
region. The third experiment in which all 318 temporal pairs The three similarity measures that performed ljlestest
were tested modeled a more realistic situation since in reahean Euclidean distance and highest percentage of pairs ex-
life one cannot guarantee that the prior mass will always liecceeding the overlap threshojdaere Pearson’s correlation
inside the search region, due to the fact that the first and theoefficient, the cosine coefficient, and Goodman and
second stages of the detection procedure may determine &mwuskal's Gamma coefficient. The correlation and cosine co-
incorrect search region. efficients slightly outperformed the Gamma coefficient for
The results from the first and the second experiments difall search region sizes. The correlation coefficient performed
fered from those of the third in two main ways. First, the significantly (paired t-testp<<0.05) better than the Gamma
accuracy of all of the similarity measures was higher whercoefficients for 4 search region sizes and could not reach
the masses were guaranteed to be inside of the search regi@tatistical significance for the 20 mx20 mm, 28 mm
As a result the mean Euclidean distances from the first anck 28 mm, and 40.8 mm 40.8 mm sizes. The difference be-
second experiments were lower than those from the thirdween the cosine and the Gamma measures was statistically
experiment, and conversely the percentage of pairs surpassignificant only for the search region size of 24.8 mm
ing the 50% and 75% overlap thresholds were higher. Secx 24.8 mm. The difference between the correlation coeffi-
ond, in the first and second experiments it was observed thaient and the cosine coefficient was statistically significant
the mean Euclidean distance decreased monotonically witbnly for the 48.8 mnx 48.8 mm search region size and not
decreasing search region size. However, in the third experstatistically significan{p value ranged from 0.13 to 0.58r
ment several of the similarity measures had a minimum fothe remaining tested search region sizes. It may be noted,
the Euclidean distance at the search region size ofiowever, that the mean Euclidean distance for the cosine
24.8 mmx 24.8 mm(graph not shown). For smaller search measure was slightly smaller than that for correlatidable
region sizes the error actually increased. The explanation fdt, Fig. 3) when the search region size was 24.8 mm
this is that as the search region size was reduced below this 24.8 mm, and slightly higher for all remaining search re-
size an increasing number of prior masses was left outside @fion sizes. This gap between the performance of the correla-
the search region and could not be matched, regardless thien and cosine measures continued to grow as the size of the
performance of the similarity measures, thus contributingsearch region increased. Thesalue decreased with increas-
more significantly to the error. Despite these differences théng search region sizes larger than 28 xi28 mm. The ro-
results of the three experiments lead to basically the samieustness of these three measures was also the highest com-
conclusions about the effectiveness of the different similaritypared to those of the remaining nine similarity measures.
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Among the three similarity measures, Pearson’s correlation The other two members of this second group of six simi-
had the highest robustness indésmallest value)of 0.08, larity measures are increment sign correlation and pattern
while the indices of the cosine and gamma coefficients weréntensity. The performances of these two similarity measures
0.16 and 0.18, respectiveliffable VI). were very similar. The difference between their mean Euclid-
After this first group of three similarity measures, which ean distance was not statistically significant at any of the
performed best, six of the remaining nine similarity measuresested search region sizes. However, pattern intensity showed
can be grouped together, based on their performances. Thehigher level of robustness than the increment sign correla-
second group consists of the correlation standardized by thgon, as their mean Euclidean distances grew in a relatively
median, the ordinal measure, both scaled and unscaled v&mear fashion.
sions of mutual information, increment Sign correlation, and We p|ace the remaining three s|m||ar|ty measures in the
pattern intensity. All six of these similarity measures had ahijrd group. These measures are the rank transform, the ex-
mean error in the range of 12.1-15.8 mm in the largestended Jaccard measure, and the gradient difference measure.
search region size used. It can be observed that the correlay these three measures the extended Jaccard proved to be
tion standardized by the median started out with a relativelyfne most effective. At smaller search region sizes the ex-
low error for the smallest search region and could even cOMgnged Jaccard had a larger mean Euclidean error than the
pete with the three similarity measures of the first group for.gni transform. At the search region size of 24.8 mm
this search region size. However, as the search region siz8 54 g mm it had an error of 7.6 mm, about 1 mm larger
was increased, the error of the correlation standardized by,- the measures from the previous groups, and at the larg-
the median increased at a faster rate than did the errors of the <o rch region size it yielded an average error of 16.7 mm,
other measures in this group of §ix. On the other'hand, b_Otggain about 1 mm higher than the measures from the previ-
the scaled and unscaled versions of mutual information, s oo,y The rank transform measure showed better resuilts

tended to S.hOW a relatlvely_hlgh Ie\_/el of robustness. Ther:ompared to the extended Jaccard measure at the first three
scaled version of the mutual information had a smaller mea%I

Euclid dist than th dinal ¢ I earch region sizes. However, its mean Euclidean error in-
uclidean distance than the ordinal measure for all Searcfo,seq much faster than that of the extended Jaccard and
region sizes except for 32.8 mx32.8 mm. However, the

: - o became significantly larger than those of the extended Jac-
difference was statistically significant only for the largest 9 ylarg

. . . card when the search region size was larger than 28 mm
search region siz&8.8 mmx 48.8 mm) The scaled version %28 mm. At the largest search region size, 48.8 mm

of the mutual information had a larger mean Euclidean dis-

) . X 48.8 mm, the rank transform similarity measure had a
tance for search region sizes up to 28.0 Mas.0 mm than mean Euclidean distance of 24 mm. This was the highest

the median correlation. The unscaled version of mutual in_ecorded error among all similarity measures for that search
formation had a larger mean Euclidean distance for search . : g Y )
region size. The rank transform with a robustness index of

region sizes up to 40.8 mm40.8 mm than the ordinal mea- 85 learlv the least robust of the twel imilarit
sure and the median correlation. However, for the Iarges}' was clearly the least robust of the twelve similarity

search region size, the errors of both the ordinal measure arjgeasures, and was, _theref_ore, highly ineffective for search
the median correlation surpassed the errors of the two mutu&f910" Sizes with dimension larger than about 30 mm
information measures since their growth rates were highet 0 MM Finally, we can conclude that the gradient differ-
than the growth rates of the unscaled and scaled versions §f'C& measure is the least useful similarity measure for the
mutual information. task of temporal-pair matching. For the original search re-
A direct comparison between the scaled and the unscalédfon Size of 24.8 mnx 24.8 mm, the mean Euclidean dis-
versions of mutual information shows that the scaled ver!ance for the gradient difference was 11.7 mm, which is
sions seemed to outperform the unscaled version at all sear®re than 4 mm greater than the measure that had the sec-
region sizes. The difference was statistically significant forond largest error. For all the other tested search region sizes
all of the search region sizes. For both versions the growt§Xcept the largest ond8 mmx 48 mm) the gradient differ-
rates of their mean Euclidean distances were relatively linea@nce continued to have the highest mean Euclidean distance.
when the search region size increased. Mutual informatiofrOr the largest search region size, the error of the gradient
proved to be a relatively robust similarity measure, howeverdifference was slightly smaller than that of the rank trans-
since it is a probability-based measure its accuracy is easilferm, however, this difference was not statistically signifi-
influenced by the quality of statistics used to calculate it. Incant.
this case, the quality is determined by the number of tem- The comparisons using the 50% and 75% overlap thresh-
plate pixels used to construct the joint histogram. The numolds agreed with those using the mean Euclidean distance.
ber of the template pixels in this application is relatively The correlation and the cosine coefficients yielded the high-
small which resulted in sparse joint histograms when theest percentages of images to surpass the 50% overlap thresh-
number of bins was determined by &0096)gray scale val- old as well as the 75% overlap threshold for all the tested
ues. The best results were obtained with very small numbesearch region sizes. Again the Goodman and Kruskal's
of bins and, therefore, not so sparse joint histogram. HowGamma followed closely behind these two measures. These
ever, a small number of bins determine a small number ofesults were also consistent with the robustness of the simi-
effective grey levels used to calculate the similarity measuréarity measures, which was described previously with respect
resulting in a coarser matching. to mean Euclidean distance. The percentage of images that
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exceeded the 50% overlap threshold and the 75% overlap
threshold decreased as the search region size increased for all
similarity measures. However, this decrease was noticeably
steeper for the similarity measures that were previously de-
scribed as less robust with respect to the mean Euclidean
distance. The ordinal measure, the median correlation, and
the rank transform are the clearest examples of this trend.
The overlap threshold criteria further confirmed the ineffec-
tiveness of the gradient difference as a similarity measure for
this task.

13-4

Mean Euclidean Distance (mm)

The change of the size and position of the current m By ® ® B
€ change o . € slz€ a position o e Cfu .e ass Search Reglon Sidelength {mmj}
template had relatively small effect on the similarity mea-
sures performance. The effect was smaller when the template - mc"'“‘:'““
was enlarged and slightly larger when the current template —=—=4--- Gamma
. . —0——  Mutual Information (Scalad)
was shifted from the center of the bounding box marked by —0— Incremant Sign Comaiation

the radiologist.
We additionally studied whether the comparison of theFic. 10. Mean Euclidean distance of the filait of twelve)similarity mea-
simiariy measures that was obained using the search 1S T XPSeTL LU 1o e S0 S g
gIOI.’IS found _by th? f|r§t and_ th_e second stages (_)f OUr €dI§;om the true locations of the mass centroids on the prior mammograms.
tration algorithm is still valid if the search regions were
found by a different method. For this purpose we generated
uniform distributions of locations which served as the esti-
mated mass centers for the search regions in the third stage
of the registration algorithm. The use of the uniform distri- that can match the performance of the Pearson’s correlation,
bution would represent a pessimistic distribution of the cenwithout significantly sacrificing accuracy and robustness, are
ters of the search regions. Three different experiments wernge cosine coefficient and Goodman and Kruskal's Gamma
performed. In the first experiment, the centroids of all searcftoefficient. The mean Euclidean distance for the Pearson’s
regions coincided with the true mass centroids on the priogorrelation was 3.1 mm in the smallest search region,
mammograms. This represented the ideal situation. In thﬂl mm for the 0rigina| search region(24_8 mm
second experiment, the centroids of the search regions weke24.8 mm)and 7.5 mm in the largest search region, respec-
uniformly distributed within a radius of 20 pixels from the tjyely. The cosine coefficient achieved very similar results as
true location of the mass centroids on prior mammograms. Ifne differences between their mean Euclidean distances were
the third experiment, the centroids were uniformly distrib- o statistically significant, except for the largest tested
uted within a radius of 30 pixels from the true location of thesearch region size. The Gamma coefficient was slightly be-
mass centroids. The similarity measures that were evaluatggl, the correlation and cosine measures but the difference
included correlation, cosine, gamngahich were the three between the Gamma coefficient and the cosine measure

best pe'rformed me.asubesmutual information and INCre- " achieved statistical significance only for the search region
ment sign correlation. The results of these experiments. R
. Lo Size of 24.8 mnx 24.8 mm. The main disadvantage of the

showed that the relative performance of the similarity mea- - ; )
. . . .. Gamma coefficient was its slow execution when compared to

sures is essentially independent of the method used in tht?l t of th lati q ine. Furth found that
original study to find the location of the search region. Even at ot the correlation and cosine. Furthermore we found tha

though the mean Euclidean error increased as the radius me widely used mutual' information similarity measure is ngt
the uniform distribution increased from O to 30 pixels, the@Mong the most effective measures for the task of matching

order of the similarity measures was not changeig. 10). Masses on serial mammograms using small size templates.
The mean Euclidean error at a search region size of he mean Euclidean distance for the version of mutual in-

24.8 mmx 24.8 mm for correlation was 3.5. 4.2 and formation that had the better performance, i.e., the scaled

5.0 mm for the experiments one, two, and three, respectively/€rsion, was 3.8, 5.7, and 13.2 mm for the smallest, original
and 4.1 mm for the original distribution from the first and and largest search region sizes, respectively. The robustness

similarity measures when the radius of the uniform distribu-0.08, was also superior to that of the mutual information
tion was increased from 20 pixels to 30 pixels. (scaled version), which had an index of 0.39. Lastly we iden-

tified three similarity measures, the extended Jaccard mea-
sure, the rank transform, and the gradient difference, that
CONCLUSION were least effective for the task of matching masses on tem-
The results of our study indicate that the best similarityporal pairs of mammograms. Although matching masses on
measure which can be used in the third stage of the registr@erial mammograms was the task of interest in this study, we
tion technique developed by Hadjiiskt al®is the Pearson’s expect that our results will have implication for similar
correlation coefficient. The two other similarity measurestemplate-matching tasks that use small-sized templates.
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