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We conducted a study to evaluate the effectiveness of twelve different similarity measures in
matching the corresponding masses on temporal pairs of current and prior mammograms. To per-
form this comparison we implemented each of the twelve similarity measures in the final stage of
our multistage registration technique for automated registration of breast lesions in serial mammo-
grams. The multistage technique consists of three stages. In the first stage an initial fan-shape
search region was estimated on the prior mammogram based on the geometrical position of the
mass on the current mammogram. In the second stage, the location of the fan-shape region was
refined by warping, based on an affine transformation and simplex optimization. A new refined
search region was defined on the prior mammogram. In the third stage, a search for the best match
between the lesion template from the current mammogram and a structure on the prior mammogram
was carried out within the search region. Our data set consisted of 318 temporal pairs. We per-
formed three experiments, using a different subset of the 318 temporal pairs for each experiment. In
each experiment we further tested how the performance of the similarity measures varied as the size
of the search region increased or decreased. We evaluated the twelve similarity measures based on
four criteria. The first criterion was the mean Euclidean distance, which was the average distance of
the true location of the mass to the location detected by the similarity measure. The second criterion
was the percentage of temporal pairs that were aligned so that 50% or more of the lesion area
overlapped. The third criterion was the percentage of pairs that were aligned so that 75% or more
of the lesion area overlapped. The fourth and final criterion was the robustness of the similarity
measure. Our results showed that three of the similarity measures, Pearson’s correlation, the cosine
coefficient, and Goodman and Kruskal’s Gamma coefficient, provide significantly higher accuracy
sp,0.05d in the task of matching the corresponding masses on serial mammograms than the other
nine similarity measures. ©2005 American Association of Physicists in Medicine.
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INTRODUCTION

Mammography is currently the most effective method
detection of breast cancer. One of the important met
used by radiologists to detect developing malignanc
mammographic interpretation is the analysis of inte
changes between serial mammograms. A variety
computer-aided diagnosissCADd techniques have been d
veloped to detect mammographic abnormalities and to
tinguish between malignant and benign lesions. We
studying the use of CAD techniques to assist radiologis
interval change analysis.

A few approaches to lesion registration between cu
and prior mammograms have been studied
investigators.1–9 Sallamet al.1 have proposed a warping tec
nique for mammogram registration based on manually i
tified control points. A mapping function was calculated
mapping each point on the current mammogram to a poi
the prior mammogram. Vujovicet al.2 have proposed
multiple-control-point technique for mammogram regis
tion. They first determined several control points indep
dently on the current and prior mammograms based o

intersection points of prominent anatomical structures in the
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breast. A correspondence between these control point
established based on a search in a local neighborhood a
the control point of interest.

The previous techniques depend on the identificatio
control points. However, because the breast is mainly
posed of soft tissue that can change over time, there a
obvious invariant landmarks on mammograms. Furtherm
because of the elasticity of the breast tissue, there is
variability in the positioning and compression used in m
mographic examination. As a result, the relative position
the breast tissues projected onto a mammogram vary
one examination to the other. Techniques that depen
identification of control points will not be generally app
cable to registration of breast images.

Gopalet al.3 and Hadjiiskiet al.4,6 have developed a mu
tistage technique that defines a transformation to locally
the position of the mass on a current mammogram to th
the prior mammogram. A local search for the mass is
performed on the prior mammogram. Goodet al.5 have also
developed a technique that defines a transformation to
all points from the current mammogram onto a prior m
mogram. The current mammogram is then subtracted

8
the prior mammogram. S. Van Engelandet al. and Hadjiiski

5152…/515/15/$22.50 © 2005 Am. Assoc. Phys. Med.
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et al.9 used warping methods to align the current and p
mammograms. More detailed overview of the above m
ods can be found in the literature.6,8

In this study we focused on the multistage technique
automated registration of breast lesions in temporal p
developed by Hadjiiskiet al.6 In this method, initially, an
automated procedure is used to detect the breast bound
the current and prior mammograms. In the first stage o
process the location of the mass on the current mammo
is determined in a polar coordinate system with the nipp
the origin. By using the radial distanceRcurr between th
nipple and mass centroid an arc is drawn which intersect
breast boundary. Angles are estimated at the radial dis
Rcurr between thesnipple, mass centroiddand snipple, inter-
sections with the breast boundaryd axis. The location of th
current mass is determined byRcurr and the obtained angle
Using the radial distanceRcurr to draw an arc centered at t
nipple centroid on the prior mammogram, the two inter
points with the breast boundary on the prior mammogram
determined. Based on the angles obtained on the cu
mammogram and radial distanceRcurr, the initial position o
the lesion on the prior mammogram is estimated. An in
fan-shaped search region is then defined on the prior m
mogram centered at the predicted location of the mass
troid. A fan-shaped template centered at the mass is
defined on the current mammogram. This fan-shaped re
is then refined in the second stage by warping. The a
transformation in combination with simplex optimizat
was iteratively used to warp the fan-shaped template
further maximize the correlation measure with the br
structures on the prior mammogram. In the third stage
mass template from the current mammogram is match
the corresponding lesion on the prior mammogram.
mass location on the prior mammogram is determined
maximizing the correlation similarity measure between
template and the structures within the search region.

In the current study we compared the effectivenes
correlation, as it is used in this technique as a simila
measure, to eleven other similarity measures. Our goal
select the most effective similarity measures for locating
corresponding mass in the third stage of the automated
istration technique.6 Twelve similarity measures were co
pared in this study. The similarity measures included: Co
lation, mutual information sscaled versiond, mutu
information sunscaled versiond, increment sign correlat
gradient difference, pattern intensity, ordinal correlat
rank transform, cosine coefficient, Gamma coefficient, co
lation standardized by the median, and the extended Ja
measure. In addition to the accuracy of matching the ma
using these similarity measures, we further tested thei
bustness by evaluating the dependence of the accura
matching on the size of the search regions.

SIMILARITY MEASURES

In this section we will describe briefly the twelve simil
ity measures that were compared in this study. Figure 1

sents an example of a search region containing the mass
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the prior year mammogramfFigs. 1sadand 1scdg and the
current mass templatefFigs. 1sbdand 1sddgfor two patients
In the following discussion,Icurrentsi , jd represents the arr
containing the pixel values of the lesion template from
current mammogram andIpriorsi , jd represents an array co
taining the pixel values of a sub-region within the sea
region on the prior mammogram, having the same dim
sions asIcurrentsi , jd. The location of the sub-region is mov
one pixel at a time over the entire search region on the
mammogram, and at each location theIpriorsi , jd array take
the pixel values of the current sub-region. The similarity
tweenIcurrentsi , jd andIpriorsi , jd is calculated using one of t
twelve similarity measures. This is basically a temp
matching operation in which the matching index is ca
lated using one of the twelve similarity measures. F
given similarity measure, the best match between the cu
mass template and a structure within the search region o
prior mammogram is found when the value of the simila
measure betweenIcurrentsi , jd and Ipriorsi , jd is at a maximum
The structure is then considered to be the mass on the
mammogram that corresponds to the mass of interest i
current mammogram. The mass found by a given simil
measure is compared to the ground truth, which was id
fied by an experienced radiologist based on available

FIG. 1. Examples of templates containing the current masses and the
sponding search regions containing the prior masses for two patiensad
The search region containing the mass in the prior mammogramspatient 1d
sbd current mass templatespatient 1d,scd the search region containing t
mass in the prior mammogramspatient 2d, sdd current mass templa
spatient 2d.
innostic and biopsy information, using the accuracy measures
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described below. The average accuracy of a given simi
measure over the entire data set is then compared with
obtained with the other similarity measures.

Correlation

The similarity measure that was originally used in
automated registration method6 is Pearson’s correlation coe
ficient

r =
oi,jsIcurrentsi, jd − ĪcurrentdsIpriorsi, jd − Īpriord

Îoi,jsIcurrentsi, jd − Īcurrentd2Îoi,jsIpriorsi, jd − Īpriord2
, s1d

whereĪcurrentand Īprior are the mean pixel values of the m
template and the sub-region being evaluated on the
mammogram, respectively.

Mutual information

This similarity measure is widely considered to be hig
effective for multimodal image registration.10–12 It is a deri-
vation from the information measure. The goal here i
maximize the information redundancy between the pixe
tensity values contained inIcurrentsi , jd and Ipriorsi , jd. The
definition for the mutual information is given as

S= o
Icurrentsi,jd,Ipriorsi,jd

psIcurrentsi, jd,Ipriorsi, jdd

3log
psIcurrentsi, jd,Ipriorsi, jdd

psIcurrentsi, jddpsIpriorsi, jdd
, s2d

wherep denotes probability. In order to calculate the pr
abilities in s2d we constructed a joint histogram of intensit
with the pixel values ofIcurrentsi , jd used as the indices of t
x axis of the histogram and the pixel values ofIpriorsi , jd used
as the indices of they axis. We studied how the similari
measure performed when the original pixel values were
to construct the joint histogramsreferred to as the unscal
versiondas well as when the pixel values were linearly sc
between their minimum and maximum within the subreg
being matched and then used to construct the joint histo
sthe scaled versiond. We also varied the number of bin
the histogram. We have searched for the optimal numb
bins independently for two different data subsets contai
the small current templatess74 templates smaller or equal
10 mmdand the large current templatess57 templates large
or equal to 20 mmd. We found that the best results for
data subsets occurred when the histogram was set to 5
per axis for the scaled version and to 32 bins per axis fo
unscaled version. These were also the optimal numb
bins when the entire data set of 318 pairs was used fo
optimization.

Increment sign correlation

This similarity measure is one that was designed to
robust for brightness change and occlusion.13 The formula
for the increment sign correlationsISCd coefficient is given

by
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bij = H1 sIcurrentsi, j + 1d ù Icurrentsi, jdd
0 sIcurrentsi, j + 1d , Icurrentsi, jdd

J
s3d

bij8 = H1 sIpriorsi, j + 1d ù Ipriorsi, jdd
0 sIpriorsi, j + 1d , Ipriorsi, jdd

J ,

r ISC =
1

sN − 1dsM − 1doi,j hbijbij8 + s1 − bijds1 − bij8 dj, s4d

whereN and M are the horizontal and vertical size of
current template. The principle here is to map the chan
brightness of the template and of the corresponding
region in the search region. This is achieved by building
two arraysbij andbij8 each consisting of zeroes and ones
value of one is assigned to each pixel that is greater in v
than the one preceding it, and a zero is assigned to each
that is smaller than the one preceding it. The coefficientr ISC

measures the similarity between the two arraysbij andbij8 . If
the corresponding values in the two arrays are the same
both one or both zero, then a value of one is accumulat
the sum. On the other hand if the corresponding value
different, a value of zero is accumulated in the sum. The
is finally divided by the number of values in the array
yield a value between zero and one.

Gradient difference

The gradient difference measure compares the grad
of the template and the search region at each correspo
pixel14

G = o
i,j

Av

Av + sIdiffVsi, jdd2 + o
i,j

Ah

Ah + sIdiffHsi, jdd2 , s5d

IdiffVsi, jd =
dIprior

di
−

dIcurrent

di
, IdiffHsi, jd =

dIprior

dj
−

dIcurrent

dj
,

s6d

whereAv andAh are constants, which were selected to be
vertical and horizontal variance of the prior gradient ima
This similarity measure is related to increment sign cor
tion, except that, instead of assigning only the discrete v
of zero and one, the actual derivatives are estimated ini
and j direction at each pixel location for both arrays. E
derivative in the template is subtracted from the deriva
that is in the corresponding location and direction in
search region. Thus two new arrays are created conta
information on the differences in the gradients of the
images. The goal is to find the maximum value of the c
ficient G, which corresponds to that the differences in
gradients in the corresponding directions are at a minim
when the template has been aligned with the matching

tion in the search region.
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Pattern intensity

Pattern intensity is a similarity measure which utilizes
differences between the corresponding pixel values o
template and the search region.14 The coefficient for patter
intensity is given by

PINT= o
i,j

o
v=i−r/2

i+r/2

o
w=j−r/2

j+r/2
s2

s2 + sIdiffsi, jd − Idiffsv,wdd2 , s7d

Idiff = Iprior − Icurrent. s8d

Here we create a matrix,Idiffsi , jd, consisting of the differ
ences in the pixel values of the template and a subre
within the search region. We then take a sliding frame
dimensionsr 3 r and move it throughoutIdiffsi , jd. Each pixe
value within the sliding frame is subtracted from the p
value in the center of the sliding frame. The squared va
of these differences are then added up for each locatio
the sliding frame. The constants is used to weigh the fun
tion and plays a role in filtering out the noise. For our
periment we evaluated different values ofs and determine
that s=10 yields the most favorable results. For coarser
ages the dimensions of this frame can be increased. Fo
mass images, we found thatr =3 for the sliding window, i.e
a 333 sliding frame, provided the best matching.

Ordinal measure

This is a measure of the similarity between the rank
of the pixel values of the template image and the sub-re
within the search region. We used an ordinal measur
association.15 The first step is to copy all pixel values fro
both images into one-dimensional arrays,Iprior and Icurrent.
The next step is to set up the arrayspprior andpcurrent, where
pcurrent

i is the rank of the gray level valuesIcurrent
i d of pixel i

among theIcurrent data. Larger gray level value will result
a larger rank value for a given pixel. Similarlypprior

i is the
rank of Iprior

i among theIprior data. Next we construct th
vectors by:

si = pprior
k , wherek = spcurrent

−1 di . s9d

pcurrent
−1 is defined as the inverse permutation ofpcurrent.

If pcurrent
i = j , thenspcurrent

−1 d j = i . s10d

This vectors represents the ranking ofIprior with respect to
the rankingIcurrent. Under ideal situations when the rankin
of the pixel values within both images is the same, in o
words whenpprior=pcurrent, then the vectors should equa
k1,2,3,4,.. .,nl. The next step is to define a vector,dm,
which functions as a distance measure between the a
value of the vectors and its ideal value ofk1,2,3,4,.. .,nl

dm
i = i − o

j=1

i

Jssj ø id, s11d

where JsBd is indicator function of eventB, i.e., JsBd=1
when B is true andJsBd=0 when B is false. The ordina

measure of associationksIcurrent,Ipriord is now calculated by
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ksIcurrent,Ipriord = 1 −
2 maxi=1

n dm
i

fn/2g
. s12d

Rank transform

For the rank transform similarity measure16 a window of
dimensiona3a pixels, wherea is an odd integer great
than one and smaller than the size of the template subre
is moved over the templateIcurrentsi , jd and the correspondin
location Ipriorsi , jd in the search region. At each position
this window the number of pixels residing within the w
dow that are greater in brightness than the pixel in the c
of the window are counted. This number is subtracted
the total number of pixels,a2, within the moving window
and is defined as the pixel’s rank transformation. In this
the imagesIcurrentsi , jd andIcurrentsi , jd are rank transformed
produce the arraysrcurrentsx,yd andrpriorsx,yd. These transfo
mations are given by

rcurrentsx,yd = a2 − o
si,jdPW

UfIcurrentsx + i,y + jd

− Icurrentsx,ydg, s13d

rpriorsx,yd = a2 − o
si,jdPW

UfIpriorsx + i,y + jd − Ipriorsx,ydg,

s14d

Uftg = H1, t ù 0

0 t , 0
J , s15d

whereUftg is a unit step function andsi , jdPW is the neigh
borhood of the rank window. To find the best match betw
the current and the prior images we find where the sum o
absolute differences of the rank transforms between the
responding pixels is a minimum

RANK= o
sx,yd

urcurrentsx,yd − rpriorsx,ydu. s16d

The value ofa in this study was selected to be 3, simila
the selection for the sliding window in the pattern inten
measure.

Cosine measure

For the cosine measure17 we arrange the pixel values
both images into vectors. Then in order to find the best m
between the two vectors we try to find where the value o
cosine of the angle between the vectors is at a maxim
The cosine is calculated by finding the dot product and
viding it by the norm of each vector

Cos =
oi,jsIcurrentsi, jddsIpriorsi, jdd

Îoi,jsIcurrentsi, jdd2Îoi,jsIpriorsi, jdd2
. s17d

The cosine similarity measure is very closely related to P
son’s correlation coefficient discussed earlier. The mos
table difference is that the mean here is not subtracted

each value in order to center both sets of data about zero.
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Goodman and Kruskal’s gamma coefficient

The Gamma coefficient18,19 belongs to the family of ord
nal measures. The Gamma coefficient is given by

g =
Pc − Pd

1 − Pt
, s18d

Pc = 2*o
i=1

r

o
j=1

c

pijSo
i8.i

o
j8. j

pi8 j8D , s19d

Pd = 2*o
i=1

r

o
j=1

c

pijSo
i8.i

o
j8, j

pi8 j8D , s20d

Pt = o
i=1

r So
j=1

c

pijD2

+ o
j=1

c So
i=1

r

pijD2

− o
i=1

r

o
j=1

c

pij
2 , s21d

where pij represents the probability that a pixel with g
level valuei on the current imagefIcurrentsx,yd= ig will cor-
respond to the pixel with gray level valuej on the prior
imagefIpriorsx,yd= jg. r andc are the total number of possib
values for the pixel gray levels ofIcurrentsx,yd andIpriorsx,yd,
respectively.Pc represents the probability that the rank

dering of the pixel values of the two images agrees,Pd rep-

asu
ctor
.

data
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xel
OD

units, and again with a slope of 0.001 OD/pixel value. Out-
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resents the probability that the rank ordering disagrees
Pt represents the probability of ties. The main advantag
this similarity measure over the previously discussed or
measure is that here we account for the case of ties be
the pixel values.

Correlation standardized by the median

We defined a similarity measure, the correlation stand
ized by the median, which is a variation of Pearson’s co
lation coefficient discussed earlier. Here instead of subt
ing the mean to center and standardize the two sets o
we subtract the median

rmed=
oi,jsIcurrentsi, jd − I&currentdsIpriorsi, jd − I&priord

Îoi,jsIcurrentsi, jd − I&currentd2Îoi,jsIpriorsi, jd − I&priord2
.

s22d

The medians of the pixel values of the template and
subregion in a corresponding location in the search re

are represented byI&current and I&prior.

Extended Jaccard similarity measure

This similarity measure20 is related to the previously di

cussed cosine measure. It is given by
Jacc=
oi,jsIcurrentsi, jddsIpriorsi, jdd

oi,jsIcurrentsi, jdd2 + oi,jsIpriorsi, jdd2 − oi,jsIcurrentsi, jddsIpriorsi, jdd
. s23d
rge
rent
tized
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Unlike the cosine measure, the extended Jaccard me
also takes into account the magnitudes of the two ve
when evaluating similarity, in addition to their directions

DATA SET

The twelve similarity measures were evaluated on a
set consisting of 318 temporal pairs. Each pair of mam
grams contained two mammograms taken at different t
of the same breast. The time interval between the two m
mograms ranged from 3 to 48 months. Our data set
tained 510 digitized mammograms from 120 patients. Th
five of the mammograms were digitized with a LUMIS
DIS-1000 laser scanner at a pixel resolution of 100mm
3100 mm. The digitizer had a 4096 gray level resolut
and an optical densitysODd range of 0–3.5. The pixel valu
were linearly proportional to the OD within the range
0.1–2.8 OD units, with a slope of 0.001 OD/pixel value. T
slope of the calibration curve decreased gradually ou
this optical density range. The rest of the mammograms
digitized with a LUMISCAN 85 laser scanner at a pixel s
of 50 mm350 mm and again 4096 gray levels. The pi
values were linearly proportional to the OD range of 0–4
re
s

-
s
-
-

e

put from both digitizers was linearly converted so that la
pixel values corresponded to a low optical density. Cur
and prior mammograms of the same patient were digi
with the same digitizer. Since the mammographic masse
relatively large objects that do not require high resolut
we evaluated the similarity measures at a pixel siz
800 mm3800 mm to reduce the processing time and red
the image noise. The images were averaged using a filte
has constant weights over the entire filter kernel, whic
referred to as a box filter, and were then down-sampled t
final resolution. The images digitized with the LUMISCA
85 digitizer were averaged with a 16316 box filter and wer
then down-sampled by a factor of 16. The images digit
with the DIS-1000 digitizer were averaged with an 838 box
filter and were then down-sampled by a factor of 8. All
ages thus had a pixel size of 800mm3800 mm.

Of the 120 cases, 119 contained biopsy-proven ma
and one was determined to be benign after a two-
follow-up. The 510 mammograms contained different m
mographic views and multiple years of the masses inclu
the year when the biopsy was performed. 172 of the
temporal pairs were malignant and the remaining 146

benign. A malignant temporal pair contains the mammo-
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graphic images of a biopsy proven malignant mass or a
that was followed up and was found to be malignant w
biopsy was performed in a future year. 154 of the 318 t
poral pairs were CC-view pairs, 138 were MLO-view pa
and 26 were lateral view pairs. The masses on each o
original mammograms were marked with a bounding bo
a Mammography Quality Standards ActsMQSAd radiologist.
The radiologist also provided a description of the chara
istics of each mass and marked the nipple location on e
film. The mass size, defined as the longest dimension o
mass, was measured by the radiologist on both the cu
and prior mammograms. Figure 2 shows the distributio
the mass sizes. Only 251 temporal pairs were plotteds115
malignant and 136 benignd due to the fact that the masses
the prior mammograms in the remaining 67 temporal p
were too subtle for the radiologist to estimate their bou

FIG. 2. Mass sizes measured by an MQSA radiologist on the current
mograms plotted against those on the prior mammograms forsad 115 ma-
lignant andsbd 136 benign temporal pairs. The diagonal line on the g
represents the case when the current and the prior mass sizes are id
The dashed lines are the linear regression lines defined byy=0.366x
+3.913 forsad and byy=0.721x+1.935 forsbd. The correlation coefficien
for the malignant masses is 0.39 and for the benign masses is 0.73.
aries.
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EVALUATION METHODS

The starting point of the registration algorithm was
biopsy-proven mass location on the current mammog
and the result of the algorithm was the location or the re
of interest found by our algorithm using one of the twe
similarity measures. We evaluated the twelve similarity m
sures based on four criteria. The first criterion was the m
Euclidean distance. This refers to the average distance
the location where the similarity measure reports the
match between the current template and the sub-regio
the prior mammogram, to the center of the bounding bo
the mass, as marked by the radiologist. The second an
third criteria were based on the overlap between the cu
mass template at the best-match location and the bou
box of the true mass on the prior image, which is define

overlap =
Ĩcurrent
best-matchù Ĩprior

true

minsĨcurrent
best-match, Ĩprior

true d
, s24d

where Ĩcurrent
best-matchwas the current mass template at the b

match location on prior image andĨprior
true was the boundin

box of the true mass on the prior image. The second crit
was the 50% overlap threshold criterion, defined as the
centage of pairs for which, at the best-match location
overlap between the current mass template and the bou
box of the true mass on the prior image was 50% or m
The third criterion was the 75% overlap threshold criter
defined as the percentage of pairs for which, at the
match location, the overlap between the current mass
plate and the bounding box of the true mass on the
image was 75% or more. These first three criteria were
to judge the accuracy of matching using a given simila
measure. We also estimated the statistical significance
difference between the mean Euclidean distances obt
from the different similarity measures by the Student’s pa
t-test. The last criterion was designed to evaluate the ro
ness of the similarity measure. It estimated the change i
accuracy of matching using the similarity measure as a
tion of the search region size. To obtain a numerical re
sentation of robustness we first calculated the slope bet
the successive points along the mean Euclidean dist
versus-search region size curve for each similarity mea
For a given similarity measure, a smaller slope will refl
smaller change in the Euclidean distance between two d

TABLE I. Number of temporal pairs used for each search region si
Experiment 1.

Search region sidelength
smmd

Number of temporal pairs
within search region

16.8 234
20.0 249
24.8 269
28.0 280
32.8 287
40.8 303
48.8 309

-
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ent search region sizes, thereby indicating that the simil
measure is less dependent on the search region size. To
marize the absolute change of the Euclidean distance fo
eral successive search region sizes, we computed the
squares of the slopes along the curve. The sum of the sq
slopes provided a measure of how sensitive the simil
measure was to a change in the search region size an
could serve as an index for robustness.

TABLE II. Mean Euclidean distance and standard deviation of twelve si
Table Id. sExperiment 1d. The rank of each similarity measuresbetween 1

Size smmd 16.8 20 24.8

err rnk err rnk err rnk

Correlation 3.1±3.2 1 3.4±3.9 1 4.1±4.9 2
Cosine 3.3±3.5 3 3.7±4.1 3 4.0±4.6 1
Median 3.2±3.3 2 3.7±4.1 2 4.4±5.3 3
Gamma 3.5±3.7 4 3.8±4.2 4 4.6±5.1 4
Mutual
Information
sScaledd

3.5±3.7 5 4.0±4.2 5 4.6±5.3 5

Ordinal
Measure

3.7±3.8 6 4.0±4.4 6 4.9±5.6 6

Mutual
Information
sUnscaledd

4.0±4.0 7 4.7±4.7 7 5.7±6.1 7

Increment
Sign
Correlation

4.9±4.0 10 5.4±4.7 8 6.3±5.8 8

Pattern
Intensity

4.6±4.4 9 5.4±5.3 9 6.5±6.5 9

Rank
Transform

4.2±4.0 8 5.5±5.5 10 7.5±7.1 10

Extended
Jaccard

5.6±4.9 11 6.2±5.5 11 7.6±6.5 11

Gradient
Difference

7.9±4.4 12 9.4±5.3 12 11.7±6.2 12

TABLE III. Percentage of pairs that surpass the 50% overlap thresh
sExperiment 1d. The rank of each similarity measuresbetween 1 and 12d at

Size smmd 16.8 20

% rnk % rnk %

Correlation 92 1 90 1 8
Cosine 89 3 87 3 8
Median 91 2 88 2 8
Gamma 88 6 87 4 8
Mutual InformationsScaledd 89 4 85 6 8
Ordinal Measure 87 7 86 5 8
Mutual InformationsUnscaledd 83 8 79 8 7
Increment Sign Correlation 79 10 73 10
Pattern Intensity 79 9 75 9 6
Rank Transform 88 5 79 7 6
Extended Jaccard 70 11 67 11 5
Gradient Difference 55 12 45 12 3
Medical Physics, Vol. 32, No. 2, February 2005
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RESULTS

For this study we used a total of 318 temporal pairs.
average size of the current templates, was 17 mm317 mm.
We conducted three experiments with different subsets o
318 temporal pairs and different sizes of the search re
sTable Id. The results for the 12 similarity measures for
the search region sizes are given in Tables II–VI and F

ity measures using a different subset of pairs for each search region ssrefer to
12d at each window size is also shown.

28 32.8 40.8 48.8

rr rnk err rnk err rnk err rn

.5±5.5 1 4.9±6.1 1 6.3±8.3 1 7.5±9.8

.6±5.8 2 5.2±6.5 2 7.0±9.0 2 8.9±11.5
.4±6.5 4 6.9±8.0 6 10.5±11.1 6 15.8±14.2
.0±5.6 3 5.6±6.4 3 7.0±8.4 3 9.8±11.2
4±6.5 5 6.4±7.6 5 9.5±10.7 4 12.1±12.7

6±6.4 6 6.3±7.3 4 10.1±11.3 5 15.0±15.2

0±7.4 7 8.1±8.3 7 11.2±10.9 7 14.4±12.7

2±6.5 8 8.2±7.3 8 11.2±9.8 8 15.1±12.7

3±7.2 9 8.8±8.3 9 11.2±10.1 9 13.4±11.6

7±8.6 11 11.6±9.7 11 17.3±12.9 11 24.0±14.2

6±7.6 10 10.0±8.8 10 13.2±10.9 10 16.7±13.3

.4±7.1 12 15.6±8.2 12 19.6±9.7 12 22.6±11.2

using a different subset of pairs for each search region sizesrefer to Table Id
window size is also shown.

28 32.8 40.8 48.8

rnk % rnk % rnk % rnk % rnk

1 84 1 83 1 78 1 76 1
3 82 2 80 2 75 2 70 2
2 79 4 73 6 60 6 47 6
4 79 3 76 3 73 3 65 3
5 77 6 74 5 65 4 59 4
6 78 5 76 4 63 5 51 5
7 66 7 62 7 54 7 47 7

8 64 8 61 8 52 8 43
10 64 9 59 9 50 9 46 8
9 57 10 50 11 35 11 24 11

11 55 11 52 10 45 10 39 1
12 28 12 24 12 18 12 16 1
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3–9. The results for the mean Euclidean distance were
ted as two groups of six similarity measures each, for cl
of the presentation. The division into these two groups
based on the mean Euclidean distances of the similarity
sures at the 24.8 mm324.8 mm search region size. T
measures with the six lowest mean Euclidean distance
this size were shown in Fig. 3 and those with the six hig

TABLE IV. Percentage of pairs that surpass the 75% overlap thresh
sExperiment 1d. The rank of each similarity measuresbetween 1 and 12d at

Size smmd 16.8 20 2

% rnk % rnk %

Correlation 82 1 81 1 78
Cosine 81 2 80 2 77
Median 79 3 78 3 74
Gamma 76 5 76 5 70
Mutual InformationsScaledd 76 6 73 6 69
Ordinal Measure 77 4 76 4 70
Mutual InformationsUnscaledd 71 7 67 7 63
Increment Sign Correlation 61 10 59 10 5
Pattern Intensity 68 8 64 8 59
Rank Transform 68 9 60 9 50
Extended Jaccard 56 11 53 11 48
Gradient Difference 18 12 13 12 9

TABLE V. Comparison of the performance of the
distance and standard deviation, percentages of
for the 269 and 318 temporal pairs of using a se

Experiment #

Mean Euclidean
distancesmmd

2 3
No. of pairs 269 318

Correlation 4.1±4.9 6.4±8.9
Cosine 4.0±4.6 6.4±8.9
Median 4.4±5.3 6.9±9.3
Gamma 4.6±5.1 6.9±8.9
Mutual
Information
sScaledd

4.6±5.3 7.0±9.1

Ordinal
Measure

4.9±5.6 7.3±9.5

Mutual
Information
sUnscaledd

5.7±6.1 8.4±10

Increment Sign
Correlation

6.3±5.8 8.9±9.7

Pattern
Intensity

6.5±6.5 8.7±9.0

Rank
Transform

7.5±7.1 10.2±10

Extended
Jaccard

7.6±6.5 9.4±8.9

Gradient
Difference

11.7±6.2 13.8±9.1
Medical Physics, Vol. 32, No. 2, February 2005
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were shown in Fig. 4. In the tables we also presented
performance ranks of the similarity measures for each
cific size of the search region.

In order to study the accuracy and robustness of
twelve similarity measures we used seven search region
sTable Id. The original size of the search region, chose
our previous study based on the performance of the t

using a different subset of pairs for each search region sizesrefer to Table Id
window size is also shown.

28 32.8 40.8 48.8

rnk % rnk % rnk % rnk % rnk

1 75 2 74 2 70 1 68 1
2 76 1 74 1 69 2 65 2
3 69 3 64 5 52 6 41 7
5 69 4 67 3 64 3 58 3
6 66 6 64 6 56 4 50 4
4 68 5 66 4 55 5 46 5
7 59 7 55 7 49 7 42 6

9 51 9 49 9 43 9 36
8 55 8 49 8 43 8 40 8

10 42 11 39 11 29 11 19 1
11 46 10 43 10 38 10 32 1
12 8 12 8 12 6 12 5 12

ve similarity measures in terms of the mean Euclidean
with the 50% overlap and 75% overlap threshold criteria
region size of 24.8 mm324.8 mm.

50% overlap
thresholds%d

75% overlap
thresholds%d

2 3 2 3
269 318 269 318

87 79 78 70
84 76 77 69
84 76 74 66
81 74 70 64
81 73 69 61

80 72 70 62

74 66 63 56

69 62 54 48

68 61 59 53

68 60 50 44

59 54 48 44

32 30 9 9
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each

4.8

4

twel
pairs
arch

.2

9

.6



es.
,
r
g

ew
ds o
f the

we
d th
e th
arity
. Th
fined

siz

nce
d in

e for
llest
size
re-

and
e
shold
larg-
89%,

hree

s for
egio

sses

or Ex-
egion

523 Filev et al. : Similarity measures for automated matching of temporal masses 523
stage registration technique,6 was 24.8 mm324.8 mm s31
331 pixelsd. We defined six additional search region siz
Four of them: 28 mm328 mm, 32.8 mm332.8 mm
40.8 mm340.8 mm, and 48.8 mm348.8 mm, were large
than the original size of 24.8 mm324.8 mm. The remainin
two search region sizes: 16.8 mm316.8 mm, and 20 mm
320 mm, were smaller than the original size. The n
search regions were defined by centering at the centroi
the original search regions by changing the sidelength o
square region.

In the first experiment for each search region size
analyzed the subset of the 318 temporal pairs that ha
mass centroids on the prior mammogram located insid
search region. We studied the performance of the simil
measures with the seven different search region sizes
centroid locations of the original search regions were de
after the first two stages of the registration procedure.6 The
number of temporal pairs used for each search region

TABLE VI. Robustness index of the twelve similarity measures in the t
different experiments.

Experiment # 1 2 3

No. of pairs
Region size
dependent 269 318

Pearson’s Correlation 0.08 0.04 0.03
Cosine 0.16 0.09 0.08
Median Correlation 0.84 0.63 0.64
Gamma 0.18 0.12 0.11
Mutual InformationsScaledd 0.36 0.22 0.23
Ordinal Measure 0.66 0.47 0.49
Mutual InformationsUnscaledd 0.53 0.41 0.34
Increment Sign Correlation 0.49 0.34 0.32
Pattern Intensity 0.32 0.29 0.17
Rank Transform 1.85 1.55 1.4
Extended Jaccard 0.53 0.41 0.37
Gradient Difference 0.88 0.76 0.66

FIG. 3. Mean Euclidean distance of six of the twelve similarity measure
Experiment 1, in which the number of prior masses inside the search r

varied with the region sizesrefer to Table Id.

Medical Physics, Vol. 32, No. 2, February 2005
f

e
e

e

e

therefore varied and was given in Table I. The performa
results of the twelve similarity measures are presente
Tables II–IV and Figs. 3–6. The mean Euclidean distanc
Pearson’s correlation coefficient was 3.1 mm for the sma
search region size, 4.1 mm for the original search region
s24.8 mm324.8 mmdand 7.5 mm in the largest search
gion size, while for mutual informationsscaleddthe results
were 3.5, 4.6, and 12.1 mm for the smallest, original
largest search regions, respectivelysTable II and Fig. 3d. Th
percentage of pairs surpassing the 50% overlap thre
were 92%, 87%, and 76% in the smallest, original, and
est search regions, respectively, using correlation, and

n

FIG. 4. Mean Euclidean distance of the remaining sixsout of twelvedsimi-
larity measures for Experiment 1, in which the number of prior ma
inside the search region varied with the region sizesrefer to Table Id.

FIG. 5. Percentage of pairs that surpass the 50% overlap threshold f
periment 1, in which the number of prior masses inside the search r

varied with the region sizesrefer to Table Id.
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524 Filev et al. : Similarity measures for automated matching of temporal masses 524
81%, and 59%, respectively, using mutual informationsTable
III and Fig. 5d. For the 75% overlap threshold the percen
of pairs were 82%, 78%, and 68% using correlation,
76%, 69%, and 50% using mutual informationsTable IV and
Fig. 6d.

In the second experiment we used a fixed subset of
pairs of the total 318 pairs applied to five different sea
region sizes. In this way we studied the effect of the incr
ing search area over the performance of the similarity m
sures for the same data set. The 269 temporal pairs we
ones for which the centroid of their mass on the prior m

FIG. 6. Percentage of pairs that surpass the 75% overlap threshold f
periment 1, in which the number of prior masses inside the search r
varied with the region sizesrefer to Table Id.

FIG. 7. Comparison of mean Euclidean distance of the twelve simi
measures for search region size of 28 mm328 mm in Experiment 1snum-
ber of prior masses inside the search region varied with the region siz
28 mm328 mm, 280 temporal pairs were usedd, Experiment 2s269 tempo

ral pairsd, and Experiment 3s318 temporal pairsd.

Medical Physics, Vol. 32, No. 2, February 2005
9
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e

mogram was inside the 24.8 mm324.8 mm search region
The location of the search regions was defined by the
two stages of the registration procedure.6 By using these 26
temporal pairs we studied the performance of the simil
measures with the additional four larger different search
gion sizes. The results are presented in Table V and
7–9. In order to limit the number of tables and figures in
paper we presented only the results for the original se
region size of 24.8 mm324.8 mmsTable Vd and the searc
region of 28 mm328 mmsFigs. 7–9d. These search regio
were selected because they were found to be in the ran
best performance when we plotted the entire curves. Fo
discussion of the performance of the similarity meas

-
n

r

FIG. 8. Percentage of pairs that surpass the 50% overlap threshold for
region size of 28 mm328 mm in Experiment 1snumber of prior masse
inside the search region varied with the region size: for 28 mm328 mm,
280 temporal pairs were usedd, Experiment 2s269 temporal pairsd, and
Experiment 3s318 temporal pairsd.

FIG. 9. Percentage of pairs that surpass the 75% overlap threshold for
region size of 28 mm328 mm in Experiment 1snumber of prior masse
inside the search region varied with the region size: for 28 mm328 mm,
280 temporal pairs were usedd, Experiment 2s269 temporal pairsd, and

Experiment 3s318 temporal pairsd.
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525 Filev et al. : Similarity measures for automated matching of temporal masses 525
with the remaining search region sizes we will use the
tive ranks of the similarity measures compared to Exp
ment 1. The mean Euclidean distance for Pearson’s co
tion coefficient was 4.1 mm in the smallest search re
size for this experiments24.8 mm324.8 mmd sTable Vdand
6.6 mm in the largest search region sizes48.8 mm
348.8 mmd, while for mutual information the results we
4.6 and 10.6 mm for the smallestsTable Vd and larges
search regions, respectively. The percentage of pairs wit
50% overlap threshold criterion were 87% and 78% in
smallest and largest search regions, respectively, using
relation, and 81% and 62%, respectively, using mutual in
mation sTable Vd. For the 75% overlap threshold criteri
the percentage of pairs were 78% and 70% using correla
and 69% and 54% using mutual informationsTable Vd. The
mean Euclidean distance for all the similarity measures
slightly smaller than the corresponding one in Experime
except for those of the 24.8 mm324.8 mm region siz
which were identical. The percentage of pairs with the 5
and the 75% overlap threshold criteria were also slightly
creased compared to the Experiment 1. However, the ra
of the similarity measures was largely the same as in the
of the Experiment 1. Occasionally, there was a swap in
ranking by one position for a small number of the simila
measures and for some of the search region sizes.

In the third experiment we used all 318 temporal p
when evaluating the similarity measures. When using
complete set of 318 pairs it is important to note that som
the masses were actually located outside of the search r
The smaller the search region was, the more masses w
be located outside of it. When a mass falls outside of
search region the function of the similarity measure is fu
since there is no chance for it to match with the prior m
and as a result large errors may occur. Here we teste
seven search region sizes as in the Experiment 1. The r
are presented again as in the above experiment for the
nal search region size of 24.8 mm324.8 mmsTable Vd and
the search region of 28 mm328 mmsFigs. 7–9d. The mea
Euclidean distance slightly increased at all correspon
search region sizes when compared to the results from
first two experiments, i.e., with the different subset of p
for each search region sizesExperiment 1dand the fixed
subset of 269 pairssExperiment 2d, respectively. Howev
the ranking of the similarity measures was very similar to
ranking of the first experiment, as can be seen from F
7–9.

The performance for the three experiments are pres
in Figs. 7–9, using the search region size of 28
328 mm. In addition, a comparison between the result
the Experiment 2 and Experiment 3 for the original se
region size of 24.8 mm324.8 mm are shown in Table V.

The robustness results for all similarity measures and
three experiments are presented in Table VI. A smaller v
of the robustness index indicates that the similarity mea

is less dependent on the search region size and thus is mo
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robust. The correlation similarity measure shows the
robustness among all twelve similarity measures in all
periments.

For all experiments described above, the current m
template was determined by the bounding box marked b
radiologist. We performed additional experiments to inve
gate the effects of a change in the current mass templat
and in the position on the similarity measure results. For
purpose, we increased the size of the current mass tem
and also shifted its center within a specified range from
center of the bounding box marked by the radiologist.
size of the template was increased in two different ways.
first methods was to add a fixed number of pixels to e
side of the bounding box—five and 10 pixelss4 and 8 mm
respectivelydwere added to the bounding box in each di
tion. The second method was to increase the size o
bounding box of the current mass by a percentage o
dimensions—an increase of 15% and 30% were evalu
Thus, overall, five different template sizes were gener
including the original bounding box marked by the radio
gist. The current template centers were shifted unifo
within specified bounds in both thex and y directions. The
bounds in thex andy directions were determined as 20%
30% of the respective dimensions of the original boun
box. Including the original unshifted bounding box, th
were three experiments based on shifting the current
plate. Thus, these three experiments in combination wit
five experiments for increasing the size of the temp
yielded a total of fifteen trials. The trials were carried out
a 28 mm328 mm prior search region. The results for th
fifteen experiments for five of the similarity measuresscor-
relation, cosine, gamma, mutual information, and increm
sign correlationdare given in Table VII. A relatively sma
change in the Euclidean distance error was observed
the template was enlarged. The largest change was ob
when 10 pixels were added to each side of the current
plate. A larger effect was observed when the centroids o
current templates were shifted. A combination of an enla
template and a larger shift gave better results than a sm
template and the same amount of shift. A possible reaso
this observation is that when it is shifted, the enlarged
plate more likely will enclose a larger portion of the ma
which will result in a more successful matching within
search region on the prior mammogram.

DISCUSSION

Each one of the three experiments serves a different
pose. In the first experiment only the temporal pairs that
the prior mass inside the search region were included i
analysis and the number of pairs will increase with incr
ing search region size. The second experiment was simi
the first in that all temporal pairs would have the prior m
inside the search region. However, it differed in that we
fixed the masses being analyzed to be those inside the s
region of 24.8 mm324.8 mm. In other words, the same 2
temporal pairs of masses were analyzed for all sizes o

research regions. This experiment separated the increased
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526 Filev et al. : Similarity measures for automated matching of temporal masses 526
chance of false matching due to the increased region
from the increasing number of masses included in the se
region. The third experiment in which all 318 temporal p
were tested modeled a more realistic situation since in
life one cannot guarantee that the prior mass will alway
inside the search region, due to the fact that the first an
second stages of the detection procedure may determi
incorrect search region.

The results from the first and the second experiments
fered from those of the third in two main ways. First,
accuracy of all of the similarity measures was higher w
the masses were guaranteed to be inside of the search r
As a result the mean Euclidean distances from the first
second experiments were lower than those from the
experiment, and conversely the percentage of pairs sur
ing the 50% and 75% overlap thresholds were higher.
ond, in the first and second experiments it was observed
the mean Euclidean distance decreased monotonically
decreasing search region size. However, in the third ex
ment several of the similarity measures had a minimum
the Euclidean distance at the search region size
24.8 mm324.8 mmsgraph not shownd. For smaller sea
region sizes the error actually increased. The explanatio
this is that as the search region size was reduced below
size an increasing number of prior masses was left outsi
the search region and could not be matched, regardles
performance of the similarity measures, thus contribu
more significantly to the error. Despite these differences
results of the three experiments lead to basically the s

TABLE VII. Mean Euclidean distance and standar
and increment sign of correlation for the increase
within a specified range from the center of the
template was increased by adding 5 and 10 pixes4
direction and by increasing the bounding box b
template centers were shifted using a shift amou
dimensions of the original bounding box in both t
unshifted bounding boxes are included.

Displacement
from the
centroid

Change in
template

size Correlation

0% 0 4.5±5.5
5 pixels 4.7±5.5
10 pixels 5.4±5.9
15% 4.4±5.1
30% 4.7±5.3

20% 0 5.4±5.7
5 pixels 5.4±5.5
10 pixels 5.9±5.8
15% 5.4±5.5
30% 5.2±5.2

30% 0 6.5±5.8
5 pixels 6.2±5.7
10 pixels 6.5±5.7
15% 6.2±5.5
30% 6.1±5.4
conclusions about the effectiveness of the different similarity
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measures. In the discussion that follows we simply cho
use the first experiment to arrive at our conclusions.

The three similarity measures that performed bestslowest
mean Euclidean distance and highest percentage of pai
ceeding the overlap thresholdsd were Pearson’s correlati
coefficient, the cosine coefficient, and Goodman
Kruskal’s Gamma coefficient. The correlation and cosine
efficients slightly outperformed the Gamma coefficient
all search region sizes. The correlation coefficient perfor
significantly spaired t-testp,0.05d better than the Gamm
coefficients for 4 search region sizes and could not r
statistical significance for the 20 mm320 mm, 28 mm
328 mm, and 40.8 mm340.8 mm sizes. The difference b
tween the cosine and the Gamma measures was statis
significant only for the search region size of 24.8
324.8 mm. The difference between the correlation co
cient and the cosine coefficient was statistically signifi
only for the 48.8 mm348.8 mm search region size and
statistically significantsp value ranged from 0.13 to 0.69d for
the remaining tested search region sizes. It may be n
however, that the mean Euclidean distance for the co
measure was slightly smaller than that for correlationsTable
II, Fig. 3d when the search region size was 24.8
324.8 mm, and slightly higher for all remaining search
gion sizes. This gap between the performance of the co
tion and cosine measures continued to grow as the size
search region increased. Thep value decreased with increa
ing search region sizes larger than 28 mm328 mm. The ro
bustness of these three measures was also the highes

iation of correlation, cosine, gamma, mutual information
e of the current mass template and shifted template center
ding box marked by the radiologist. The current mass

and 8 mm, respectivelyd to the bounding box in each
% and by 30% of the template dimension. The current
iformly distributed within 20% and 30% of the respective
y directions. Additionally, the results of the original

Cosine Gamma
Mutual

Information ISC

.6±5.8 5.0±5.6 5.4±6.5 7.2±6.5

.2±5.8 5.0±5.8 6.3±6.5 7.6±6.6

.7±6.0 5.7±5.8 6.7±6.5 8.0±6.5
.9±6.0 4.5±5.2 5.5±6.1 7.5±6.7
.0±5.5 4.9±5.4 5.9±6.2 7.5±6.4
.7±6.1 6.1±6.2 6.9±6.6 7.5±6.3
.7±5.8 5.9±6.0 7.3±7.0 7.7±6.1
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Among the three similarity measures, Pearson’s correl
had the highest robustness indexssmallest valuedof 0.08,
while the indices of the cosine and gamma coefficients
0.16 and 0.18, respectivelysTable VId.

After this first group of three similarity measures, wh
performed best, six of the remaining nine similarity meas
can be grouped together, based on their performances
second group consists of the correlation standardized b
median, the ordinal measure, both scaled and unscale
sions of mutual information, increment sign correlation,
pattern intensity. All six of these similarity measures ha
mean error in the range of 12.1–15.8 mm in the lar
search region size used. It can be observed that the co
tion standardized by the median started out with a relat
low error for the smallest search region and could even c
pete with the three similarity measures of the first group
this search region size. However, as the search region
was increased, the error of the correlation standardize
the median increased at a faster rate than did the errors
other measures in this group of six. On the other hand,
the scaled and unscaled versions of mutual informa
tended to show a relatively high level of robustness.
scaled version of the mutual information had a smaller m
Euclidean distance than the ordinal measure for all se
region sizes except for 32.8 mm332.8 mm. However, th
difference was statistically significant only for the larg
search region sizes48.8 mm348.8 mmd. The scaled versio
of the mutual information had a larger mean Euclidean
tance for search region sizes up to 28.0 mm328.0 mm than
the median correlation. The unscaled version of mutua
formation had a larger mean Euclidean distance for se
region sizes up to 40.8 mm340.8 mm than the ordinal me
sure and the median correlation. However, for the lar
search region size, the errors of both the ordinal measur
the median correlation surpassed the errors of the two m
information measures since their growth rates were hi
than the growth rates of the unscaled and scaled versio
mutual information.

A direct comparison between the scaled and the uns
versions of mutual information shows that the scaled
sions seemed to outperform the unscaled version at all s
region sizes. The difference was statistically significant
all of the search region sizes. For both versions the gr
rates of their mean Euclidean distances were relatively l
when the search region size increased. Mutual inform
proved to be a relatively robust similarity measure, howe
since it is a probability-based measure its accuracy is e
influenced by the quality of statistics used to calculate i
this case, the quality is determined by the number of
plate pixels used to construct the joint histogram. The n
ber of the template pixels in this application is relativ
small which resulted in sparse joint histograms when
number of bins was determined by alls4096dgray scale val
ues. The best results were obtained with very small num
of bins and, therefore, not so sparse joint histogram. H
ever, a small number of bins determine a small numbe
effective grey levels used to calculate the similarity meas

resulting in a coarser matching.
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The other two members of this second group of six s
larity measures are increment sign correlation and pa
intensity. The performances of these two similarity meas
were very similar. The difference between their mean Eu
ean distance was not statistically significant at any of
tested search region sizes. However, pattern intensity sh
a higher level of robustness than the increment sign co
tion, as their mean Euclidean distances grew in a relat
linear fashion.

We place the remaining three similarity measures in
third group. These measures are the rank transform, th
tended Jaccard measure, and the gradient difference me
Of these three measures the extended Jaccard proved
the most effective. At smaller search region sizes the
tended Jaccard had a larger mean Euclidean error tha
rank transform. At the search region size of 24.8
324.8 mm it had an error of 7.6 mm, about 1 mm lar
than the measures from the previous groups, and at the
est search region size it yielded an average error of 16.7
again about 1 mm higher than the measures from the p
ous group. The rank transform measure showed better r
compared to the extended Jaccard measure at the first
search region sizes. However, its mean Euclidean erro
creased much faster than that of the extended Jaccar
became significantly larger than those of the extended
card when the search region size was larger than 28
328 mm. At the largest search region size, 48.8
348.8 mm, the rank transform similarity measure ha
mean Euclidean distance of 24 mm. This was the hig
recorded error among all similarity measures for that se
region size. The rank transform with a robustness inde
1.85 was clearly the least robust of the twelve simila
measures, and was, therefore, highly ineffective for se
region sizes with dimension larger than about 30
330 mm. Finally, we can conclude that the gradient dif
ence measure is the least useful similarity measure fo
task of temporal-pair matching. For the original search
gion size of 24.8 mm324.8 mm, the mean Euclidean d
tance for the gradient difference was 11.7 mm, whic
more than 4 mm greater than the measure that had the
ond largest error. For all the other tested search region
except the largest ones48 mm348 mmd, the gradient differ
ence continued to have the highest mean Euclidean dis
For the largest search region size, the error of the gra
difference was slightly smaller than that of the rank tra
form, however, this difference was not statistically sign
cant.

The comparisons using the 50% and 75% overlap th
olds agreed with those using the mean Euclidean dist
The correlation and the cosine coefficients yielded the h
est percentages of images to surpass the 50% overlap t
old as well as the 75% overlap threshold for all the te
search region sizes. Again the Goodman and Krus
Gamma followed closely behind these two measures. T
results were also consistent with the robustness of the
larity measures, which was described previously with res

to mean Euclidean distance. The percentage of images that
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exceeded the 50% overlap threshold and the 75% ov
threshold decreased as the search region size increased
similarity measures. However, this decrease was notice
steeper for the similarity measures that were previously
scribed as less robust with respect to the mean Eucl
distance. The ordinal measure, the median correlation
the rank transform are the clearest examples of this t
The overlap threshold criteria further confirmed the inef
tiveness of the gradient difference as a similarity measur
this task.

The change of the size and position of the current m
template had relatively small effect on the similarity m
sures performance. The effect was smaller when the tem
was enlarged and slightly larger when the current tem
was shifted from the center of the bounding box marke
the radiologist.

We additionally studied whether the comparison of
similarity measures that was obtained using the searc
gions found by the first and the second stages of our r
tration algorithm is still valid if the search regions w
found by a different method. For this purpose we gener
uniform distributions of locations which served as the e
mated mass centers for the search regions in the third
of the registration algorithm. The use of the uniform dis
bution would represent a pessimistic distribution of the
ters of the search regions. Three different experiments
performed. In the first experiment, the centroids of all se
regions coincided with the true mass centroids on the
mammograms. This represented the ideal situation. In
second experiment, the centroids of the search regions
uniformly distributed within a radius of 20 pixels from t
true location of the mass centroids on prior mammogram
the third experiment, the centroids were uniformly dist
uted within a radius of 30 pixels from the true location of
mass centroids. The similarity measures that were eval
included correlation, cosine, gammaswhich were the thre
best-performed measuresd, mutual information and incre
ment sign correlation. The results of these experim
showed that the relative performance of the similarity m
sures is essentially independent of the method used i
original study to find the location of the search region. E
though the mean Euclidean error increased as the rad
the uniform distribution increased from 0 to 30 pixels,
order of the similarity measures was not changedsFig. 10d.
The mean Euclidean error at a search region siz
24.8 mm324.8 mm for correlation was 3.5, 4.2, a
5.0 mm for the experiments one, two, and three, respect
and 4.1 mm for the original distribution from the first a
second stages. The mean Euclidean error was higher f
similarity measures when the radius of the uniform distr
tion was increased from 20 pixels to 30 pixels.

CONCLUSION

The results of our study indicate that the best simila
measure which can be used in the third stage of the reg
tion technique developed by Hadjiiskiet al.6 is the Pearson

correlation coefficient. The two other similarity measures
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that can match the performance of the Pearson’s correl
without significantly sacrificing accuracy and robustness
the cosine coefficient and Goodman and Kruskal’s Ga
coefficient. The mean Euclidean distance for the Pear
correlation was 3.1 mm in the smallest search reg
4.1 mm for the original search regions24.8 mm
324.8 mmdand 7.5 mm in the largest search region, res
tively. The cosine coefficient achieved very similar result
the differences between their mean Euclidean distances
not statistically significant, except for the largest te
search region size. The Gamma coefficient was slightly
hind the correlation and cosine measures but the differ
between the Gamma coefficient and the cosine me
achieved statistical significance only for the search re
size of 24.8 mm324.8 mm. The main disadvantage of
Gamma coefficient was its slow execution when compar
that of the correlation and cosine. Furthermore we found
the widely used mutual information similarity measure is
among the most effective measures for the task of matc
masses on serial mammograms using small size temp
The mean Euclidean distance for the version of mutua
formation that had the better performance, i.e., the sc
version, was 3.8, 5.7, and 13.2 mm for the smallest, orig
and largest search region sizes, respectively. The robu
of the Pearson’s correlation, which had a robustness ind
0.08, was also superior to that of the mutual informa
sscaled versiond, which had an index of 0.39. Lastly we id
tified three similarity measures, the extended Jaccard
sure, the rank transform, and the gradient difference,
were least effective for the task of matching masses on
poral pairs of mammograms. Although matching masse
serial mammograms was the task of interest in this stud
expect that our results will have implication for sim

FIG. 10. Mean Euclidean distance of the fivesout of twelvedsimilarity mea-
sures for the experiment in which the centroids of the search regions
third stage were uniformly distributed within a radius of 16 mms20 pixelsd
from the true locations of the mass centroids on the prior mammogra
template-matching tasks that use small-sized templates.
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