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An automated image analysis tool is being developed for the estimation of mammographic breast
density. This tool may be useful for risk estimation or for monitoring breast density change in
prevention or intervention programs. In this preliminary study, a data set of 4-view mammograms
from 65 patients was used to evaluate our approach. Breast density analysis was performed on the
digitized mammograms in three stages. First, the breast region was segmented from the surrounding
background by an automated breast boundary-tracking algorithm. Second, an adaptive dynamic
range compression technique was applied to the breast image to reduce the range of the gray level
distribution in the low frequency background and to enhance the differences in the characteristic
features of the gray level histogram for breasts of different densities. Third, rule-based classification
was used to classify the breast images into four classes according to the characteristic features of
their gray level histogram. For each image, a gray level threshold was automatically determined to
segment the dense tissue from the breast region. The area of segmented dense tissue as a percentage
of the breast area was then estimated. To evaluate the performance of the algorithm, the computer
segmentation results were compared to manual segmentation with interactive thresholding by five
radiologists. A ‘‘true’’ percent dense area for each mammogram was obtained by averaging the
manually segmented areas of the radiologists. We found that the histograms of 6%~8 CC and 8
MLO views! of the breast regions were misclassified by the computer, resulting in poor segmen-
tation of the dense region. For the images with correct classification, the correlation between the
computer-estimated percent dense area and the ‘‘truth’’ was 0.94 and 0.91, respectively, for CC and
MLO views, with a mean bias of less than 2%. The mean biases of the five radiologists’ visual
estimates for the same images ranged from 0.1% to 11%. The results demonstrate the feasibility of
estimating mammographic breast density using computer vision techniques and its potential to
improve the accuracy and reproducibility of breast density estimation in comparison with the
subjective visual assessment by radiologists. ©2001 American Association of Physicists in Medi-
cine. @DOI: 10.1118/1.1376640#

Key words: mammography, computer-aided diagnosis, breast density, breast cancer risk, image
segmentation, thresholding
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I. INTRODUCTION

Breast cancer is one of the leading causes for cancer mo
ity among women.1 One in every eight women will develo
breast cancer at some point in their lives. The most succ
ful method for the early detection of breast cancer is scre
ing mammography. Currently, mammograms are analy
visually by radiologists. Because of the subjective nature
visual analysis, qualitative responses may vary from radio
gist to radiologist. Therefore, a computerized method
analyzing mammographic features would be useful a
supplement to the radiologist’s assessment. Previous
search efforts in computer-aided diagnosis~CAD! for breast
cancer detection mainly concentrated on detection and c
acterization of masses and microcalcifications on mam
grams by using computer vision techniques. It has been d
onstrated that an effective CAD algorithm can improve
diagnostic accuracy of breast cancer characterization
mammograms, which, in turn, may reduce unnecessary b
sies. In this work, we are studying the feasibility of develo
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ing a CAD system for an analysis of breast density on ma
mograms. Studies have shown that there is a strong pos
correlation between breast parenchymal density on mam
grams and breast cancer risk.2–9 The relative risk is estimated
to be about 4 to 6 times higher for women whose mamm
grams have parenchymal densities over 60% of the br
area, as compared to women with less than 5% of paren
mal densities.

An important difference between breast density as a
factor and most other risk factors is the fact that breast tis
density can be changed by dietary or hormon
interventions.6,10,11Although there is no direct evidence th
changes in mammographic breast densities will lead
changes in breast cancer risk, the strong correlation betw
breast density and breast cancer risk has prompted rese
ers to use mammographic density as an indicator for mo
toring the effects of intervention as well as for studyin
breast cancer etiology.6,11–13

Different methods have been used for the evaluation
1056…Õ1056Õ14Õ$18.00 © 2001 Am. Assoc. Phys. Med.
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mammographic breast density. Earlier studies used a sub
tive visual assessment of the breast parenchyma prim
based on the four patterns described by Wolfe2 ~N1 is com-
prised entirely of fat; P1 has up to 25% nodular densities;
has over 25% nodular mammographic densities; DY conta
extensive regions of homogeneous mammographic de
ties!. The subjectivity in classifying the mammographic p
terns introduced large variability in the risk estimation. La
studies used more quantitative estimates, such as planim
to measure the dense area in the breast manually outline
radiologists on mammograms.3,7 These studies indicate tha
the percentage~%! of mammographic densities relative
the breast area can predict the breast cancer risk more a
rately than a qualitative assessment of mammographic
terns. Warneret al.15 conducted a meta-analysis of the stu
ies published between 1976 and 1990 to investigate
effect of different methods of classification on estimates
cancer risk. They found that the mammographic parenc
mal pattern does correlate with the breast cancer risk.
magnitude of the risk varies according to the method use
evaluate the mammograms. With the quantitative estim
of mammographic density, the difference in risk between
highest and the lowest risk category is substantial and
greater than the risks associated with most other risk fac
for breast cancer. More recent studies used fractal tex
and the shape of the gray level histogram14 to quantify the
parenchymal pattern or used interactive thresholding on d
tized mammograms to segment the dense area.11,15 It was
reported that the thresholding method provided a higher
value than the texture measure or the histogram shap16

Other researchers have attempted to calculate a breast
sity index to model the radiologists’ perception.17

In clinical practice, radiologists routinely estimate th
breast density on mammograms by using the BI-RADS le
con as recommended by the American College
Radiology18 in order to provide a reference for mamm
graphic sensitivity. Because of the lack of a quantitat
method for breast density estimation, researchers often
the BI-RADS rating for monitoring responses to prevent
or interventional treatment and the associated change
breast cancer risk.19 We have found that there is a larg
interobserver variability in the BI-RADS ratings among e
perienced mammographers.20,21 An automated and quantita
tive estimation, as investigated in this study, will provide n
only an efficient means to measure mammographic den
but also a reproducible estimate that will reduce the in
and intraobserver variability of mammographic density m
surements. This image analysis tool will therefore allow
searchers to study more definitively the relationship of ma
mographic density to breast cancer risk, detection, progno
and mammographic sensitivity, and to better monitor the
sponse of a patient to preventive or interventional treatm
of breast cancers.

In this paper, we will describe the image processing te
niques used in our automated breast density segment
algorithm. The performance of the computer segmenta
was evaluated by a comparison with the average segme
Medical Physics, Vol. 28, No. 6, June 2001
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tion by 5 radiologists using interactive thresholding in t
same data set.

II. MATERIALS AND METHODS

A. Database

A data set consisting of 260 mammograms of 65 patie
was used for the development of the histogram analy
method in this study. Each case contains the cranioca
~CC! view and the mediolateral oblique~MLO! view of both
breasts of the patient. The first 50 mammograms were c
secutive screening cases from the patient files in the Rad
ogy Department at the University of Michigan. After da
analysis, it was found that there were very few dense bre
in the initial data set. An additional 15 cases visually judg
by radiologists to be dense breasts were then randomly
lected and mixed with the initial set. The images were p
cessed individually without knowing their BI-RADS categ
ries. The mammograms were acquired with mammogra
systems approved by the Mammography Quality Standa
Act ~MQSA! and were digitized with a LUMISYS 85 lase
film scanner with a pixel size of 50mm350mm and 4096
gray levels. The gray levels are linearly proportional to o
tical densities~O.D.! from 0.1 to greater than 3 O.D. units
The nominal O.D. range of the scanner is 0–4 with lar
pixel values in the digitized mammograms corresponding
low O.D. The full resolution mammograms were fir
smoothed with a 16316 box filter and subsampled by a fa
tor of 16, resulting in 800mm3800mm images of approxi-
mately 2253300 pixels in size for small films and 30
3375 pixels for large films.

B. Breast segmentation and image enhancement

The breast image is first segmented from the surround
image background by boundary detection. The detec
boundary separated the breast from other background
tures such as the directly exposed area, patient identifica
information, and lead markers. The density analysis was
formed only within the breast region. An automated bre
boundary tracking technique developed previously22,23 was
modified to improve its performance. Briefly, the techniq
used a gradient-based method to search for the breast bo
ary. The background of the image was estimated initially
searching for the largest background peak from the g
level histogram of the image. After subtracting this bac
ground level from the breast region, a simple edge was fo
by a line-by-line gradient analysis from the top to the botto
of the image. The criterion used in detecting the edge po
was the steepness of the gradient of four adjacent pi
along the horizontal direction. The steeper the gradient,
greater the likelihood that an edge existed at that correspo
ing image point. The simple edge served as a starting p
for a more accurate tracking algorithm that followed. T
tracking of the breast boundary started from approximat
the middle of the breast image and moved upward and do
ward along the boundary. The direction to search for a n
edge point was guided by the previous edge points. The e
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FIG. 1. ~a! A mammogram from our
image database;~b! the image super-
imposed with the detected breas
boundary and pectoral muscle bound
ary; ~c! the binary map of the seg-
mented breast region.
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location was again determined by searching for the ma
mum gradient along the gray level profile normal to t
tracking direction. Since the boundary tracking was guid
by the simple edge and the previously detected edge po
it could steer around the breast boundary and was less p
to diversion by noise and artifacts. The accuracy of
boundary tracking technique was evaluated in our previ
study23 by quantifying the root-mean-square differences
tween the detected and manually identified breast bou
aries. In the current study, the performance of the bound
tracking technique for this data set was determined by su
imposing the detected boundary on the breast image an
sually judged if the detected boundary coincided with
perceived breast boundary. The breast image and its bo
ary were displayed by appropriately adjusting the contr
and brightness. Incomplete, jagged and mistracked bou
aries were considered incorrect tracking.

The unexposed film area around the film edges was
tected automatically. After the breast boundary was foun
region growing algorithm was used to fill the enclosed bre
region. The result was a binary map that distinguished
breast region from the background areas. An example of
tracked breast boundary and the breast binary map is sh
in Figs. 1~a!–1~c!.

For the MLO view mammograms, an additional step h
to be performed for segmentation of the pectoral muscle.
initial edge in the pectoral region was found as the maxim
gradient point by a line-by-line gradient analysis from t
chest wall to the breast boundary. The false pectoral mu
edge points were discarded by an edge validation proc
First, a straight line was fitted to the initial edge points, a
the points that did not lie close to the fitted line were
moved. Second, the remaining edge points that were c
nected were identified by an 8-connectivity criterion. A
edge segment was removed if its direction was inconsis
with the pectoral edge direction relative to the breast ima
Finally, a second order curve was fitted to the remain
edge points to separate the pectoral muscle from the br
region. The pixels in the pectoral muscle region were
cluded from the histogram analysis and breast area calc
tion. The accuracy of the pectoral muscle detection was
judged visually in this study, similar to the method used
the breast boundary described above. Figure 1 shows
pectoral muscle trimming result for an MLO view mamm
gram.
Medical Physics, Vol. 28, No. 6, June 2001
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To facilitate histogram analysis, a dynamic range co
pression method was developed to reduce the gray l
range of the histograms. With our digitization, the gray le
els of the dense tissue are higher than those of the adi
tissue. Because of variations in exposure condition a
breast thickness near the periphery, the gray level distr
tion corresponding to the breast parenchymal pattern is
perimposed on a low frequency background that mainly r
resents the global variations in exposure. This low freque
background distorts the characteristic features of the hi
gram due to the density pattern. To reduce the distortion
adaptive dynamic range compression technique was app
to the breast image. For a given breast image,F(x,y), which
contains low frequency background and higher freque
breast tissue structures, a smoothed image,FB(x,y), was
obtained by applying a large-scale box filter toF(x,y) to
remove the high frequency components while retaining
low frequency components. The imageFB(x,y) was then
compressed by a scale factork:

FC~x,y!5kFB~x,y!. ~1!

To reconstruct the high frequency components,FC(x,y),
was subtracted from a constant gray levelG, and added to
the original image,F(x,y):

FD~x,y!5G2FC~x,y!, ~2!

FE~x,y!5FD~x,y!1F~x,y!. ~3!

Histogram analysis was applied to the dynamic-ran
compressed imageFE(x,y). Figure 2 shows an example o
the resulting images and gray level histograms obtained f
this procedure, where the size of box filter is 35335, the
scale factork is 0.5, and the constant gray levelG is the
maximum gray level of the compressed imageFC(x,y). The
values of these parameters were chosen experimentally
balance between reducing the dynamic range and preser
the image features in the compressed image.

C. Breast density segmentation and estimation

A rule-based threshold technique was developed to s
ment the dense areas from the breast background. The h
gram of the breast region on the dynamic-range-compres
mammogram was generated and smoothed. The histog
of these images in the database were analyzed to formu
an automatic thresholding routine. The histograms w
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FIG. 2. ~a! A typical mammogram from our image database;~b! the low frequency imageFB(x,y) obtained by an 35335 box filter;~c! the compressed image
FC(x,y); ~d! the inverted imageFD(x,y); ~e! the enhanced imageFE(x,y); ~f! the gray level histogram within the breast region of the original imageF(x,y);
and ~g! the gray level histogram of the breast region of the enhanced imageFE(x,y).
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grouped into four classes based on the characteristic sh
of their histograms. It was observed that the grouping co
sponded approximately to the four BI-RADS breast dens
ratings: Class I corresponded to breasts of almost entirely
Class II corresponded to scattered fibroglandular densi
Class III corresponded to heterogeneously dense and C
IV corresponded to extremely dense breasts. Example
typical histograms for these four classes are shown in Fig
The histograms seemed to follow two basic patterns. In
pattern, there was only one dominant peak, which rep
sented most of the breast structures in the breast regio
the other pattern, in addition to a large peak in the histogr
there was one or two smaller peaks on the right or left side
the large peak. In a majority of the cases, the smaller p
was distinguishable from the large one when the rand
fluctuation on the histogram was smoothed.
Medical Physics, Vol. 28, No. 6, June 2001
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1. Peak detection and feature description

The gray level histogram within the breast area was g
erated and normalized, and passed through an averaging
dow to smooth out the random fluctuations. We estima
the window size to be in the range of 30 to 50 gray levels
experimentally evaluating the histogram shapes and den
segmentation at different window sizes. Too small a wind
size cannot smooth out the fluctuation and too large a w
dow size will blur the useful features. A window size of 3
was used in this study. The second derivative of every po
on the histogram curve was computed. An example of
histogram and its second derivative curve are shown in F
4. The zero crossing locations were detected by scanning
the positive-to-negative and negative-to-positive changes
the latter curve. If the second derivative was negative
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FIG. 3. Four typical classes of histograms and the setting of gray level interval@g1 ,g2# for the threshold calculation.
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tween two zero crossing points, it indicated that a peak
isted between these two points on the histogram. Norma
as shown in Fig. 4, a peak included the peak pointP0 and
two valley pointsP1 andP2 located on the two sides of th
peak point. The peak pointP0 was determined by searchin
for the maximum histogram value between the zero cross
pointsZ2 andZ3 , and theP1 andP2 points were obtained by
searching for the point with minimum histogram value b
tween zero crossing pointsZ1 ,Z2 andZ3 ,Z4 , respectively.

The following peak features can be defined by peak po
P0 and valley pointsP1 andP2 :

Energy: E5
1

A (
i 5P1

P2

f ~ i !* f ~ i !, ~4!

left-side energy: EL5
1

A (
i 5P1

P0

f ~ i !* f ~ i !, ~5!

FIG. 4. The gray level histogram~solid curve!and the second derivative
~dot! curve.P0 is the peak point,P1 andP2 are the valley points of the pea
on the two sides of the peak pointP0 . PointsZ1 , Z2 , Z3 andZ4 are zero
crossing points on the second derivative curve, which are used for sear
the pointsP0 , P1 andP2 .
Medical Physics, Vol. 28, No. 6, June 2001
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right-side energy: ER5
1

A (
i 5P0

P2

f ~ i !* f ~ i !, ~6!

likelihood: L5E/E8, ~7!

where f (•) is the histogram,A is the total energy of the
entire histogram andA5S i 50

N f ( i )* f ( i ),N is the maximum
gray level of the histogram.E8 is the energy calculated b
approximating the histogram in the interval@P1 ,P2# using
two straight lines,P1P0 andP0P2 . The energyE of the peak
is used to compare the sizes of the peaks on the histog
higher energy means bigger size of the peak.EL andER split
the energyE into two parts from the peak point for calcula
ing the ratio of the energy in these two parts. The likeliho
L describes how close the real peak is to the triangle re
sented by the three pointsP0 , P1 andP2 .

2. Rule-based histogram classification

A rule-based histogram classifier was developed to c
sify the gray level histogram of the breast area into fo
classes. As shown in Fig. 3, a typical Class I breast is alm
entirely fat, it has a single narrow peak on the histogra
Class II has scattered fibroglandular densities, it has
peaks, other than the tail part on the left, on the histogra
with the smaller peak on the right of the bigger one. Class
is heterogeneously dense, it also has two peaks, but
smaller peak is on the left of the bigger one. Class IV
extremely dense, which has a single dominant peak on
histogram, but it is wider compared with the peak in t
Class I histogram, and a second small peak sometimes
curs to the left of the main peak.

The classification is performed in two steps. In the fi
step, the computer determines whether there is only
single peak in the histogram. The biggest peak~main peak!

ing
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PM and its location are detected by comparing the energ
the peaks on the histogram. The single peak feature is ma
determined by the energyE under the main peak and th
featuresEL and ER . If the histogram is found to have
single-peak pattern, in general, a narrow peak correspond
very fatty breast~Class I!, and a wider peak corresponds
very dense breast~Class IV!. However, in some cases, th
histogram of these two classes is very similar, as discus
below ~Fig. 9!, and it is difficult to distinguish them by the
gray level histogram distributions. Two additional image fe
tures were analyzed to classify very fatty and very de
breasts. One feature is the gray level standard deviation~Std!
in the entire breast area, defined as

Std5S 1

N (
xPMAP

(
yPMAP

„f ~x,y!2 f̄ ~x,y!…2D 1/2

, ~8!

where MAP is the breast binary map region,N is the pixel
numbers within MAP. Another feature is the number
single pixels and single pixel-size holes~NSH! counted in
the breast area of a segmented binary image using the
gest histogram peak pointPM as a threshold. For a very fatt
mammogram, the breast mainly consists of a fatty ba
ground with some fibrous structures and fibroglandular tis
scattered in the breast area. The NSH value was found t
larger ~greater than 50 pixels on average!, and Std smaller
~less than 500 on average!, compared with a mammogram o
a very dense breast.

In the second step, if the histogram is found to have m
than one peak, decision rules are used to decide if the se
major peak is on the left side or on the right side ofPM by
the featuresE, EL , ER andL, and the relative position of the
two peaks. If the second major peak is on the right, then
histogram is classified to be Class II; otherwise, it is clas
fied to be Class III.

3. Gray level thresholding

Gray level thresholding is essentially a pixel classificat
problem. Its objective is to classify the pixels of a give
image into two classes: one includes pixels with gray val
that are below or equal to a certain threshold; the other
cludes those with gray values above the threshold. Thre
olding is a popular tool for image segmentation, a variety
techniques have been proposed over the years. In our s
two threshold selection methods are used: one is the
criminant Analysis~DA! method24 and the other is the Maxi
mum Entropy Principle~MEP! based method.25 The DA
method assumes that the image gray levels can be class
into two classes by a threshold. To estimate the thresho
discriminant criterion based on the within-class variance
between-class variance is introduced. An optimal thresh
is selected by the discriminant criterion to maximize t
separability of the resultant classes in terms of gray lev
This method is well-suited for the cases where the gray le
histogram is bimodal. In an ideal situation, the histogram
a deep and sharp valley between the two peaks represe
objects and background, respectively, and the optimum
responds to the gray level at the bottom of this valley.
Medical Physics, Vol. 28, No. 6, June 2001
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more detailed description of the DA method can be found
Appendix A.

For the MEP method, the optimal threshold value is d
termined by maximizing thea posteriori entropy subject to
certain inequality constraints that are derived by means
special measures characterizing the uniformity and the sh
of the regions in the image. As is well-known,26 the maxi-
mum a posterioriprobability can serve as a criterion to s
lect a priori probability distributions when very little is
known about the probability distribution. Compared with t
DA method, MEP can provide a better thresholding resul
the gray level histogram does not have a bimodal distri
tion. A more detailed description of the MEP method can
found in Appendix B.

The gray level histograms of the mammograms in o
study are very complex, the histogram may be unimod
bimodal or multi-modal. It is difficult to select an appropria
threshold by one general threshold selection method. Th
fore, we combined both the DA and the MEP methods,
select a threshold according to the characteristic feature
the histogram that has been classified into one of the f
classes. Supposef (g) is the gray level histogram of the
breast area. LetT5Method(f (g)ug1,g,g2) represent the
threshold,T, that is selected by use of Method in the interv
@g1 ,g2# of the histogramf (g), where Method can be eithe
the DA or MEP method. The settings of the interval@g1 ,g2#
for the four classes are discussed below and shown in Fig

Class I: The histogram is unimodal so that the threshol
selected as

T5MEP~ f ~g!ug1,g,g2!,

where,g1 is the main peak point;g2 is the valley point on
the right side of main peak.

Class II: The histogram is not unimodal and the histogr
is classified as Class II; the threshold is selected by avera
two thresholds that are computed in two different intervals
the histogram by the DA method:

T15DA~ f ~g!ug.g1!,

T25DA~ f ~g!ug.g2!,

T5~T11T2!/2,

whereg1 is the valley on the left of the main peak;g2 is the
main peak point.

Class III: The histogram is not unimodal; there are tw
possibilities in the histogram distribution: there is a vall
between the main peak and its left side peak, as show
Fig. 3, or no obvious valley exists between the main pe
and its left side peak. In two different intervals of the hist
gram, two thresholds are computed as

T15DA~ f ~g!ug1,g,g2!,

T25DA~ f ~g!ug18,g,g2!,

whereg1 is the left valley point of the left-side peak (PLM)
of the main peak,g18 is the peak point ofPLM andg2 is right
valley point of the main peak. If there is an obvious valle
T5(T11T2)/2, otherwiseT5T1 .
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Class IV: Since the histogram is considered unimodal,
threshold is computed by the MEP method,T
5MEP„f (g)ug1,g,g2…, where,g1 is the left valley point
of the main peak;g2 is the main peak point.

D. Radiologists’ segmentation of dense breast tissue

In order to evaluate the accuracy of the computer segm
tation method, the computer segmentation results were c
pared to radiologists’ manual segmentation in the data se
65 patient cases. Details of the observer study for estima
of the breast density and statistical analysis of the res
were discussed elsewhere.27 Briefly, a graphical interface
was developed for displaying the mammograms and rec
ing the observer’s evaluation. The CC-view and MLO-vie
mammograms for a given breast were displayed side
side; a radiologist observer examined the mammograms
gave a BI-RADS rating and a visual estimation of the p
cent breast density with 10% increments. After the subjec
evaluation, each view was displayed sequentially, toge
with the histogram of the dynamic-range-compressed ima
The radiologist would interactively choose a threshold
moving a slider along the abscissas of the histogram p
The segmented binary image, displayed side-by-side with
mammogram, would change instantaneously when
threshold was changed. The radiologist could inspect if
segmented area corresponded to the dense area on the
mogram. Once the radiologist was satisfied with the segm
tation of the dense area, the gray level threshold and
percent dense area derived from this threshold were
corded. The display then moved to the next view of the sa
breast for evaluation. The mammograms of the other br
for the same patient would then be displayed and evalu
in the same way. The entire process was repeated for
patient until all patients in the data set were evaluated.

Five MQSA-approved radiologists participated in the e
periment. To familiarize the radiologists with the procedu
and to assist them in their visual estimation of the perc
breast density, we had them trained on a separate set o
patient cases prior to the evaluation of the actual data
During the training session, the computer displayed the p
cent breast dense area to the radiologist, which was obta
by the radiologist’s interactive thresholding of the imag
The radiologist could then compare the manually segmen
percentage with their visually assessed percent density
the image. This feedback helped ‘‘calibrate’’ the radiol
gists’ visual estimates of the percent dense breast area.
percent dense area obtained by interactive thresholding
not displayed during the actual study.

III. RESULTS

An example of a typical mammogram from each of t
four classes and its corresponding enhanced image, its h
gram, the selected threshold and the segmented image
shown in Figs. 5~a!–5~d!, respectively.

The average percent breast density obtained from ma
segmentation by the five trained radiologists for each ma
mogram was used as the ‘‘true standard’’ of the perc
Medical Physics, Vol. 28, No. 6, June 2001
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breast density for that mammogram. The breast region
segmented by the breast boundary tracking technique,
the pectoral muscle was trimmed for the MLO-view mam
mograms. The breast boundary was accurately tracked
92.3% ~240/260! of the mammograms, and the pector
muscle was correctly trimmed on 74.6%~97/130! of the
MLO views. The histograms of 6%~8 CC views and 8 MLO
views! of the breast regions did not exhibit the typical cha
acteristic features of the four classes and were misclass
by the computer, resulting in poor segmentation of the de
region.

Figure 6 shows a comparison of the percent breast den
visually estimated by radiologists against the true stand
for the 94% of the 260 mammograms that were classifi
correctly by the computer. Table I summarizes the comp
son of the radiologists’ visual estimates with the true st
dard. The ‘‘difference’’ between the estimated % breast d
sity and the true standard was calculated for each case,
the mean and the standard deviation of this difference o
all cases were estimated for each radiologist and show
the table. Therefore, the mean difference was the ave
bias of the estimated % breast density from the true stand
over all images in the data set. It can be seen that almos
radiologists had a positive bias, on average, when they v
ally estimated mammographic density, except for Radio
gist 5 who had a small negative average bias on the CC-v
reading. For a given radiologist, the over-estimation
creased as the breast density increased. Although the c
lation coefficients were high, ranging from 0.90 to 0.95, t
deviations from the diagonal line were systematic. The av
age bias from the true standard varied from less than 1%
11%, depending on the radiologist. The root-mean-squ
~RMS! errors of the five radiologists relative to the true sta
dard ranged from 7.5% to 16.3%.

Figure 7 shows the comparison of the percent breast d
sity between the computer segmentation and the true s
dard for the 94% of mammograms whose histograms w
considered to be correctly classified. There was a trend
over-estimation in the very fatty breasts. In the mediu
dense range, the variances from the true standard were
Some images had a large deviation from the diagonal l
indicating that the threshold was incorrectly determine
Table II summarizes the comparison between the comp
performance and the true standard. For the CC views w
correct histogram classification, the correlation between
computer-estimated percent dense area and the true pe
breast density was 0.94, and between the computer and
radiologists’ average visual estimate was 0.87~not plotted!.
These correlation coefficients were 0.91 and 0.82, resp
tively, for the MLO views with correct classification. Al
though the correlation coefficients of the computer segm
tation with the true standard were not better than those of
visual estimates, the average biases of the computer seg
tation from the true standard were less than 2%, which w
substantially less than those of visual estimates~Table I!.
This indicates that computerized segmentation is a good
ternative to manual segmentation although variances of
automated method will need to be further reduced. The R
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FIG. 5. Four classes of typical mammograms and corresponding enhanced and segmented image, histogram and threshold.
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errors of the computer segmentation were also less
those of the radiologists’ visual estimates, at 6.1% and 7.
respectively, for the CC view and MLO view, when the h
tograms were correctly classified. The biases and RMS er
for the different subsets of images are also shown in Tabl
It can be seen that correct histogram classification was
most important factor in reducing the biases and the R
errors. The contributions by breast boundary detection
pectoral muscle segmentation were minor, on average,
improving the estimation of the percent dense breast are

Figure 8 shows the comparison of the individual radio
gists’ manual segmentation against the true standard. Fo
views, the RMS difference in the percent breast density
Medical Physics, Vol. 28, No. 6, June 2001
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tween an individual radiologist’s manual segmentation a
the true standard varied from 2.9% to 5.9% among the
radiologists. For MLO views, the RMS difference varie
from 2.8% to 6.2%. The average biases of the five radio
gists ranged from22.8% to 2.2% for the CC views and from
23.1% to 3.0% for the MLO views. The maximum biases
the five radiologists varied from 4.4% to 22.6% for the C
views and from 5.2% to 23% for the MLO views.

The five radiologists provided BI-RADS density rating
for each breast. Although the BI-RADS ratings exhibit
large inter-observer variations,20 it is interesting to compare
the computer’s histogram classification with the BI-RAD
ratings. Since there were 260 images, each with 5 radi
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gists’ ratings, there were a total of 1300 rating compariso
The comparison of the computer and the radiologis
BI-RADS ratings is shown in Table III. It was found tha
87.4%of Class I classification have BI-RADS ratings 1 or
92.0% of Class II classifications have density ratings 2 o
83.4% of Class III classifications have density ratings 3 o

FIG. 6. A comparison of the percent breast density between five radiolog
visual estimates and the true standard. The dashed line represents the
regression of all data points on the plot. The MLO view is shown. The tr
for the CC view is similar.
Medical Physics, Vol. 28, No. 6, June 2001
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and 57.1% of Class IV classifications have density rating
More detailed analysis of the variability of radiologists’ B
RADS ratings was discussed by Martinet al.21

IV. DISCUSSION

Radiologists routinely estimate mammographic bre
density using the four BI-RADS categories. In studies th
require breast density estimation, radiologists’ visual e
mates of mammographic density were often used as the
sity measure. Our observer study indicates that interobse
variation between the BI-RADS ratings of five experienc
radiologists ranged from21 to 11. The subjectively esti-
mated percent dense area can deviate from the true stan
by as much as 40%, as shown in Fig. 6. These results i
cate the need to develop an objective method for the esti
tion of mammographic breast density in order to improve
accuracy and reproducibility of the estimation. A comput
ized image analysis method for mammographic breast d
sity estimation will be a useful tool for study of breast canc
risk factors and for monitoring the change of breast can
risk with preventive or interventional treatments.

In this study, we used the average of the percent bre
area obtained with interactive thresholding by five expe
enced radiologists as the true standard. The gray level thr
olding method used in this study could achieve a reason
segmentation of the dense areas on the mammogram bec
the image was preprocessed with dynamic range comp
sion. The image-based analysis of breast density will
provide the actual percentage of fibroglandular tissue in
breast volume. However, the previous studies that es

s’
ear

d

true
the true
TABLE I. A comparison of the radiologists’ visual estimate of mammographic breast density with the
standard. The ‘‘difference’’ was defined as the difference between the estimated % breast density and
standard for each case, and the mean and the standard deviation of this difference are tabulated.

Image subsets
No. of
images Radiologist Correlation

RMS
error

Mean
difference

Std. dev. of
difference

CC view:
All 130 Rad. 1 0.942 13.3% 6.9% 11.5%

Rad. 2 0.931 14.5% 9.8% 10.7%
Rad. 3 0.923 13.3% 6.3% 11.8%
Rad. 4 0.934 7.5% 2.9% 7.0%
Rad. 5 0.901 9.6% 21.4% 9.6%

Histogram 122 Rad. 1 0.946 13.7% 7.2% 11.3%
correctly Rad. 2 0.936 14.7% 10.3% 10.8%
classified Rad. 3 0.929 14.2% 6.7% 11.6%

Rad. 4 0.929 7.7% 3.1% 7.1%
Rad. 5 0.900 9.7% 21.3% 9.4%

MLO view:
All 130 Rad. 1 0.933 14.5% 8.3% 12.0%

Rad. 2 0.914 16.1% 11.2% 11.5%
Rad. 3 0.915 14.4% 7.7% 12.2%
Rad. 4 0.919 8.8% 4.3% 7.7%
Rad. 5 0.910 9.2% 0.1% 9.2%

Histogram 122 Rad. 1 0.932 15.0% 8.3% 12.0%
correctly Rad. 2 0.914 16.3% 10.9% 11.4%
classified Rad. 3 0.919 14.7% 7.8% 12.2%

Rad. 4 0.916 9.0% 4.3% 7.7%
Rad. 5 0.909 9.4% 0.3% 9.2%
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lished the correlation between breast density and breast
cer risk were all based on mammographic density. This
dicated that mammographic density is a sufficiently sensi
marker for breast cancer risk, although it may be less ac
rate than volumetric density. An actual measurement of
percentage of fibroglandular tissue volume in the breast,
example, by x-ray penetration with correction for scatter a
beam hardening, is difficult because it requires accu
x-ray sensitometry or phantom calibration for each ima
These requirements will limit its use to a few laborator
that have specialized equipment and expert physicists. M
netic resonance breast imaging can also provide volu
measurement of dense tissue but it is expensive and not
ily accessible. It can be expected that the estimation of m
mographic breast density by a computerized image ana
method will be a more practical and viable approach, es

FIG. 7. A comparison of the percent breast density between the comp
segmentation and the true standard. The dashed line represents the
regression of the data on the plot.~a! CC view, ~b! MLO view.
Medical Physics, Vol. 28, No. 6, June 2001
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cially when direct digital mammography becomes mo
widely used in the future.

Our preliminary study indicates that breast density e
mation can be performed automatically and accurately~Fig.
7!. Although the accuracy of our current algorithm still nee
to be improved, it can be seen that the computer segme
tion can provide an estimate of the percent breast den
with a very small bias~Table II!. More importantly, com-
puter segmentation will be more reproducible and consis
than visual estimates. This will improve the sensitivity
studies that depend on evaluation of the change in mam
graphic density over time or before and after a certain tre
ment.

In this study, we reduced the spatial resolution to a pi
size of 800mm3800mm for image processing. The sma
matrix size of the reduced images improves the compu
tional efficiency. The reduction in resolution has two ma
effects: reducing the image noise and blurring the deta
Since the significant dense tissue in the breast that con
utes to the parenchyma is relatively large compared to
mm, it is not expected that processing at this pixel size w
have a strong effect on the accuracy of the estimated per
breast density. Differences in the segmented area may o
mainly along the boundary of the dense tissue region, but
effect may be averaged out statistically along boundarie
reasonable lengths. The residual errors in the estimatio
the dense area should not be substantial in comparison
the inter- and intra-radiologists’ variations in their manu
segmentation.

Successful segmentation of dense tissue depends stro
on whether a mammogram can be classified correctly in
proper class. A successful classification will likely result
the selection of a near optimal threshold. Conversely, i
mammogram is classified into a wrong class, the thresh
will be selected incorrectly. For the mammograms of ve
fatty breasts, the gray level histogram has the characteris
of Class I, which contains one large single peak. These
tograms can be distinguished relatively easily from most
the other classes of histograms if those histograms exh
the typical features. For mammograms of BI-RADS categ
2 or 3, there are scattered fibroglandular or heterogene
densities in the breast. A small peak may be located on
left or on the right, or on both sides of the main peak on
histogram. The histogram could be classified into Class
the small peak is not large enough and is not detected
second peak. Otherwise, it would be classified into Clas
or Class III, depending on the location of that small pe
relative to the main peak of the histogram. For the two-pe
pattern histogram, the DA threshold selection method is
bust if there is an obvious valley between the two peaks
the valley is flat or not obvious, averaging the two thresho
obtained by the DA method in two different intervals,
designed for this study, can reduce the chance of calcula
an incorrect threshold that differs greatly from the optimu
but it also reduces the chance of finding the optimal thre
old. Overall, the rules designed for classification of the tw
peak patterns seem to perform consistently well for this d
set. One of the difficult situations is to distinguish betwe

ter
ear
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Medical Physics, Vo
TABLE II. A comparison of computer segmentation with the true standard. The ‘‘difference’’ was defined a
difference between the estimated % breast density and the true standard for each case, and the mea
standard deviation of this difference are tabulated.

Image subsets
No. of
images Correlation

RMS
error

Mean
difference

Std. dev. of
difference

CC view:
All 130 0.746 12.3% 1.3% 12.3%
Boundary correctly tracked 120 0.780 11.4% 1.4% 11.4%
Histogram correctly classified 122 0.943 6.1% 0.2% 6.2%
Boundary and histogram correctly done 113 0.953 5.6% 0.8% 5.6%
MLO view:
All 130 0.780 11.6% 1.9% 11.5%
Boundary correctly tracked 120 0.766 11.9% 2.1% 11.7%
Histogram correctly classified 122 0.914 7.2% 1.5% 7.1%
Pectoral muscle correctly trimmed 97 0.733 11.6% 1.6% 11.6%
Boundary and histogram correctly done 112 0.912 7.2% 1.7% 7.1%
Boundary, histogram and pectoral
muscle correctly done

83 0.891 7.1% 1.9% 6.8%
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Class I and Class IV, when the histogram of a very de
breast mimics that of a very fatty breast, as shown in Fig
This image was correctly classified with the additional fe
tures, Std and NSH. However, there were other cases
failed in spite of the additional criteria. The large differen
in the optimal threshold locations between these two clas
will lead to a large error in the estimated percent breast d
sity if the histogram is misclassified. Further study is need
to more accurately distinguish these two classes.

The dynamic range reduction technique reduces the v
ability of the gray level histograms and enhances their ch
acteristics. This pre-processing facilitates the classificatio
the image into the correct class. There are many im
smoothing techniques published in the literature. Low-p
filtering with a box filter is the simplest choice. The effe

FIG. 8. A comparison of the percent breast density obtained from the
radiologists’ manual segmentation with their average for the same mam
grams. The MLO view is shown. The trend for the CC view is similar.
l. 28, No. 6, June 2001
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tiveness of background correction with a box filtered ima
depends on the box size. We found that a 35335-pixel filter
is a good balance between computation time and the c
bility to remove the high frequency components. The su
traction of the low-pass filtered image from the original im
age is a form of unsharp masking. The breast boundar
generally enhanced as shown in Fig. 2~e!. The pixels at the
enhanced breast boundary contribute a small peak to the
tail of the gray level histogram of the breast area. Moreov
if dense tissue is present close to the breast boundary, it
not be segmented correctly due to intensity reduction. Ot
low frequency estimation techniques such as wavelet dec
position will be investigated in future studies.

In this feasibility study, we used a small data set of ma
mograms to develop a rule-based classifier for the histog
analysis. Although a large fraction of the histograms ma
fest characteristic features that can be grouped into f
classes, corresponding approximately to the four BI-RA
breast density ratings, there are many exceptions. One
example is shown in Fig. 9. This causes misclassification
incorrect thresholding by the histogram classifier. It will b

e
o-

TABLE III. A comparison of computer classification and radiologist
BI-RADS breast density ratings.

Computer
classification

BI-RADS
1

BI-RADS
2

BI-RADS
3

BI-RADS
4 Total

Class I 210 262 52 16 540
~16.2%! ~20.2%! ~4%! ~1.2%! ~41.5%!

Class II 0 92 184 24 300
~0%! ~7.1%! ~14.2%! ~1.8%! ~23.1%!

Class III 1 52 167 100 320
~0.1%! ~4%! ~12.8%! ~7.7%! ~24.6%!

Class IV 5 12 43 80 140
~0.4%! ~0.9%! ~3.3%! ~6.2%! ~10.8%!

Total 216 418 446 220 1300
~16.6%! ~32.2%! ~34.3%! ~16.9%! ~100%!
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FIG. 9. The gray level histograms of two mammograms classified by radiologists as BI-RADS rating 1~upper mammogram! and BI-RADS rating 4~lower
mammogram!. The shapes of the histograms are very similar and cannot be distinguished by our current histogram analysis method. These two exa
correctly classified with the additional Std and NSH criteria.
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necessary to investigate if other classification strategies
be more effective than a rule-based method. Furthermore
have not performed a systematic study to optimize the m
parameters used in the segmentation algorithm. Further w
will be required to investigate the dependence of the segm
tation accuracy on the various parameters. The param
selection and the performance of the computer classifier
have to be improved by training with a larger data set and
generalizability evaluated with unknown cases. The gene
zation of the algorithm to images acquired with other di
tizers or direct digital mammography systems will also ne
to be investigated.

V. CONCLUSION

We are developing an image analysis method for au
mated segmentation of the dense area from mammogr
and estimation of the percent mammographic density.
preliminary study indicates the feasibility of our approac
The computer-estimated mammographic breast density
relate closely with the average manual segmentation by
experienced radiologists and the average bias is much
than that of the radiologists’ visual estimation. We ha
found that correct classification of the histogram shape
the most crucial step in our approach. The histograms
many mammograms have distinctive characteristics that
be recognized by a rule-based classifier. However, some
tograms deviate from these rules and this can lead to m
classification. A further investigation will be needed to d
sign more robust rules or classifiers to improve t
classification accuracy. Despite these limitations, we h
Medical Physics, Vol. 28, No. 6, June 2001
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demonstrated in this preliminary study that the estimation
mammographic density can be performed efficiently and
curately by the automated image analysis tool. The fully
tomated algorithm can provide an objective and reproduc
quantitative estimation of mammographic breast density
is expected to be superior to subjective visual assessmen
comparable to manual segmentation by radiologists.
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APPENDIX A: GRAY-LEVEL
THRESHOLDING—DISCRIMINANT ANALYSIS „DA…
METHOD

Suppose the probability of the gray levelni in an image
with L gray levels can be estimated as

pi5ni /N, N5(
i 51

L

ni . ~A1!

If the pixels in the image are classified into two classesC0

and C1 by the thresholdk, then the probabilities of clas
occurrence and the class mean levels are given by
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v05(
i 51

k

pi5P~k!, v15 (
i 5k11

L

pi512P~k!, ~A2!

m05(
i 51

k

ipi /v05m~k!/v0 ,

~A3!

m15 (
i 5k11

L

ipi /v15
mT2m~k!

12P~k!
,

where

P~k!5(
i 51

k

pi , m~k!5(
i 51

k

ipi and mT5(
i 51

L

ipi , ~A4!

are the zeroth- and the first-order cumulative moments of
histogram up to thekth level, and the total mean level o
original image, respectively.

The between-class variance is defined as

sB
2~k!5v0~m02mT!21v1~m12mT!2

5v0v1~m12m0!25
@mTP~k!2m~k!#2

P~k!@12P~k!#
, ~A5!

and the optimal thresholdk* is given by

sB
2~k* !5 max

1<k<L
sB

2~k!. ~A6!

APPENDIX B: GRAY-LEVEL
THRESHOLDING—MAXIMUM ENTROPY
PRINCIPLE „MEP… METHOD

Suppose the probability of the gray levelni in an image
with L gray levels can be estimated as

pi5ni /N, N5(
i 51

L

ni . ~B1!

After thresholding the image by thresholdk, thea posteriori
probability of the pixels with gray level value less thank, is
given by

F~k!5(
i 50

k

pi . ~B2!

And thea posterioriprobability of all those pixels with val-
ues greater than or equal tok is 1-F(k). Thus the Shannon
entropy of the thresholded image is

H„F~k!…52F~k!logF~k!2„12F~k!…log„12F~k!….
~B3!

The optimal thresholdk maximizesH„F(k)….
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