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A new rubber band straightening transfo(RBST) is introduced for characterization of mammo-
graphic masses as malignant or benign. The RBST transforms a band of pixels surrounding a
segmented mass onto the Cartesian pléme RBST image The border of a mammaographic mass
appears approximately as a horizontal line, and possible spiculations resemble vertical lines in the
RBST image. In this study, the effectiveness of a set of directional texture features extracted from
the RBST images was compared to the effectiveness of the same features extracted from the images
before the RBST. A database of 168 mammograms containing biopsy-proven malignant and benign
breast masses was digitized at a pixel size of 260<100um. Regions of interestROIs) con-

taining the biopsied mass were extracted from each mammogram by an experienced radiologist. A
clustering algorithm was employed for automated segmentation of each ROI into a mass object and
background tissue. Texture features extracted from spatial gray-level dependence matrices and
run-length statistics matrices were evaluated for three different regions and represenfiatibes:

entire ROI;(ii) a band of pixels surrounding the segmented mass object in the ROljiianithe

RBST image. Linear discriminant analysis was used for classification, and receiver operating char-
acteristic(ROC) analysis was used to evaluate the classification accuracy. Using the ROC curves
as the performance measure, features extracted from the RBST images were found to be signifi-
cantly more effective than those extracted from the original images. Features extracted from the
RBST images yielded an ared, ) of 0.94 under the ROC curve for classification of mammo-
graphic masses as malignant and benign.1998 American Association of Physicists in Medicine.
[S0094-2405(98)00904-3]
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[. INTRODUCTION though mammographic features are essential components of

, . i these methods, agend the personal and family history of
Mammography is the most effective method for detection Ofthe patient® are also sometimes used. Gestyal’ designed

early breast cancérHowever, the positive predictive value a classifier based on discriminant analysis and 12 mammo-

o o % 9B
of mammographlc diagnosis is only.about 15/‘.’ . Bl graphic features extracted by radiologists, and showed that
opsies performed for mammographically suspicious nonpal: o . . . L

= I the classifier can substantially increase the radiologist’'s di-
pable breast masses had positive predictive values 0f%29%

. 18 .
29%, and 2198 in three studies. As the number of patients agnostic accuracy. Wit al.™ designed a neural network

who undergo mammography increases, it will be inCreaSg:lassifier based on 14 mammographic features extracted by

ingly important to improve the positive predictive value of an experienced radiologist, and showed that its performance

the procedure in order to reduce costs and patient discomforf! c2ssifying benign and malignant lesions was higher than
A computerized algorithm that can assist radiologists in claste average performancelg)f attending and resident radiolo-
sification of mammographic abnormalities may reduce bediSts: Recently, Bakest al.™ reported the development of a
nign biopsies. classifier based on BI-RADS features of the American Col-
Masses are important indicators of malignancy on mamlege of Radiology and the personal and family history of the
mograms. In recent years, considerable effort has been geatient. The specificity of their neural network classifier was
voted to the development of computerized methods for deshown to be significantly higher than that of the radiologists
tection and classification of mammographic mas$e&®  at high sensitivity levels®
Methods for classification of mammographic masses can be Mass classification methods based on computer-extracted
categorized into two groups: one based on features extractdgatures have the advantages of objectivity and consistency,
by a radiologisf*®~'® and the other based on computer- since they rely on computerized methods for the entire analy-
extracted featureS 22 sis. However, they may also be more difficult to design.
Classification methods based on features extracted by Bhese methods usually first extract the lesion shape using
radiologist are usually designed to include all mammo-interactive or automatic methods, and then extract features
graphic signs such as masses and microcalcifications. Afrom the shape and gray-level characteristics of the lesion,
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|19

and the surrounding tissue. Brzakovat al.” classified

computer-detected suspicious regions into one of three cat- 1

. . . H
egories, namely, benign tumor, malignant tumor, or nontu- 30 { |MBENGN
mor, using their shape and intensity variations. Kilday | MALIGNANT |

w
)
et al=” extracted mass shapes using interactive gray-level EZ
thresholding, and classified them into cancer, cyst, or fi-
broadenoma categories using shape features and patient age8
Pohlmanet al?? used a region growing algorithm for tumor ~ © 1s
segmentation, and morphological features extracted from the O
segmented masses for classification. letial”* developeda 2 ™
technique to quantify the degree of spiculation of a lesion
and classified masses as malignant or benign using the spicu-
lation measures. Their computer-extracted spiculation mea- 0
sure was shown to yield higher classification accuracy than 2 3 4 5 6 7 38
the spiculation rating of an experienced radiologtst. MALIGNANCY RANKING
Typical characteristics of malignant masses include highsc 1. The distribution of the malignancy ranking of the masses in our
density, spiculated margins, and indistinct, irregular or fuzzydataset, by an experienced radiologist. 1: Very likely benign, 10: Very likely
contours. Benign breast masses tend to have sharper, wealignant.
circumscribed border¥. Automatic characterization of the
region surrounding a mass is therefore very important inl. MATERIALS AND METHODS
computer aided diagnosis. An important factor in analyzingA
the gray-level, gradient, spiculation, and texture characteris-
tics of the area around a mass is their directional dependence. The mammograms used in this study were randomly se-
For some of these characteristics, it is difficult to preservdected from the files of patients who had undergone biopsy in
significant directional information from the region surround- the Department of Radiology at the University of Michigan.
ing the mass. For example, the gradient of the opacity causedn€ criterion for inclusion of a mammogram in the data set

by a mass is radially oriented, and this makes it difficult to"VaS that the mammogram contained a biopsy-proven mass.

extract gradient and texture features from the region surl© avoid the effect of repetitive grid lines on the image tex-

rounding the mass without some preprocessing. Similarl ture, mammograms that contained grid lines caused by the

. : : . . Stationary grid of some older mammographic units were ex-
ion of spiculations i mpli he f hat th - :
detection of spiculations is complicated by the fact that the uded. The mammograms were digitized with a LUMISYS

search direction for the spiculation changes with the shape IS-1000 laser scanner at a pixel resolution of

the mass and the curvature of its margin. To overcome thiioo,umxloo,um and 4096 gray levels. The digitizer was
problem, we have lde5|gned a rubber pand Stra'ght‘?n'n@alibrated so that gray-level values were linearly propor-
transform(RBST) which maps a band of pixels surrounding i) 1o the optical densityOD) within the range of 0.1-2.8

the mass onto the Cartesian pla@erectangular regionin 4 nits, with a slope of 0.001 OD/pixel value. Outside this

the transformed image, the border of a mass is expected {ange the slope of the calibration curve decreased gradually.
appear approximately as a horizontal edge, and spiculationge g (. range of the digitizer was 0 to 3.5.

are expected to appear approximately as vertical lines. The data set in this study included 168 mammograms
The classification algorithm in this paper consisted of fourfrom 72 patients. Of the 168 mammograms, 83 contained
main steps, which wer€l) automatic extraction of the mass malignant masses, and 85 contained benign masses. Six of
shape|2) computation of the RBST imagé3) extraction of  the benign masses and 45 of the malignant masses were
texture features; an@) classification using linear discrimi- spiculated, as determined visually by a radiologist experi-
nant analysisSLDA). To study the potential advantage of enced in mammographic interpretation. Regions of interest
texture feature extraction using the RBST images, the effectROIs) containing the biopsied masses were extracted by the
tiveness of texture features extracted from the RBST imagesame radiologist from each mammogram. The size of each
for classification was compared to the effectiveness of th&ROIl was 256< 256 pixels. Our data set contained a range of
same features extracted from the region surrounding thebvious to subtle masses. The probability of malignancy of
mass in the original image. each mass, based on its mammographic appearance, was
The rest of the paper is organized as follows. In the nextanked by the radiologist on a scale of 1 to 10, where a
section, we describe our image database, and the four stefnking of 1 corresponded to the masses with the most be-
of the classification algorithm specified above. In Sec. Ill, weNigh mammographic appearance. The distribution of the ma-
present the classification results using texture features efignancy ranking of the masses is shown in Fig. 1.
tracted from different image representatidnsth or without )
the RBST). Section IV contains a discussion of these result§' Mass shape extraction
Finally, Sec. V concludes the investigation and provides a We used a pixel-by-pixel clustering algorithm followed
scope for further research. by object selection for segmentation of the ROI into a mass
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Segmented object

Region
transformed
by the RBST

EV RBST image

Fic. 3. An illustration of the RBST. The pixels along the object boundary
are mapped to the first row of the RBST image. Pixels along a normal to the
object boundary are mapped to a column of the RBST image.

C. The RBST image

The RBST maps the pixel values in a band of pixels sur-
rounding the mass onto the Cartesian plane. The mapping
C designed in this study had the following properti€$:tra-
versing a closed path at a constant distance from the detected
Fic. 2. (@) The original ROI;(b) the result of the initial segmentatioft) object border in the original image approximately corre-
segmented and grown mass object; édsmoothed mass object. sponded to moving along a row of the RBST image; énd
traveling in a direction normal to the boundary of the de-
tected object in the original image approximately corre-
sponded to moving along a column of the RBST imégig.

. . . . 3). These properties make the RBST well-suited for extract-
object and background tissue. Our segmentation algorithm "hg texture features that radiate from the borders of the mass
described in detail elsewhe?e?® Briefly, we obtained sev- O '

: ) . X The RBST consists of three main components, edge enu-
eral filtered images from the original ROI pixel values, and b 9

- ! ) eration, computation of normals, and computation of
used the orlgmall and filtered _p|xel vaIL_Jes as the_elem_ents BST pixel values. These steps are explained in detail be-
a feature vector in the clustering algorithm. The inclusion of
spatially filtered images incorporated neighborhood informa-
tion in the classification of a given pixel. 1. Edge enumeration and computation of normals

Figure 2(a)shows an ROI with a spiculated mass. The  The horder pixels of an object form a closed chain, i.e.,
segmented objects which resulted from the clustering algostarting at an arbitrary pixel, it is possible to move along the
rithm are shown in Fig. @). After clustering, the largest chain and return to the starting pixel. Conceptually, the edge
connected object among all detected objects was selecteghumeration algorithm removes pixels, one at a time, from
filled, and grown in a small region outside its boundary.the edge contour of the object, and placesxtandy coor-
Details of the region growing algorithm can be found in ourdinates of each border pixel on an edge enumeration list.
previous publication8>?® Figure 2(c)shows the result of Thus each pixel in the chain is assigned a number, which
object selection, filling, and object growing applied to Fig. corresponds to the placement of the pixel in the list.

2(b). Finally, the borders of the grown object were smoothed The algorithm starts by choosing a relatively smooth lo-
by using a morphological opening operatfdriThe opening  cation on the edge contour, as illustrated in Fig. 4. One pixel
operation for a binary image consists of the successive agpixel number 1 in Fig. %is removed from the edge chain so
plication of erosion and dilation operations. In this study,that the chain is broken. Starting at this break point, pixels
11X11 and 7X 7 pixel circular masks were used for the ero- are sequentially removed from the chain, and xhandy

sion and dilation operations, respectively. The finalcoordinates of a removed pixel are placed on an enumeration
smoothed mass object for the ROI in FidaRis shown in list. Edge enumeration terminates when one returns to the
Fig. 2(d). starting pixel after every pixel has been removed form the

In this study, we chose the parameters in the clusteringhain. Since pixel removal is sequential, consecutive pixels
and region growing algorithms such that the mass object wais the enumeration list have to be 8-connected neigibors
segmented to be slightly smaller than that which could beon the edge contour of the object. The algorithm tries to keep
visually determined on the mammogram. Thus a thin bordethe chain in one piece as long as it is possible. Thus referring
region along the mass margin was included in the RBSTo Fig. 4, pixel number 12 is followed in the list by pixel
image. Important texture and gradient information at thenumber 13, and not pixel number 24. However, when the
mass margin was therefore included in the analysis of thebject shape is complicated, for example, if the object con-
region surrounding the mass. sists of two subobjects joined together with a single bridge

Medical Physics, Vol. 25, No. 4, April 1998



519 Sahiner et al.: Computerized characterization of masses on mammograms 519

'll"wolclost!st
18 pixels 18
o Lii) i71s | BACKGROUND
15016020 5 1581161120
14 21 Py \\ 14 21
BACKGROUND 13823022 \\j Tali2aki22
12324 \ Tolli24
1081115825 1125
shi° 26271  EDGE PIXELS 8jaso 26fio7)  EDGE PIXELS
3 O 28 6f1 7 28
3.8 3.0 8 29§30 154283 Ba a4 Bl S 2930
SR R B SEGMENTED OBJECT )

SEGMENTED OBJECT

Fic. 6. Computation of RBST pixel valuep(i,j) has a distancg from the
pixel i along the normal line_(i). The (,j)th pixel value in the RBST
image is a distance-weighted average of the two closest pixgiéi1p).

Fic. 4. The edge enumeration algorithm.

pixel, it may not be possible to keep the chain in one piece.

When the chain has to be broken into two, some of the pixel® =1 confines the number of normal directions to only a
in the chain have to be repeated in the list so that one cagmall number, since the line joining two neighboring pixels
return to the starting pixel after removing all the pixels in theof a given edge pixel can occur in only a small number of
chain. The algorithm will then choose a path such that only ajirections. On the other extreme, a large valueKofnay
small number of pixels in the list are repeated. Thus referringntroduce too much smoothing, and some of the fine direc-
to Fig. 4, pixel number 17 is repeated as pixel number 19 injion changes in the mass contour may be missed. In this
the list. The number of pixels in the edge enumeration list isstudy, it was found experimentally tht=12 resulted in a
denoted adN.. Since some of the pixels may be repeated insatisfactory normal estimation for most of the mass shapes,
the list, N, is larger than or equal to the number of edgeand this value was used in the computation of all the RBST
pixels in the object. images.

The computation of the normal direction to the object is
based on the object shape and the result of the edge enumerg-
tion. For a given pixeli in the enumeration list, pixels ’
+K andi—K, occurringK places before and after pixel The basic idea behind the computation of RBST pixel
are located in the list. The normal direction to the object atvalues is as follows. Ldt (i) denote the normal to the object
edge pixeli is determined as the normal to the line joining at edge pixei, and letp(i,j) denote the point on the line
edge pixelsi+K andi—K. This procedure is illustrated L(i) which has a distancg from edge pixel (see Fig. 6.).
graphically in Fig. 5. fK=1 as in Fig. 5, only a small The value of the pixel in roy, columni of the RBST image
neighborhood of a pixel is considered for normal computads defined as the distance-weighted average of the two closest
tion, and the computed normals may be noisy. In additionpixels top(i,j) in the original image. With this definition,
the number of pixels in the enumeration It is equal to
the number of columns in the RBST image. The width of the
region desired to be transformed determines the number of
rows in the RBST image. This definition of the RBST will be
referred to as the short RBST.

One difficulty with the short RBST is that as the distance
j in the normal direction increases, the length of the closed
path surrounding the object at a constant distgnftem the
object boundary also increases. This may result in undersam-
pling and possibly a loss of information in the RBST image.
A~ EDGE PIXELS For example, each of the object border pixels in the original
Wi o ROI are mapped to the first row of the RBST image. Thus at

s By s T ' the first row, transformation from the original image to the
e R RBST image does not result in any information loss. How-
SEGMENTED OBJECT ever, whenj is large, some pixels in the original image do
not contribute to any of the pixels in the RBST image, and
) N S the information carried by these pixels will be lost. To re-
Fie. 5. Computation of normals. For each pixgthe normal direction. () 4,06 the information loss, we increased the number of col-
is perpendicular to the line joining pixels+K, i—K. For the purpose of . . . .
illustration, K is set to 1 in this figurek =12 was used in the actual calcu- UMns of the RBST image fror, (defined in the previous
lation. paragraph)to 2N.. Normals were drawn from each edge

Computation of RBST pixel values

—g— 17,19

BACKGROUND 15B 160120
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pixel of the object, as well as the midpoints between every
two pixels, and the computation of the RBST image was
performed as described in the previous paragraph. This defi
nition of the RBST will be referred to as the regular RBST.

In this study, we implemented the regular RBST as our main
transform. The classification results using the regular RBST
are presented in Sec. lll.

Depending on the size and shape of the mass, the regule
RBST image may contain more pixels than the band of pix-
els surrounding the mass in the rows adjacent to the seg !
mented mass border. The RBST pixels are computed from,
the original pixel values using distance-weighted as deFlG. 7. (a) Original image;(b) segmented mass object; afwl RBST image.
scribed above. Therefore, these extra pixels can be consid-
ered as the result of an interpolation process. To test whether

these extra piXG'S resulting from interpolation contribute tORS_ SGLD matrices were constructed from the gray_|eve|
the performance of the RBST, two options are available. Th‘?mages forR1, R2, andR3, and RLS matrices were con-
first option is to interpolate the 256256 pixel ROl to a  structed from the vertical and horizontal gradient images de-
larger size by cubic spline interpolation, and to compare thejved from the three image representations, as described be-
classification accuracy of the texture features extracted fromyy.
band of pixels in the interpolated image to that of features
extracted from the regular RBST image. The second option
is to implement the short RBST. The short RBST containsl- SCGLD texture features
half as many pixels as the regular RBST, and always has An SGLD matrix can be considered to be a two-
fewer pixels than the band of pixels surrounding the mass fodimensional histogram. The element in rowcolumnc of
convex mass shapes. The classification accuracy using thg SGLD matrix is the joint probability that gray levelsnd
short RBST can then be compared to that using the originad occur in a directiond and at a pixel pair distance of in
ROL. In this work, we have implemented this second optionthe image. The distribution of the SGLD matrix elements
for comparison, which will simplify RBST implementation if reflects the average spatial relationship of pairs of gray-level
it is found to be as effective as the regular RBST. The resultsones with respect to the distandeand directioné used in
of the comparison are presented in Sec. IV. SGLD matrix construction. For example, if the image texture
Other implementation issues are as follows. A 40-pixel-is coarse, and the distandeis small in comparison to the
wide region surrounding the mass object, which correspondgxture element, then pairs with similar gray levels are ex-
to a 4-mm-wide band, was used to determine the RBST impected to occur relatively frequently, and pairs with dissimi-
age. The size of the regular RBST image was thig 2ol-  lar gray levels are expected to occur relatively infrequently.
umns by 40 rows. As discussed in the previous subsectiorfhus the SGLD matrix will be mainly concentrated along the
the distanceK used in the computation of normals was 12. main diagonal. If, in addition, the image is relatively bright
For some large masses, some pixels in a 40-pixel-wide ban@ndicated by high pixel valug@sthen the SGLD matrix will
around the mass might fall outside the boundary of the 25@e concentrated around the lower main diagonal. SGLD tex-
X 256 pixel ROIL. In this study, if(i,j) fell outside the ROI, ture features, described in the next paragraph, extract this
the (i,j)th pixel value of the RBST image was flagged as aninformation from the SGLD matrix.
“invalid” pixel. This in effect reduced the size of the region Based on our previous studigsa bit depth of eight bits
for extraction of the texture features, as described belowwas used in the SGLD matrix construction, i.e., the least
However, since the RBST image of a large mass had a largsignificant four bits of the 12-bit pixel values were discarded.
value of N, the reduction in region size did not have a Eight texture measures, namely, correlation, energy, differ-
strong effect on the statistical properties of the texture feaence entropy, inverse difference moment, entropy, sum aver-
tures. An example of an original ROI, segmented mass obage, sum entropy, and inertia were extracted from each
ject, and the RBST image is shown in Fig. 7. SGLD matrix at eight different pixel pair distancéd=1, 2,
3, 4, 6, 8, 12, and 16and in four directiong§=0°, 45°,
90°, and 135f. Therefore, a total of 256 SGLD features were
calculated for each image representation. The formulation of
The texture features used in this study were calculatethese texture measures has been described in the
from spatial gray-level dependen¢®GLD) matrices:>42°  literature’®'4?° These features contain information about
and run-length statistic€RLS) matrices’® For comparison image characteristics such as homogeneity, contrast, and the
purposes, these matrices were computed for three image repemplexity of the imagé® For example, the energy feature,
resentations(i) the entire 256256 ROI, denoted aR1; (ii) which is the sum-of-squares of the SGLD matrix elements, is
a 40-pixel-wide band surrounding the extracted mass boundmallest when all the elements of the SGLD matrix are
ary, denoted afk2; and(iii) the RBST image obtained by equal, i.e., when all the pixel pairs occur with equal prob-
applying the RBST to the 40-pixel-wide band, denoted asability. This would indicate that the image does not have a

D. Texture features
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lot of structure. As another example, the inertia featuref. Classification
which is the moment of inertia of the SGLD matrix around Linear discriminant analys“i%szwas used to classify ma-

Its main dla%or;]al, mgajgres thleAsL).rer?d (I)f th? rr}r?atfrlx eIql’gnant and benign masses based on the extracted texture
ments around the main diagonal. A nigh vaiué o this ea,‘turefeatures. A stepwise feature selection procedure with the
means that the spread is high, which indicates that the size %inimization of Wilks' lambda(the ratio of within-group

the image' textur.e e_Iements are comparable to, or smallesrum of squares to the total sum of squaneas used as the
than the pixel pair distanag. Although such examples pro- ,qtimization criterion to select effective predictor variables.
vide an idea about the meaning of these features, it is diffiseyise feature selection is an iterative procedure, where
cult to establish a one-to-one correspondence between the,q teatyre is entered into or removed from the selected fea-
qualitative image characteristics and the extracted feafares.ture pool at each step by analyzing its effect on the selection

In this study, special care was taken in the construction Ofiterion. In the feature entry phase of a step, the available
the SGLD matrix, since some of the image representationgaiyres are entered into the selected feature pool one at a
contamgd invalid pixel values as spemfled in the previousime. The significance of the change in Wilks’ lambda, as
subsection. When the SGLD matrices were constructeqneasyred byF-statistics, when a feature is entered into the
pixel pairs involving invalid pixel values were not acCumu- gajected feature pool is compared to a threshgld The
lated in the SGLD matrix. feature with the highest significance is entered into the se-

lected feature pool only if the significance is higher tifgn

Likewise, in the feature removal phase, features that were

already selected are removed from the selected feature pool

one at a time, and the significance of change in Wilks’
2. RLS texture features lambda is compared to a threshlg,,. The feature with the

. Jeast significance is removed from the selected feature pool
RLS texture features were extracted from vertical an

horizontal dient itude i hich btai @nly if the significance is lower thaR,. Since the optimal
orizon'al gradient magnitude images, which were oblaineg,, o of theF;, andF,; parameters are not knovenpriori,
by filtering the image representation of interest by the hori-

tall dicall iented Sobel filt q i we varied both parameters, and tried to obtain the feature
zontally or vertically orniented Sobel Tters, and compuling ¢, minations that yielded the highest classification accuracy
the absolute value of the filtered image.

A level . t of . i els | for each of the three image representations. Details about the
» gray-levet un IS a Set of consecutive, colinear pixels Inapplication of stepwise linear discriminant analysis to CAD
a given direction which have the same gray-level value.

. e 1€. Acan be found in our previous publicatiots:428
run length is the number of pixels in a réThe RLS matrix A leave-one-case-out method was used to train and test

despribes the run-length.statistics for each gray-level vglue ithe classifier. In this method, all films belonging to one pa-
the image. The element in row columnc of an RLS matrix et \yere left out from the classifier design group at the

is the number of times that the gray lewelin the image  g5me time. A linear discriminant function was formed using
possesses a run lengthoin a given direction. yhe design group, and test discriminant scores were com-
Analogous to SGLD matrix computation, invalid pixel teq for the left-out films using the linear discriminant func-

values were excluded from the RLS matrix computation. If &, This process cycled through the data set until every
large bit depth is used in RLS matrix computation, the re-

_ - atient’s films were used as test films once. The test dis-
sulting run lengths are very short for all of the images, ancﬁ

g = X k riminant scores of all films were analyzed using receiver
the discriminatory power may not be high. Conversely, if th?operating characteristié€ROC) methodolog§® to evaluate

bit depth is too small, then run lengths become predomiyhe cjassifier performance. The discriminant scores of the
nantly long. In this study, it was found experimentally that &y 5jignant and benign masses were used as the decision vari-
bit depth of 5 bits in RLS matrix computation resulted in @ 51a”in theLaBROC1 program® which provided the ROC

good compromise. curve based on maximum likelihood estimation. The classi-

Five texture measures, namely, short runs emphasis, 10N ation accuracy was evaluated as the afeaunder the
runs emphasis, gray-level nonuniformity, run-length nonuniRoc curve. ThecLaBrOC progran®® was used to test the
formity, and run percentage were extracted from the vertical 4tistical significance of the difference between pairs of

and horizontal gradient images in two directiofis; 0%, and e curves obtained using texture features extracted from
6=90°. Therefore, a total of 20 RLS features were calcUrq R2 andR3 under corresponding conditions.

lated for each image representation. The definition of the

RLS texture measures used in this study can be found in th'g . . .
literature® It is possible to crudely describe the dependence Computational considerations
of these features on the image characteristics, e.g., the run Segmentation, image transformation, feature extraction,
percentage feature value is small for images with long lineaand classifier design steps of our algorithm were executed on
structures, and the gray-level nonuniformity feature value isan AlphaStation 500400-MHz Alpha chip, and the feature
small for images where runs are equally distributed throughselection step was performed on a PC compatible computer
out the gray levels. However, it is again difficult to establishwith a 90-MHz Pentium processor. The classification for the
a one-to-one correspondence between the qualitative imagmtire data set of 168 images took less than an hour, which
characteristics and the extracted features. meant that the classifier design and classification for each
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TasLE |. Classifier performance with SGLD texture features, extracted fromTasLE Il. Classifier performance with RLS texture features, extracted from
(a) R1 (the original ROI),(b) R2 (the 40-pixel-wide region surrounding the (a) R1 (the original ROI),(b) R2 (the 40-pixel-wide region surrounding the
mass), andc) R3 (the RBST image)F;, andF, values are thresholds used mass), andc) R3 (the RBST image)F;, andF values are thresholds used

in the stepwise feature selection method for entering and removing featurea the stepwise feature selection method for entering and removing features
from the selected feature pool. In general, lower thresholds result in a largerom the selected feature pool. In general, lower thresholds result in a larger

number of selected features. number of selected features.
(@) (@)
Fin Fout Num. of features Training\, TestA, Fin Fout Num. of features Training\, TestA,
1.2 1.0 13 0.85+0.03 0.7720.04 1.6 14 3 0.74+0.04 0.7020.04
1.1 1.3 17 0.879.03 0.79+0.03 1.4 1.2 4 0.74+0.04 0.7020.04
11 1.2 20 0.88:0.03 0.7820.04 1.2 1.0 5 0.75+0.03 0.700.04*
0.8 0.6 25 0.910.02 0.810.03 0.2 0.1 9 0.75+0.03 0.6720.04
0.6 0.4 26 0.91+0.02 0.79+0.03
(b)
(b) Fin Fout Num. of features Training\, TestA,
Fin Fout Num. of features Training\, TestA,
1.2 1.0 2 0.73m0.04 0.71:0.04
0.6 0.8 5 0.78+0.03 0.7420.04 0.8 0.6 5 0.76+0.04 0.7220.04°
0.73 0.73 17 0.858.03 0.79+0.03 0.6 0.4 6 0.77+0.04 0.72:0.04
0.7 0.7 21 0.90:0.02 0.83:0.03
0.6 0.4 32 0.96:0.01 0.8740.03 (c)
0.4 0.2 34 0.96+0.01 0.860.03 Fin Fout Num. of features Training\, TestA,
(© 5.2 5.0 5 0.86+0.03 0.84:0.03°
Fin Fout Num. of features Training\, TestA, 3.8 2.7 6 0.87+0.03 0.8320.03
1.2 1.0 7 0.87+0.03 0.84:0.03
2.4 2.2 9 0.92+0.02 0.89+0.03 1.0 0.8 9 0.88+0.03 0.830.03
2.2 2.0 12 0.94:0.02 0.91+0.02
0.6 0.4 18 0.95+0.02 0.9020.02
0.4 0.2 23 0.95:0.02 0.89:0.02

accuracies using the SGLD features derived from Rie

R2, andR3 image representations, respectively. The highest

) ) _ test classification result for each representation is marked

mass was performed in less than 30 s. If a trained classifier igjth an asterisk. It can be observed that the range of selected
implemented, the feature selection and classifier design stepsatures for each representation was large enough so that the
will not be needed for classifying an unknown case, and thgnaximum occurred within the range, and not at the highest

computation time will be shorter. or lowest number of selected features. The test classification
results in Table I(a), as well as those in Table) lwere
IIl. RESULTS within one standard deviation of each other. The results in

. . e . Table I(b) had a larger variation, due to the wider range in
In this section, we present classification results with tex- .

; . the number of selected features. The difference between the
ture features derived from tHe1l, R2, andR3 image repre-

sentations. Since the optimal number of features is nolf).e st classification results usifigl andR3 was statistically

known a priori, we varied theF,, andF ,,, parameters in the significant <<0.03). The difference between the best clas-

Lo L . ; -~ sification results usingr2 andR3 did not achieve statistical
stepwise linear discriminant analysis and tried to obtain a. ~..
significance. The texture features that were selected most

. I?r'equently in the SGLD feature space were difference en-
resentation. Th&,, andF, values, as well as the number of . )
tropy and inverse difference moment. Both of these features

features are tabulated for different conditions in the follow- - )

) i : o ._measure the spread of the SGLD matrix along lines parallel

ing subsections. After feature selection and classifier desig L
FQ the main diagonal. Therefore, they are measures of the
ocal nonhomogeneity of the image.

were completed, each designed classifier was applied to i
design samples, and a trainig value was obtained. Since
our database contained images from 72 different patients, 7§ RLS feature space
classifiers were trained for each feature combination in a” P
leave-one-case-out paradigm. The trainiAg values and Tables ll(a)-1l(c) show the training and test classification
their standard deviations in the following tables represent th@ccuracies using the RLS features derived fromRigR2,
averages of these quantities from the output ofitkeroc1 ~ andR3 image representations, respectively. The highest test
program over the 72 classifiers. After training and testingclassification results are marked with an asterisk. Since we
were completed on all of the films for a feature combination,had only 20 RLS texture features, the variation in the number
the testA, and its standard deviation were estimated by theof features in each table was smaller compared to that for the
LABROC1 program using the test scores. SGLD texture features. The test classification results within
each table were again within one standard deviation of each
other. The difference between the best classification results
Tables I(ayI(c) show the training and test classification using R1 andR3, as well asR2 andR3 were statistically

A. SGLD feature space
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TasLE lll. Classifier performance with combined texture features, extracted
from (a) R1 (the original RO), (b) R2 (the 40-pixel-wide region surround- z
ing the mask and(c) R3 (the RBST imagg F;, andF, values are thresh- o
olds used in the stepwise feature selection method for entering and removing IG
features from the selected feature pool. In general, lower thresholds result in <
a larger number of selected features. E
@ g
Fin Fout Num. of features Trainind\, TestA, =
18 16 8 0.82+0.03  0.7720.04 8
1.35 1.2 14 0.879.03 0.800.03 o
1.3 1.2 16 0.88:0.03 0.8120.03 w
1.2 1.0 19 0.90+0.02 0.7920.03 E
1.0 0.8 20 0.900.02 0.7820.03 [ o
0.8 0.6 30 0.92:0.02 0.80#0.03 0.0 T \ T T
0.0 0.2 0.4 0.6 0.8 1.0
b
. (b) . FALSE-POSITIVE FRACTION
in Fout Num. of features Training\, TestA, e ” ) )
Fic. 8. ROC curves foR1 (the original ROI),R2 (the 40-pixel-wide region
1.8 1.6 15 0.91+0.02 0.86+0.03 surrounding the magsandR3 (the RBST imagg Classification was per-
1.4 1.2 19 0.930.02 0.86-0.03 formed in the combined SGLD and RLS feature space.
1.2 1.0 20 0.93:0.02 0.87+0.03"
1.1 1.1 21 0.93+0.02 0.860.03
1.0 0.8 25 0.940.02 0.8620.03 tropy, inverse difference moment, and long runs emphasis
0.8 0.8 27 0.946.02  0.8520.03 were the three features that were selected most frequently in
© the combined feature space.
Fin Fout Num. of features Training\, TestA,
3.0 2.8 11 0.92+0.02  0.89-0.02 IV. DISCUSSION
26 24 14 096001 0.9420.02 We have designed and implemented a new rubber band
2.2 2.0 18 0.979.01 0.94-0.02 . . . .
16 14 20 0.986.01 0.9440 02 straightening transform, and used this transformation for

1.0 1.0 22 0.97+0.01 0.9340.02 classifying malignant and benign breast masses. Our results
showed that both SGLD features and RLS features, as well
as the combined feature set extracted from the RBST images
(R3) were significantly more effective than similar features
significant(p<<0.01 for both). Long runs emphasis and shortextracted from the entire 256256 ROI containing the mass
runs emphasis were the two features that were selected mgdR1). The RBST image was obtained by transforming a 40-
frequently in the RLS feature space. These features emphaixel (4 mm) wide band surrounding the segmented mass.
size long and short runs in the image, and therefore indicatEor this reason, we compared the classification effectiveness
the existence of long or short linear structures in the imageof texture features extracted from a 40-pixel-wide band sur-
respectively. rounding the segmented masR2) with those from the
RBST image R3). Our results showed that RLS features
extracted fromR3 were significantly more effective than
RLS features extracted froR2. The classification accuracy
Tables llli(a)-1ll(c) show the training and test classifica- using SGLD features extracted froR3 was also higher
tion accuracies using both the SGLD features and the RLS
features derived from thR1, R2, andR3 image representa-
tions, respectively. In analogy to SGLD feature selection, the 20 o
. . . Benign
range of selected features in this subsection was large .
enough so that the maximum occurred within the range. Al- B Malignant
most all of the test classification results within each table
were within one standard deviation of each other. The ROC
curves for the classifiers with the highest test accuracy,
marked by an asterisk in the tables, are plotted in Fig. 8. The
difference between the best classification results ugithg
andR3, as well asR2 andR3 were again statistically sig-
nificant (p<<0.01 for both). The distribution of the test dis-
criminant scores obtained by using features extracted from o 1A 14
the RBST images is shown in Fig. 9. By choosing an appro- 09 -06 -0

C. Combined SGLD and RLS feature space

=y
(5]
1

(8]
1

NUMBER OF MASSES
=

3 00 03 06 09

priate decision threshold on the test discriminant scores, DISCRIMINANT SCORE

more than 30% of the benign masses could correctly be idefkg, 9. The distribution of the test discriminant scores obtained by using
tified without missing any malignant masses. Difference encombined SGLD and RLS features extracted frB8) (the RBST images
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than R2, although the difference did not achieve statisticallll. The testA, scores using the SGLD, RLS, and combined
significance. In the combined feature space, we again olfeature spaces were 0.91, 0.81, and 0.93, respectively. These
served significantly higher classification accuracy with theresults are equal to, or slightly worse than the best test results
use of the RBST images. in Tables (c), ll(c), and lli(c) marked with an asterisk. The
It is expected that the texture of the region surrounding alifference between thé&, values obtained using the corre-
mass has a radial dependence, because possible speculatispending feature spaces was not statistically significant. The
and the gradient of the opacity caused by the mass are aptatistical differences between the classification results ob-
proximately radially oriented. However, most texture extrac-tained using the short RBST and tR& or R2 image repre-
tion methods are designed for texture orientations in a unisentations were similar to the differences between the regular
form direction (horizontal, vertical, or at a certain angle RBST and theR1 or R2 image representations. More pre-
between these two directionsBy transforming the region cisely, the classification results obtained using the short
surrounding a mass into an RBST image, we have attemptelBST were significantly better than those obtained using
to create a transformed image in which texture orientationdoth R1 andR2 representations in the RLS and combined
become more suitable for feature extraction using existindeature spacesp0.05). In the SGLD feature space, the
techniques. The results of this study indicate that our apdifference between the classification results using the short
proach is promising. RBST and theR1 image representation was statistically sig-
The width of the region transformed by the RBST wasnificant (p<<0.05), but the difference between the short
selected as 40 pixelgt mm) in this paper. In another publi- RBST and theR2 image representation did not achieve sta-
cation on classification of mass&sthe same size was used tistical significance. These results show that the extra pixels
inside and outside the mass for feature extraction. If theesulting from the interpolation in the computation of the
width of this band is too small, then the RBST image mayregular RBST do not provide an advantage to the RBST over
exclude some of the border regions with useful texture in thehe other image representations. This is consistent with the
original image. If the width is too large, then the statistical expectation that interpolation generally does not increase im-
feature variations of the structures far away from the massage information.
which carry little or no information on its probability of ma- The testA, values obtained from a given representation in
lignancy, may be included and degrade the classifier perfora given feature space were within one standard deviation of
mance. We did not perform a systematic study of the effeceach other. This meant that the optimal values~gf and
of the size of this region on the classification accuracy. How+,,;, and therefore the number of selected features, were not
ever, to test whether this size was a critical parameter, weritical for designing the classifiers. However, the feature
obtained RBST images for 30- and 50-pixel-wide bands, an@delection process itself is a critical component in classifica-
extracted the same set of features as discussed in Sec. Il fration, as shown in our previous stu@y/In many of the tables,
these images. With 30- and 50-pixel-wide bands, the tesbne can observe the so-called peaking phenom&hahich
classification accuracg, using the combined feature space means that when a moderate nhumber of design samples is
was 0.93 and 0.92, respectively. The difference betweeavailable for classifier design, the test accuracy first in-
these results and the best result in Tabléc)l(A,=0.94) creases, but later starts to decrease as the number of features
was not statistically significant. We therefore surmise thais increased.
the classification accuracy will not be very sensitive to this As discussed in Sec. Il, the probability of malignancy of
size. It is reasonable to expect that the size of the regioeach mass, based on the mammographic appearance, was
surrounding the mass that contains useful information aboutanked by a radiologist experienced in mammograifiy.
its malignancy will change with the size of the mass. There-1). Based on this ranking, an ROC curve was estimated using
fore, one may improve the classification results obtained inthe LABROC1 program, and plotted in Fig. 10. The figure also
this paper by adaptively changing the size of the regiorplots the ROC curve obtained by using the combined texture
transformed by the RBST depending on the size of the masgeatures extracted from the RBST images. Phevalue ob-
This will be investigated in the future. tained by the malignancy ranking of the radiologist was
The length of the RBST image in this paper wad.2 0.89+0.03. The difference between the ROC curves using
pixels, whereN, is the number of edge pixels of the seg- the computerized classification algorithrA & 0.94+0.02)
mented mass. Depending on the size and shape of the maasd the malignancy rating of the radiologist was statistically
the RBST image thus defined may contain more pixels thasignificant(two-tailed p level=0.03). This result also high-
the 40-pixel-wide band area surrounding the mass. To tedights the promise of our approach.
whether these extra pixels contribute to the performance of In this study, the ranking by the radiologist, as well as the
the RBST, we implemented a variation of the RBST termedcomputer scores, were based only on the appearance of the
the short RBST, which produces an RBST image having anass on a single mammogram. Other views of the patient,
length of N pixels. For a convex mass shape, the shorsuch as different views of the same breast, films of the other
RBST image will always have fewer pixels than the band ofbreast, previous mammograms, spot, and magnification
pixels surrounding the mass. views were not used to assist either the radiologist or the
After the computation of the short RBST images, featurecomputer. Therefore, the discussion in the previous para-
extraction, selection, and classification were performed in thgraph only compares the performances of the radiologist and
same way as the regular images, as discussed in Secs. |l atiie computer under specific laboratory conditions. The ma-
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1.0 whether the classification accuracy will decrease under these
conditions.

0.8 L An advantage of our approach compared to some recent

z

=4

o

< publicationd®? is that the mass characterization method

TR L proposed in this study is applicable to both spiculated and

w nonspiculated masses. As summarized in Table IV, at a 95%

= 0.4 | overall sensitivity level, our algorithm was able to correctly

g - diagnose 100% of the spiculated malignant masses, and 89%

E of the nonspiculated malignant masses. At the same overall

> 92 Radiologist | sensitivity level, the radiologist’'s rankings also showed

- — - -Computer 100% and 89% true-positive rates for spiculated malignant
0.0 w w ' w and nonspiculated malignant masses, respectively. However,

00 02 04 06 08 10 at this sensitivity level, the computer had a 81% specificity
FALSE-POSITIVE FRACTION (69 true negatives—68 nonspiculated and 1 spicu)aded

Fic. 10. ROC curves obtained by using the radiologist’'s malignancy ratin 0
(A,=0.8920.03) and the computer’s discriminant score outp=0.94 gthe radIOIOQISt had a 60% speuﬂm(ﬁl true negatlves—so

+0.02) with features extracted froR3 (the RBST images nonspiculated and 1 spiculated).
V. CONCLUSION

lignant and benign classification by radiologists can be ex- We have developed a new image transformation method,
pected to be more accurate when different views of the sameferred to as RBST, for the characterization of mammo-
mass are examined. The accuracy of computerized charactéiaphic masses. The results of our classification study indi-
ization is also expected to impro\/e when the features or discate that texture features extracted from the transformed im-
criminant scores obtained from different mammograms ofges are useful in differentiation of malignant and benign
the same patient are combined. However, this was not pemasses. With the best combination of texture features, the
formed in this study since our purpose was to compare théestA, value on our database of 168 mammograms reached
usefulness of the RBST with other image representationé).94. It was found that texture features extracted from the
Similarly, the ROC curves and th&, scores in Sec. Ill do transformed images were significantly more effective than

not necessarily reflect the accuracy expected to be obtainéga.tures extracted from the ROIs before the transformation.
under clinical conditions, but they show the trend that theThis demonstrates the usefulness of the RBST. Before the

RBST is useful. applicability of our approach can be tested in a clinical set-
The segmentation, feature extraction and classificatiofing, further studies need to be performed with a larger da-
methods used in this work and that of Hebal?3 are dif- tabase to investigate the generalizability of these results. The
ferent. However, in both investigations, features extracte¢ombination of information from mammograms of different
from the area surrounding the segmented mass resulted ¥ews obtained from the same patient will be investigated.
better classification accuracy compared to features extractekhe combination of texture and morphological features for
from other regions. Since the data sets are different, it i®enign and malignant characterization of masses will also be
difficult to compare the performances of the two methodsstudied.
The data set used in our study was almost twice as large as
that used by the other stud¥.Huo et al. used anad hoc = ACKNOWLEDGMENTS
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TaBLE IV. Sensitivity (Sens.)and specificity Spec. for spiculatedS), and nonspiculatedS) masses at a 95%
overall sensitivity level.

Malignant (h=83) Benign (n=285)

Overall Overall
S (h=45) NS (=38) Sens. (=83) S (=6) NS (h=79) Spec. (=85)

Computer  100%1§=45) 89% i=34) 95% (=79) 17% =1) 86% (1=68) 81% H=69)
Radiologist 100%1§=45) 89% Q=34) 95% i=79) 17% (=1) 63% (1=50) 60% (i=51)
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