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A new rubber band straightening transform~RBST! is introduced for characterization of mammo-
graphic masses as malignant or benign. The RBST transforms a band of pixels surrounding a
segmented mass onto the Cartesian plane~the RBST image!. The border of a mammographic mass
appears approximately as a horizontal line, and possible spiculations resemble vertical lines in the
RBST image. In this study, the effectiveness of a set of directional texture features extracted from
the RBST images was compared to the effectiveness of the same features extracted from the images
before the RBST. A database of 168 mammograms containing biopsy-proven malignant and benign
breast masses was digitized at a pixel size of 100mm3100mm. Regions of interest~ROIs! con-
taining the biopsied mass were extracted from each mammogram by an experienced radiologist. A
clustering algorithm was employed for automated segmentation of each ROI into a mass object and
background tissue. Texture features extracted from spatial gray-level dependence matrices and
run-length statistics matrices were evaluated for three different regions and representations:~i! the
entire ROI;~ii! a band of pixels surrounding the segmented mass object in the ROI; and~iii! the
RBST image. Linear discriminant analysis was used for classification, and receiver operating char-
acteristic~ROC! analysis was used to evaluate the classification accuracy. Using the ROC curves
as the performance measure, features extracted from the RBST images were found to be signifi-
cantly more effective than those extracted from the original images. Features extracted from the
RBST images yielded an area (Az) of 0.94 under the ROC curve for classification of mammo-
graphic masses as malignant and benign. ©1998 American Association of Physicists in Medicine.
@S0094-2405~98!00904-3#
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I. INTRODUCTION

Mammography is the most effective method for detection
early breast cancer.1 However, the positive predictive valu
of mammographic diagnosis is only about 15%–30%.2–5 Bi-
opsies performed for mammographically suspicious non
pable breast masses had positive predictive values of 296

29%,7 and 21%8 in three studies. As the number of patien
who undergo mammography increases, it will be incre
ingly important to improve the positive predictive value
the procedure in order to reduce costs and patient discom
A computerized algorithm that can assist radiologists in c
sification of mammographic abnormalities may reduce
nign biopsies.

Masses are important indicators of malignancy on ma
mograms. In recent years, considerable effort has been
voted to the development of computerized methods for
tection and classification of mammographic masses.5,9–23

Methods for classification of mammographic masses can
categorized into two groups: one based on features extra
by a radiologist,5,16–18 and the other based on compute
extracted features.19–23

Classification methods based on features extracted b
radiologist are usually designed to include all mamm
graphic signs such as masses and microcalcifications.
516 Med. Phys. 25 „4…, April 1998 0094-2405/98/25„4…
f

l-
,

-

rt.
-
-

-
e-
-

e
ed

a
-
l-

though mammographic features are essential componen
these methods, age5 and the personal and family history o
the patient16 are also sometimes used. Gettyet al.17 designed
a classifier based on discriminant analysis and 12 mam
graphic features extracted by radiologists, and showed
the classifier can substantially increase the radiologist’s
agnostic accuracy. Wuet al.18 designed a neural networ
classifier based on 14 mammographic features extracte
an experienced radiologist, and showed that its performa
in classifying benign and malignant lesions was higher th
the average performance of attending and resident radi
gists. Recently, Bakeret al.16 reported the development of
classifier based on BI-RADS features of the American C
lege of Radiology and the personal and family history of t
patient. The specificity of their neural network classifier w
shown to be significantly higher than that of the radiologi
at high sensitivity levels.16

Mass classification methods based on computer-extra
features have the advantages of objectivity and consiste
since they rely on computerized methods for the entire an
sis. However, they may also be more difficult to desig
These methods usually first extract the lesion shape u
interactive or automatic methods, and then extract featu
from the shape and gray-level characteristics of the les
516/516/11/$10.00 © 1998 Am. Assoc. Phys. Med.
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517 Sahiner et al. : Computerized characterization of masses on mammograms 517
and the surrounding tissue. Brzakovicet al.19 classified
computer-detected suspicious regions into one of three
egories, namely, benign tumor, malignant tumor, or non
mor, using their shape and intensity variations. Kild
et al.20 extracted mass shapes using interactive gray-le
thresholding, and classified them into cancer, cyst, or
broadenoma categories using shape features and patien
Pohlmanet al.22 used a region growing algorithm for tumo
segmentation, and morphological features extracted from
segmented masses for classification. Huoet al.23 developed a
technique to quantify the degree of spiculation of a les
and classified masses as malignant or benign using the s
lation measures. Their computer-extracted spiculation m
sure was shown to yield higher classification accuracy t
the spiculation rating of an experienced radiologist.23

Typical characteristics of malignant masses include h
density, spiculated margins, and indistinct, irregular or fuz
contours. Benign breast masses tend to have sharper,
circumscribed borders.24 Automatic characterization of th
region surrounding a mass is therefore very important
computer aided diagnosis. An important factor in analyz
the gray-level, gradient, spiculation, and texture characte
tics of the area around a mass is their directional depende
For some of these characteristics, it is difficult to prese
significant directional information from the region surroun
ing the mass. For example, the gradient of the opacity cau
by a mass is radially oriented, and this makes it difficult
extract gradient and texture features from the region s
rounding the mass without some preprocessing. Simila
detection of spiculations is complicated by the fact that
search direction for the spiculation changes with the shap
the mass and the curvature of its margin. To overcome
problem, we have designed a rubber band straighten
transform~RBST! which maps a band of pixels surroundin
the mass onto the Cartesian plane~a rectangular region!. In
the transformed image, the border of a mass is expecte
appear approximately as a horizontal edge, and spiculat
are expected to appear approximately as vertical lines.

The classification algorithm in this paper consisted of fo
main steps, which were~1! automatic extraction of the mas
shape;~2! computation of the RBST image;~3! extraction of
texture features; and~4! classification using linear discrimi
nant analysis~LDA!. To study the potential advantage o
texture feature extraction using the RBST images, the ef
tiveness of texture features extracted from the RBST ima
for classification was compared to the effectiveness of
same features extracted from the region surrounding
mass in the original image.

The rest of the paper is organized as follows. In the n
section, we describe our image database, and the four s
of the classification algorithm specified above. In Sec. III,
present the classification results using texture features
tracted from different image representations~with or without
the RBST!. Section IV contains a discussion of these res
Finally, Sec. V concludes the investigation and provide
scope for further research.
Medical Physics, Vol. 25, No. 4, April 1998
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II. MATERIALS AND METHODS

A. Data set

The mammograms used in this study were randomly
lected from the files of patients who had undergone biops
the Department of Radiology at the University of Michiga
The criterion for inclusion of a mammogram in the data
was that the mammogram contained a biopsy-proven m
To avoid the effect of repetitive grid lines on the image te
ture, mammograms that contained grid lines caused by
stationary grid of some older mammographic units were
cluded. The mammograms were digitized with a LUMISY
DIS-1000 laser scanner at a pixel resolution
100mm3100mm, and 4096 gray levels. The digitizer wa
calibrated so that gray-level values were linearly prop
tional to the optical density~OD! within the range of 0.1–2.8
o.d. units, with a slope of 0.001 OD/pixel value. Outside th
range, the slope of the calibration curve decreased gradu
The o.d. range of the digitizer was 0 to 3.5.

The data set in this study included 168 mammogra
from 72 patients. Of the 168 mammograms, 83 contain
malignant masses, and 85 contained benign masses. S
the benign masses and 45 of the malignant masses
spiculated, as determined visually by a radiologist expe
enced in mammographic interpretation. Regions of inter
~ROIs!containing the biopsied masses were extracted by
same radiologist from each mammogram. The size of e
ROI was 2563256 pixels. Our data set contained a range
obvious to subtle masses. The probability of malignancy
each mass, based on its mammographic appearance,
ranked by the radiologist on a scale of 1 to 10, where
ranking of 1 corresponded to the masses with the most
nign mammographic appearance. The distribution of the m
lignancy ranking of the masses is shown in Fig. 1.

B. Mass shape extraction

We used a pixel-by-pixel clustering algorithm followe
by object selection for segmentation of the ROI into a m

FIG. 1. The distribution of the malignancy ranking of the masses in
dataset, by an experienced radiologist. 1: Very likely benign, 10: Very lik
malignant.
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object and background tissue. Our segmentation algorithm
described in detail elsewhere.25,26 Briefly, we obtained sev-
eral filtered images from the original ROI pixel values, an
used the original and filtered pixel values as the elements
a feature vector in the clustering algorithm. The inclusion o
spatially filtered images incorporated neighborhood inform
tion in the classification of a given pixel.

Figure 2~a!shows an ROI with a spiculated mass. Th
segmented objects which resulted from the clustering alg
rithm are shown in Fig. 2~b!. After clustering, the largest
connected object among all detected objects was selec
filled, and grown in a small region outside its boundary
Details of the region growing algorithm can be found in ou
previous publications.25,26 Figure 2~c! shows the result of
object selection, filling, and object growing applied to Fig
2~b!. Finally, the borders of the grown object were smoothe
by using a morphological opening operation.27 The opening
operation for a binary image consists of the successive a
plication of erosion and dilation operations. In this study
11311 and 737 pixel circular masks were used for the ero
sion and dilation operations, respectively. The fina
smoothed mass object for the ROI in Fig. 2~a! is shown in
Fig. 2~d!.

In this study, we chose the parameters in the clusteri
and region growing algorithms such that the mass object w
segmented to be slightly smaller than that which could b
visually determined on the mammogram. Thus a thin bord
region along the mass margin was included in the RBS
image. Important texture and gradient information at th
mass margin was therefore included in the analysis of t
region surrounding the mass.

FIG. 2. ~a! The original ROI;~b! the result of the initial segmentation;~c!
segmented and grown mass object; and~d! smoothed mass object.
Medical Physics, Vol. 25, No. 4, April 1998
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C. The RBST image

The RBST maps the pixel values in a band of pixels s
rounding the mass onto the Cartesian plane. The map
designed in this study had the following properties:~i! tra-
versing a closed path at a constant distance from the dete
object border in the original image approximately corr
sponded to moving along a row of the RBST image; and~ii!
traveling in a direction normal to the boundary of the d
tected object in the original image approximately cor
sponded to moving along a column of the RBST image~Fig.
3!. These properties make the RBST well-suited for extra
ing texture features that radiate from the borders of the m

The RBST consists of three main components, edge e
meration, computation of normals, and computation
RBST pixel values. These steps are explained in detail
low.

1. Edge enumeration and computation of normals

The border pixels of an object form a closed chain, i.
starting at an arbitrary pixel, it is possible to move along t
chain and return to the starting pixel. Conceptually, the e
enumeration algorithm removes pixels, one at a time, fr
the edge contour of the object, and places thex andy coor-
dinates of each border pixel on an edge enumeration
Thus each pixel in the chain is assigned a number, wh
corresponds to the placement of the pixel in the list.

The algorithm starts by choosing a relatively smooth
cation on the edge contour, as illustrated in Fig. 4. One p
~pixel number 1 in Fig. 4! is removed from the edge chain s
that the chain is broken. Starting at this break point, pix
are sequentially removed from the chain, and thex and y
coordinates of a removed pixel are placed on an enumera
list. Edge enumeration terminates when one returns to
starting pixel after every pixel has been removed form
chain. Since pixel removal is sequential, consecutive pix
in the enumeration list have to be 8-connected neighbo28

on the edge contour of the object. The algorithm tries to ke
the chain in one piece as long as it is possible. Thus refer
to Fig. 4, pixel number 12 is followed in the list by pixe
number 13, and not pixel number 24. However, when
object shape is complicated, for example, if the object c
sists of two subobjects joined together with a single brid

FIG. 3. An illustration of the RBST. The pixels along the object bounda
are mapped to the first row of the RBST image. Pixels along a normal to
object boundary are mapped to a column of the RBST image.
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pixel, it may not be possible to keep the chain in one pie
When the chain has to be broken into two, some of the pix
in the chain have to be repeated in the list so that one
return to the starting pixel after removing all the pixels in t
chain. The algorithm will then choose a path such that on
small number of pixels in the list are repeated. Thus referr
to Fig. 4, pixel number 17 is repeated as pixel number 19
the list. The number of pixels in the edge enumeration lis
denoted asNe . Since some of the pixels may be repeated
the list, Ne is larger than or equal to the number of ed
pixels in the object.

The computation of the normal direction to the object
based on the object shape and the result of the edge enum
tion. For a given pixeli in the enumeration list, pixelsi
1K and i 2K, occurringK places before and after pixeli
are located in the list. The normal direction to the object
edge pixeli is determined as the normal to the line joinin
edge pixelsi 1K and i 2K. This procedure is illustrated
graphically in Fig. 5. If K51 as in Fig. 5, only a smal
neighborhood of a pixel is considered for normal compu
tion, and the computed normals may be noisy. In additi

FIG. 4. The edge enumeration algorithm.

FIG. 5. Computation of normals. For each pixeli , the normal directionL( i )
is perpendicular to the line joining pixelsi 1K, i 2K. For the purpose of
illustration,K is set to 1 in this figure.K512 was used in the actual calcu
lation.
Medical Physics, Vol. 25, No. 4, April 1998
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K51 confines the number of normal directions to only
small number, since the line joining two neighboring pixe
of a given edge pixel can occur in only a small number
directions. On the other extreme, a large value ofK may
introduce too much smoothing, and some of the fine dir
tion changes in the mass contour may be missed. In
study, it was found experimentally thatK512 resulted in a
satisfactory normal estimation for most of the mass shap
and this value was used in the computation of all the RB
images.

2. Computation of RBST pixel values

The basic idea behind the computation of RBST pix
values is as follows. LetL( i ) denote the normal to the objec
at edge pixeli , and letp( i , j ) denote the point on the line
L( i ) which has a distancej from edge pixeli ~see Fig. 6.!.
The value of the pixel in rowj , columni of the RBST image
is defined as the distance-weighted average of the two clo
pixels to p( i , j ) in the original image. With this definition
the number of pixels in the enumeration listNe is equal to
the number of columns in the RBST image. The width of t
region desired to be transformed determines the numbe
rows in the RBST image. This definition of the RBST will b
referred to as the short RBST.

One difficulty with the short RBST is that as the distan
j in the normal direction increases, the length of the clos
path surrounding the object at a constant distancej from the
object boundary also increases. This may result in unders
pling and possibly a loss of information in the RBST imag
For example, each of the object border pixels in the origi
ROI are mapped to the first row of the RBST image. Thus
the first row, transformation from the original image to th
RBST image does not result in any information loss. Ho
ever, whenj is large, some pixels in the original image d
not contribute to any of the pixels in the RBST image, a
the information carried by these pixels will be lost. To r
duce the information loss, we increased the number of c
umns of the RBST image fromNe ~defined in the previous
paragraph!to 2Ne . Normals were drawn from each edg

FIG. 6. Computation of RBST pixel values.p( i , j ) has a distancej from the
pixel i along the normal lineL( i ). The (i , j )th pixel value in the RBST
image is a distance-weighted average of the two closest pixels top( i , j ).
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520 Sahiner et al. : Computerized characterization of masses on mammograms 520
pixel of the object, as well as the midpoints between ev
two pixels, and the computation of the RBST image w
performed as described in the previous paragraph. This d
nition of the RBST will be referred to as the regular RBS
In this study, we implemented the regular RBST as our m
transform. The classification results using the regular RB
are presented in Sec. III.

Depending on the size and shape of the mass, the reg
RBST image may contain more pixels than the band of p
els surrounding the mass in the rows adjacent to the
mented mass border. The RBST pixels are computed f
the original pixel values using distance-weighted as
scribed above. Therefore, these extra pixels can be con
ered as the result of an interpolation process. To test whe
these extra pixels resulting from interpolation contribute
the performance of the RBST, two options are available. T
first option is to interpolate the 2563256 pixel ROI to a
larger size by cubic spline interpolation, and to compare
classification accuracy of the texture features extracted f
band of pixels in the interpolated image to that of featu
extracted from the regular RBST image. The second op
is to implement the short RBST. The short RBST conta
half as many pixels as the regular RBST, and always
fewer pixels than the band of pixels surrounding the mass
convex mass shapes. The classification accuracy using
short RBST can then be compared to that using the orig
ROI. In this work, we have implemented this second opt
for comparison, which will simplify RBST implementation
it is found to be as effective as the regular RBST. The res
of the comparison are presented in Sec. IV.

Other implementation issues are as follows. A 40-pix
wide region surrounding the mass object, which correspo
to a 4-mm-wide band, was used to determine the RBST
age. The size of the regular RBST image was thus 2Ne col-
umns by 40 rows. As discussed in the previous subsec
the distanceK used in the computation of normals was 1
For some large masses, some pixels in a 40-pixel-wide b
around the mass might fall outside the boundary of the
3256 pixel ROI. In this study, ifp( i , j ) fell outside the ROI,
the (i , j )th pixel value of the RBST image was flagged as
‘‘invalid’’ pixel. This in effect reduced the size of the regio
for extraction of the texture features, as described bel
However, since the RBST image of a large mass had a la
value of Ne , the reduction in region size did not have
strong effect on the statistical properties of the texture f
tures. An example of an original ROI, segmented mass
ject, and the RBST image is shown in Fig. 7.

D. Texture features

The texture features used in this study were calcula
from spatial gray-level dependence~SGLD! matrices,13,14,29

and run-length statistics~RLS! matrices.30 For comparison
purposes, these matrices were computed for three image
resentations:~i! the entire 2563256 ROI, denoted asR1; ~ii!
a 40-pixel-wide band surrounding the extracted mass bou
ary, denoted asR2; and ~iii! the RBST image obtained b
applying the RBST to the 40-pixel-wide band, denoted
Medical Physics, Vol. 25, No. 4, April 1998
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R3. SGLD matrices were constructed from the gray-le
images forR1, R2, andR3, and RLS matrices were con
structed from the vertical and horizontal gradient images
rived from the three image representations, as described
low.

1. SGLD texture features

An SGLD matrix can be considered to be a tw
dimensional histogram. The element in rowr , columnc of
an SGLD matrix is the joint probability that gray levelsr and
c occur in a directionu and at a pixel pair distance ofd in
the image. The distribution of the SGLD matrix elemen
reflects the average spatial relationship of pairs of gray-le
tones with respect to the distanced and directionu used in
SGLD matrix construction. For example, if the image textu
is coarse, and the distanced is small in comparison to the
texture element, then pairs with similar gray levels are
pected to occur relatively frequently, and pairs with dissim
lar gray levels are expected to occur relatively infrequen
Thus the SGLD matrix will be mainly concentrated along t
main diagonal. If, in addition, the image is relatively brig
~indicated by high pixel values!, then the SGLD matrix will
be concentrated around the lower main diagonal. SGLD t
ture features, described in the next paragraph, extract
information from the SGLD matrix.

Based on our previous studies,13 a bit depth of eight bits
was used in the SGLD matrix construction, i.e., the le
significant four bits of the 12-bit pixel values were discarde
Eight texture measures, namely, correlation, energy, dif
ence entropy, inverse difference moment, entropy, sum a
age, sum entropy, and inertia were extracted from e
SGLD matrix at eight different pixel pair distances,~d51, 2,
3, 4, 6, 8, 12, and 16! and in four directions~u50°, 45°,
90°, and 135°!. Therefore, a total of 256 SGLD features we
calculated for each image representation. The formulation
these texture measures has been described in
literature.13,14,29 These features contain information abo
image characteristics such as homogeneity, contrast, and
complexity of the image.29 For example, the energy featur
which is the sum-of-squares of the SGLD matrix elements
smallest when all the elements of the SGLD matrix a
equal, i.e., when all the pixel pairs occur with equal pro
ability. This would indicate that the image does not have

FIG. 7. ~a! Original image;~b! segmented mass object; and~c! RBST image.
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lot of structure. As another example, the inertia featu
which is the moment of inertia of the SGLD matrix aroun
its main diagonal, measures the spread of the matrix
ments around the main diagonal. A high value of this feat
means that the spread is high, which indicates that the siz
the image texture elements are comparable to, or sm
than the pixel pair distanced. Although such examples pro
vide an idea about the meaning of these features, it is d
cult to establish a one-to-one correspondence between
qualitative image characteristics and the extracted featur29

In this study, special care was taken in the construction
the SGLD matrix, since some of the image representati
contained invalid pixel values as specified in the previo
subsection. When the SGLD matrices were construc
pixel pairs involving invalid pixel values were not accum
lated in the SGLD matrix.

2. RLS texture features

RLS texture features were extracted from vertical a
horizontal gradient magnitude images, which were obtai
by filtering the image representation of interest by the ho
zontally or vertically oriented Sobel filters, and computi
the absolute value of the filtered image.

A gray-level run is a set of consecutive, colinear pixels
a given direction which have the same gray-level value
run length is the number of pixels in a run.30 The RLS matrix
describes the run-length statistics for each gray-level valu
the image. The element in rowr , columnc of an RLS matrix
is the number of times that the gray levelr in the image
possesses a run length ofc in a given direction.

Analogous to SGLD matrix computation, invalid pixe
values were excluded from the RLS matrix computation. I
large bit depth is used in RLS matrix computation, the
sulting run lengths are very short for all of the images, a
the discriminatory power may not be high. Conversely, if t
bit depth is too small, then run lengths become predo
nantly long. In this study, it was found experimentally tha
bit depth of 5 bits in RLS matrix computation resulted in
good compromise.

Five texture measures, namely, short runs emphasis,
runs emphasis, gray-level nonuniformity, run-length nonu
formity, and run percentage were extracted from the vert
and horizontal gradient images in two directions,u50°, and
u590°. Therefore, a total of 20 RLS features were cal
lated for each image representation. The definition of
RLS texture measures used in this study can be found in
literature.30 It is possible to crudely describe the dependen
of these features on the image characteristics, e.g., the
percentage feature value is small for images with long lin
structures, and the gray-level nonuniformity feature value
small for images where runs are equally distributed throu
out the gray levels. However, it is again difficult to establi
a one-to-one correspondence between the qualitative im
characteristics and the extracted features.
Medical Physics, Vol. 25, No. 4, April 1998
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E. Classification

Linear discriminant analysis31,32 was used to classify ma
lignant and benign masses based on the extracted tex
features. A stepwise feature selection procedure with
minimization of Wilks’ lambda~the ratio of within-group
sum of squares to the total sum of squares! was used as the
optimization criterion to select effective predictor variable
Stepwise feature selection is an iterative procedure, wh
one feature is entered into or removed from the selected
ture pool at each step by analyzing its effect on the selec
criterion. In the feature entry phase of a step, the availa
features are entered into the selected feature pool one
time. The significance of the change in Wilks’ lambda,
measured byF-statistics, when a feature is entered into t
selected feature pool is compared to a thresholdF in . The
feature with the highest significance is entered into the
lected feature pool only if the significance is higher thanF in .
Likewise, in the feature removal phase, features that w
already selected are removed from the selected feature
one at a time, and the significance of change in Wilk
lambda is compared to a thresholdFout. The feature with the
least significance is removed from the selected feature p
only if the significance is lower thanFout. Since the optimal
values of theF in andFout parameters are not knowna priori,
we varied both parameters, and tried to obtain the fea
combinations that yielded the highest classification accur
for each of the three image representations. Details abou
application of stepwise linear discriminant analysis to CA
can be found in our previous publications.13,14,26

A leave-one-case-out method was used to train and
the classifier. In this method, all films belonging to one p
tient were left out from the classifier design group at t
same time. A linear discriminant function was formed usi
the design group, and test discriminant scores were c
puted for the left-out films using the linear discriminant fun
tion. This process cycled through the data set until ev
patient’s films were used as test films once. The test
criminant scores of all films were analyzed using recei
operating characteristic~ROC! methodology33 to evaluate
the classifier performance. The discriminant scores of
malignant and benign masses were used as the decision
able in theLABROC1 program,34 which provided the ROC
curve based on maximum likelihood estimation. The clas
fication accuracy was evaluated as the areaAz under the
ROC curve. TheCLABROC program35 was used to test the
statistical significance of the difference between pairs
ROC curves obtained using texture features extracted f
R1, R2, andR3 under corresponding conditions.

F. Computational considerations

Segmentation, image transformation, feature extract
and classifier design steps of our algorithm were executed
an AlphaStation 500~400-MHz Alpha chip!, and the feature
selection step was performed on a PC compatible comp
with a 90-MHz Pentium processor. The classification for t
entire data set of 168 images took less than an hour, wh
meant that the classifier design and classification for e
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mass was performed in less than 30 s. If a trained classifi
implemented, the feature selection and classifier design s
will not be needed for classifying an unknown case, and
computation time will be shorter.

III. RESULTS

In this section, we present classification results with t
ture features derived from theR1, R2, andR3 image repre-
sentations. Since the optimal number of features is
knowna priori, we varied theF in andFout parameters in the
stepwise linear discriminant analysis and tried to obtai
range in the number of selected features for each image
resentation. TheF in andFout values, as well as the number o
features are tabulated for different conditions in the follo
ing subsections. After feature selection and classifier de
were completed, each designed classifier was applied t
design samples, and a trainingAz value was obtained. Sinc
our database contained images from 72 different patients
classifiers were trained for each feature combination i
leave-one-case-out paradigm. The trainingAz values and
their standard deviations in the following tables represent
averages of these quantities from the output of theLABROC1

program over the 72 classifiers. After training and test
were completed on all of the films for a feature combinatio
the testAz and its standard deviation were estimated by
LABROC1 program using the test scores.

A. SGLD feature space

Tables I~a!–I~c! show the training and test classificatio

TABLE I. Classifier performance with SGLD texture features, extracted fr
~a! R1 ~the original ROI!,~b! R2 ~the 40-pixel-wide region surrounding th
mass!, and~c! R3 ~the RBST image!.F in andFout values are thresholds use
in the stepwise feature selection method for entering and removing fea
from the selected feature pool. In general, lower thresholds result in a la
number of selected features.

~a!
F in Fout Num. of features TrainingAz TestAz

1.2 1.0 13 0.8560.03 0.7760.04
1.1 1.3 17 0.8760.03 0.7960.03
1.1 1.2 20 0.8860.03 0.7860.04
0.8 0.6 25 0.9160.02 0.8160.03*
0.6 0.4 26 0.9160.02 0.7960.03

~b!
F in Fout Num. of features TrainingAz TestAz

0.6 0.8 5 0.7860.03 0.7460.04
0.73 0.73 17 0.8560.03 0.7960.03
0.7 0.7 21 0.9060.02 0.8360.03
0.6 0.4 32 0.9660.01 0.8760.03*
0.4 0.2 34 0.9660.01 0.8660.03

~c!
F in Fout Num. of features TrainingAz TestAz

2.4 2.2 9 0.9260.02 0.8960.03
2.2 2.0 12 0.9460.02 0.9160.02*
0.6 0.4 18 0.9560.02 0.9060.02
0.4 0.2 23 0.9560.02 0.8960.02
Medical Physics, Vol. 25, No. 4, April 1998
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accuracies using the SGLD features derived from theR1,
R2, andR3 image representations, respectively. The high
test classification result for each representation is mar
with an asterisk. It can be observed that the range of sele
features for each representation was large enough so tha
maximum occurred within the range, and not at the high
or lowest number of selected features. The test classifica
results in Table I~a!, as well as those in Table I~c! were
within one standard deviation of each other. The results
Table I~b! had a larger variation, due to the wider range
the number of selected features. The difference between
best classification results usingR1 andR3 was statistically
significant (p,0.03). The difference between the best cla
sification results usingR2 andR3 did not achieve statistica
significance. The texture features that were selected m
frequently in the SGLD feature space were difference
tropy and inverse difference moment. Both of these featu
measure the spread of the SGLD matrix along lines para
to the main diagonal. Therefore, they are measures of
local nonhomogeneity of the image.

B. RLS feature space

Tables II~a!–II~c! show the training and test classificatio
accuracies using the RLS features derived from theR1, R2,
andR3 image representations, respectively. The highest
classification results are marked with an asterisk. Since
had only 20 RLS texture features, the variation in the num
of features in each table was smaller compared to that for
SGLD texture features. The test classification results wit
each table were again within one standard deviation of e
other. The difference between the best classification res
using R1 andR3, as well asR2 andR3 were statistically

es
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TABLE II. Classifier performance with RLS texture features, extracted fr
~a! R1 ~the original ROI!,~b! R2 ~the 40-pixel-wide region surrounding th
mass!, and~c! R3 ~the RBST image!.F in andFout values are thresholds use
in the stepwise feature selection method for entering and removing fea
from the selected feature pool. In general, lower thresholds result in a la
number of selected features.

~a!
F in Fout Num. of features TrainingAz TestAz

1.6 1.4 3 0.7460.04 0.7060.04
1.4 1.2 4 0.7460.04 0.7060.04
1.2 1.0 5 0.7560.03 0.7060.04*
0.2 0.1 9 0.7560.03 0.6760.04

~b!
F in Fout Num. of features TrainingAz TestAz

1.2 1.0 2 0.73m0.04 0.7160.04
0.8 0.6 5 0.7660.04 0.7260.04*
0.6 0.4 6 0.7760.04 0.7260.04

~c!
F in Fout Num. of features TrainingAz TestAz

5.2 5.0 5 0.8660.03 0.8460.03*
3.8 2.7 6 0.8760.03 0.8360.03
1.2 1.0 7 0.8760.03 0.8460.03
1.0 0.8 9 0.8860.03 0.8360.03
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significant~p,0.01 for both!. Long runs emphasis and sh
runs emphasis were the two features that were selected
frequently in the RLS feature space. These features em
size long and short runs in the image, and therefore indic
the existence of long or short linear structures in the ima
respectively.

C. Combined SGLD and RLS feature space

Tables III~a!–III~c! show the training and test classific
tion accuracies using both the SGLD features and the R
features derived from theR1, R2, andR3 image representa
tions, respectively. In analogy to SGLD feature selection,
range of selected features in this subsection was la
enough so that the maximum occurred within the range.
most all of the test classification results within each ta
were within one standard deviation of each other. The R
curves for the classifiers with the highest test accura
marked by an asterisk in the tables, are plotted in Fig. 8.
difference between the best classification results usingR1
and R3, as well asR2 andR3 were again statistically sig
nificant ~p,0.01 for both!. The distribution of the test dis
criminant scores obtained by using features extracted f
the RBST images is shown in Fig. 9. By choosing an app
priate decision threshold on the test discriminant sco
more than 30% of the benign masses could correctly be id
tified without missing any malignant masses. Difference

TABLE III. Classifier performance with combined texture features, extrac
from ~a! R1 ~the original ROI!, ~b! R2 ~the 40-pixel-wide region surround
ing the mass!, and~c! R3 ~the RBST image!. F in andFout values are thresh-
olds used in the stepwise feature selection method for entering and rem
features from the selected feature pool. In general, lower thresholds res
a larger number of selected features.

~a!
F in Fout Num. of features TrainingAz TestAz

1.8 1.6 8 0.8260.03 0.7760.04
1.35 1.2 14 0.8760.03 0.8060.03
1.3 1.2 16 0.8860.03 0.8160.03*
1.2 1.0 19 0.9060.02 0.7960.03
1.0 0.8 20 0.9060.02 0.7860.03
0.8 0.6 30 0.9260.02 0.8060.03

~b!
F in Fout Num. of features TrainingAz TestAz

1.8 1.6 15 0.9160.02 0.8660.03
1.4 1.2 19 0.9360.02 0.8660.03
1.2 1.0 20 0.9360.02 0.8760.03*
1.1 1.1 21 0.9360.02 0.8660.03
1.0 0.8 25 0.9460.02 0.8660.03
0.8 0.8 27 0.9460.02 0.8560.03

~c!
F in Fout Num. of features TrainingAz TestAz

3.0 2.8 11 0.9260.02 0.8960.02
2.6 2.4 14 0.9660.01 0.9460.02
2.2 2.0 18 0.9760.01 0.9460.02
1.6 1.4 20 0.9860.01 0.9460.02*
1.0 1.0 22 0.9760.01 0.9360.02
Medical Physics, Vol. 25, No. 4, April 1998
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tropy, inverse difference moment, and long runs empha
were the three features that were selected most frequent
the combined feature space.

IV. DISCUSSION

We have designed and implemented a new rubber b
straightening transform, and used this transformation
classifying malignant and benign breast masses. Our res
showed that both SGLD features and RLS features, as
as the combined feature set extracted from the RBST ima
(R3) were significantly more effective than similar featur
extracted from the entire 2563256 ROI containing the mas
(R1). The RBST image was obtained by transforming a 4
pixel ~4 mm! wide band surrounding the segmented ma
For this reason, we compared the classification effectiven
of texture features extracted from a 40-pixel-wide band s
rounding the segmented mass (R2) with those from the
RBST image (R3). Our results showed that RLS featur
extracted fromR3 were significantly more effective tha
RLS features extracted fromR2. The classification accurac
using SGLD features extracted fromR3 was also higher

FIG. 8. ROC curves forR1 ~the original ROI!,R2 ~the 40-pixel-wide region
surrounding the mass!, andR3 ~the RBST image!. Classification was per-
formed in the combined SGLD and RLS feature space.

d

ing
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FIG. 9. The distribution of the test discriminant scores obtained by us
combined SGLD and RLS features extracted fromR3 ~the RBST images!.
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than R2, although the difference did not achieve statisti
significance. In the combined feature space, we again
served significantly higher classification accuracy with
use of the RBST images.

It is expected that the texture of the region surroundin
mass has a radial dependence, because possible specul
and the gradient of the opacity caused by the mass are
proximately radially oriented. However, most texture extra
tion methods are designed for texture orientations in a u
form direction ~horizontal, vertical, or at a certain ang
between these two directions!. By transforming the region
surrounding a mass into an RBST image, we have attem
to create a transformed image in which texture orientati
become more suitable for feature extraction using exis
techniques. The results of this study indicate that our
proach is promising.

The width of the region transformed by the RBST w
selected as 40 pixels~4 mm! in this paper. In another publi
cation on classification of masses,36 the same size was use
inside and outside the mass for feature extraction. If
width of this band is too small, then the RBST image m
exclude some of the border regions with useful texture in
original image. If the width is too large, then the statistic
feature variations of the structures far away from the ma
which carry little or no information on its probability of ma
lignancy, may be included and degrade the classifier per
mance. We did not perform a systematic study of the eff
of the size of this region on the classification accuracy. Ho
ever, to test whether this size was a critical parameter,
obtained RBST images for 30- and 50-pixel-wide bands,
extracted the same set of features as discussed in Sec. II
these images. With 30- and 50-pixel-wide bands, the
classification accuracyAz using the combined feature spa
was 0.93 and 0.92, respectively. The difference betw
these results and the best result in Table III~c! (Az50.94)
was not statistically significant. We therefore surmise t
the classification accuracy will not be very sensitive to t
size. It is reasonable to expect that the size of the reg
surrounding the mass that contains useful information ab
its malignancy will change with the size of the mass. The
fore, one may improve the classification results obtained
this paper by adaptively changing the size of the reg
transformed by the RBST depending on the size of the m
This will be investigated in the future.

The length of the RBST image in this paper was 2Ne

pixels, whereNe is the number of edge pixels of the se
mented mass. Depending on the size and shape of the m
the RBST image thus defined may contain more pixels t
the 40-pixel-wide band area surrounding the mass. To
whether these extra pixels contribute to the performance
the RBST, we implemented a variation of the RBST term
the short RBST, which produces an RBST image havin
length of Ne pixels. For a convex mass shape, the sh
RBST image will always have fewer pixels than the band
pixels surrounding the mass.

After the computation of the short RBST images, featu
extraction, selection, and classification were performed in
same way as the regular images, as discussed in Secs. I
Medical Physics, Vol. 25, No. 4, April 1998
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III. The testAz scores using the SGLD, RLS, and combin
feature spaces were 0.91, 0.81, and 0.93, respectively. T
results are equal to, or slightly worse than the best test res
in Tables I~c!, II~c!, and III~c! marked with an asterisk. The
difference between theAz values obtained using the corre
sponding feature spaces was not statistically significant.
statistical differences between the classification results
tained using the short RBST and theR1 or R2 image repre-
sentations were similar to the differences between the reg
RBST and theR1 or R2 image representations. More pr
cisely, the classification results obtained using the sh
RBST were significantly better than those obtained us
both R1 andR2 representations in the RLS and combin
feature spaces (p,0.05). In the SGLD feature space, th
difference between the classification results using the s
RBST and theR1 image representation was statistically s
nificant (p,0.05), but the difference between the sho
RBST and theR2 image representation did not achieve s
tistical significance. These results show that the extra pix
resulting from the interpolation in the computation of th
regular RBST do not provide an advantage to the RBST o
the other image representations. This is consistent with
expectation that interpolation generally does not increase
age information.

The testAz values obtained from a given representation
a given feature space were within one standard deviatio
each other. This meant that the optimal values ofF in and
Fout, and therefore the number of selected features, were
critical for designing the classifiers. However, the featu
selection process itself is a critical component in classifi
tion, as shown in our previous study.26 In many of the tables,
one can observe the so-called peaking phenomenon,37 which
means that when a moderate number of design sample
available for classifier design, the test accuracy first
creases, but later starts to decrease as the number of fea
is increased.

As discussed in Sec. II, the probability of malignancy
each mass, based on the mammographic appearance
ranked by a radiologist experienced in mammography~Fig.
1!. Based on this ranking, an ROC curve was estimated u
theLABROC1 program, and plotted in Fig. 10. The figure als
plots the ROC curve obtained by using the combined text
features extracted from the RBST images. TheAz value ob-
tained by the malignancy ranking of the radiologist w
0.8960.03. The difference between the ROC curves us
the computerized classification algorithm (Az50.9460.02)
and the malignancy rating of the radiologist was statistica
significant~two-tailed p level50.03!. This result also high
lights the promise of our approach.

In this study, the ranking by the radiologist, as well as t
computer scores, were based only on the appearance o
mass on a single mammogram. Other views of the pati
such as different views of the same breast, films of the ot
breast, previous mammograms, spot, and magnifica
views were not used to assist either the radiologist or
computer. Therefore, the discussion in the previous pa
graph only compares the performances of the radiologist
the computer under specific laboratory conditions. The m
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lignant and benign classification by radiologists can be
pected to be more accurate when different views of the s
mass are examined. The accuracy of computerized chara
ization is also expected to improve when the features or
criminant scores obtained from different mammograms
the same patient are combined. However, this was not
formed in this study since our purpose was to compare
usefulness of the RBST with other image representatio
Similarly, the ROC curves and theAz scores in Sec. III do
not necessarily reflect the accuracy expected to be obta
under clinical conditions, but they show the trend that
RBST is useful.

The segmentation, feature extraction and classifica
methods used in this work and that of Huoet al.23 are dif-
ferent. However, in both investigations, features extrac
from the area surrounding the segmented mass resulte
better classification accuracy compared to features extra
from other regions. Since the data sets are different, i
difficult to compare the performances of the two metho
The data set used in our study was almost twice as larg
that used by the other study.23 Huo et al. used anad hoc
method for geometric shape correction, and employed
maximum of the corrected measure in four different neig
borhoods for better classification results. It remains to
seen whether these methods are generalizable to larger
sets. Similarly, when our feature selection and classifica
methods are applied to a larger data set, the selected fea
and the coefficients of the selected features in linear
criminant analysis are likely to change. It remains to be s

FIG. 10. ROC curves obtained by using the radiologist’s malignancy ra
(Az50.8960.03) and the computer’s discriminant score output (Az50.94
60.02) with features extracted fromR3 ~the RBST images!.
Medical Physics, Vol. 25, No. 4, April 1998
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whether the classification accuracy will decrease under th
conditions.

An advantage of our approach compared to some re
publications22,23 is that the mass characterization meth
proposed in this study is applicable to both spiculated a
nonspiculated masses. As summarized in Table IV, at a 9
overall sensitivity level, our algorithm was able to correc
diagnose 100% of the spiculated malignant masses, and
of the nonspiculated malignant masses. At the same ove
sensitivity level, the radiologist’s rankings also show
100% and 89% true-positive rates for spiculated malign
and nonspiculated malignant masses, respectively. Howe
at this sensitivity level, the computer had a 81% specific
~69 true negatives—68 nonspiculated and 1 spiculated! and
the radiologist had a 60% specificity~51 true negatives—50
nonspiculated and 1 spiculated!.

V. CONCLUSION

We have developed a new image transformation meth
referred to as RBST, for the characterization of mamm
graphic masses. The results of our classification study in
cate that texture features extracted from the transformed
ages are useful in differentiation of malignant and ben
masses. With the best combination of texture features,
testAz value on our database of 168 mammograms reac
0.94. It was found that texture features extracted from
transformed images were significantly more effective th
features extracted from the ROIs before the transformat
This demonstrates the usefulness of the RBST. Before
applicability of our approach can be tested in a clinical s
ting, further studies need to be performed with a larger
tabase to investigate the generalizability of these results.
combination of information from mammograms of differe
views obtained from the same patient will be investigat
The combination of texture and morphological features
benign and malignant characterization of masses will also
studied.
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TABLE IV. Sensitivity ~Sens.!and specificity~Spec.!for spiculated~S!, and nonspiculated~NS! masses at a 95%
overall sensitivity level.

Malignant (n583) Benign (n585)

S (n545) NS (n538)
Overall

Sens. (n583) S (n56) NS (n579)
Overall

Spec. (n585)

Computer 100% (n545) 89% (n534) 95% (n579) 17% (n51) 86% (n568) 81% (n569)
Radiologist 100% (n545) 89% (n534) 95% (n579) 17% (n51) 63% (n550) 60% (n551)
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