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We are developing a technique for determination of the three-dimensional (3-D) structure of
vascular objects from two radiographic projection images acquired at arbitrary and unknown
relative orientations. No separate calibration steps are required with this method, which exploits
an inherent redundancy of biplane imaging to extract the imaging geometry as well as the 3-D
locations of eight or more object points. The theoretical basis of this technique has been described
previously. In this paper, we review the method from the perspective of linear algebra and
describe an improvement, not heretofore reported, that reduces the method’s sensitivity to
experimental error. We then examine the feasibility and inherent accuracy of this approach by
computer simulation of biplane imaging experiments. The precision with which 3-D object
structure may be retrieved, together with the dependence of precision on the actual imaging
geometry and errors in various measured quantities, is studied in detail. Qur simulation studies
show that the method is not only feasible but potentially accurate, typically determining object-
point configurations with root-mean-square (RMS) error on the order of 1 to 2 mm. The method
is also quite fast, requiring approximately one second of CPU time on a VAX 11/750 computer
(0.6 MIPS).
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I. INTRODUCTION

Techniques that allow determination of the three-dimen-
sional (3-D) structure of cerebral or coronary vasculature
have been investigated for several years. Automated image
analysis has been applied to stereoscopic digital angiogra-
phic images to produce 3-D models of sections of cerebral
vessels and to make quantitative measurements of the vessels
and flow rate, for example.'™ Other workers have reported
techniques that utilize biplane digital angiographic images
obtained in exactly orthogonal directions.”® MacKay and
colleagues®'® showed the feasibility of determining 3-D ob-
ject structure from biplane images obtained at arbitrary ori-
entations when images of a calibration object are obtained
under identical conditions. But despite the demonstrated
feasibility of these techniques, they have not found wide-
spread clinical use, perhaps due to the constraints imposed
by stereoscopic or orthogonal imaging geometry in the for-
mer methods and the awkwardness of the additional calibra-
tion-imaging step required by the latter.

Several investigators working outside the field of medical
imaging''™"® have reported the basis of a technique that al-
lows 3-D object structure to be determined from biplane im-
ages obtained at arbitrary relative orientations without the
use of a calibration object. In a previous publication,'* we
described the theoretical aspects of the approach as it applies
to biplane radiography and noted some potential problems
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in applying it to actual biplane angiographic images.

This method of determining 3-D object structure from
two arbitrarily oriented biplane images without the need for
calibration images is based on what we have referred to as
the inherent redundancy of biplane imaging.'* For every ob-
ject point of unknown location that appears in both images,
there are three unknown quantities—the spatial coordinates
of the point (x;,y,,z; )—but four known quantities—the co-
ordinates of that object point in the first and second images,
(u;,0;) and (u],v}). Thus, from the image coordinates of
each object point of unknown 3-D location, it should be pos-
sible to glean one piece of information concerning the config-
uration, or relative geometry, of the biplane imaging system.
In general, the relative geometry of two biplane views can be
described by a 3X 3 rigid rotation matrix [R], which con-
tains nine elements, and a three-dimensional translation vec-
tor t, which contains three. Of the nine elements of the [R],
only five are truly independent, leaving a total of eight quan-
tities that must be determined in order to describe the geom-
etry of the biplane imaging system. Therefore, the biplane
image coordinates of eight object points of unknown 3-D
location are sufficient to determine the relative geometry of
the biplane imaging system if some basic information con-
cerning the individual views is known.'* Once the geometry
of the imaging system has been found, determination of the
3-D structure of the object points appearing in both views is
straightforward.
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The work reported here examines the feasibility of this
technique for determining 3-D object structure from biplane
images without knowledge of the relative geometry of the
two views. Computer simulation studies were performed to
study the dependence of the method’s precision on the actual
biplane geometry, and to examine the sensitivity of the meth-
od to errors in information concerning the individual views
and in the measured image coordinates of the object points.
We implemented the basic approach described previously'*
with an important modification that reduces the adverse ef-
fects of experimental error.

Il. THEORY

The theoretical basis of our approach is described in detail
elsewhere.'* Here we review briefly the fundamental math-
ematics of the method from the perspective of linear algebra
and describe an improvement, not heretofore reported, that
reduces the method’s sensitivity to error.

We begin by considering a single view in biplane imaging
and defining a “uv” image-coordinate system for it. Unit
vectors @i and ¥ in the image plane are chosen arbitrarily such
that their vector cross product W= X ¥ points away from
the x-ray focal spot. The origin of the resulting uvw coordi-
nate system is located in the image plane at the point where a
perpendicular from the focal spot intersects the image plane,
as shown in Fig. 1. A right-handed object coordinate system
xyz for the view is then defined such that its origin is located
at the focal spot and its axes, specified by unit vectors X, §
and %, are aligned with the unit vectors i, ¥ and W, respective-
ly. Coordinate systems u’'v'w’ and x'y’z’ for the second imag-
ing view may be defined analogously, as shown in Fig. 1.
With coordinate systems defined in this way, we denote by
(u;,v,) and (u!,v!) the image coordinates in the two views of
an ith object point located at an unknown position (x;,y;,z;)
in the xyz system and at (x/,y/,z/) in the x'y’z’ system, re-
spectively.

F1G. 1. An example of biplane imaging geometry used in the computer
simulation experiments. Spatial coordinate systems xyz and x’y’2’ and im-
age coordinate systems ¥vw and «'v'w’ are indicated. In the example shown
here, the Z and 2’ axes approach most closely at (z=0.5D, 2/ =0.5D’),
and skew is present. Object points generated in the simulations were re-
quired to fall both within the common volume of the two views and within a
10-cm sphere centered at the intersection (or point of closest approach) of
the Z and 2’ axes.

Medical Physics, Vol. 17, No. 6, Nov/Dec 1990

952

Since both the xyz and x'y’z’ coordinate systems are right-
handed, the transformation between them is defined by a
translation and rigid rotation, and hence may be expressed

as
’
X Fiy  ryno T Xy I,
yil=1|lra r2 s Yit—11% , (n
z] 31 Iy I Z; Z,

where the 7, are elements of a 3 X 3 unitary matrix [R] with
determinant equal to + 1, and where 7,, ¢, and ¢, are the
elements of a vector t that describes, in the xyz system, the
translation from the first focal spot position to the second.
Because the three linear equations represented by Eq. (1)
specify the relationship between the xyz and the x'y’z’ coor-
dinate systems, they link the two image coordinate systems if
the following basic information concerning the individual
projection views is known: (i) the perpendicular distances
(D and D’ in Fig. 1) between the focal spots and their image
planes; and (ii) the point at which the perpendicular from
each focal spot intersects its image plane, which serves as the
origin of corresponding image coordinate system.

Inspection of Fig. 1 shows that the image coordinates of
an ith object point are given by (u;,v;) = (Dx,/z,,Dy;/z;) in
the first view and by (u;,v;) = (D 'x./z/,D’y!/z!) in the sec-
ond view. For convenience in the development that follows,
we define dimensionless scaled coordinates (&,,7;)
=(x,/z;,;/z;) = (u;,/D,v;/D) in the first image and
(&) =(x]/z.y;/z}) = (u]/D",v;/D’) in the second im-
age. If the distances D and D’ are known, then these scaled
coordinates can be determined directly from the measured
image coordinates in the two views. For each object point
identified in both images, this allows us to construct four
equations that relate the scaled image coordinates to the
(generally unknown) object point coordinates in the xyz and
x'y'z" coordinate systems. Then by use of Eq. (1), which
relates the x'y'z’ and xyz systems, we obtain four equations
involving the scaled image coordinates (£,,7,) and (£ ],%]),
the object point coordinates (x,,y,,2;), [R], and t.

Solving these four equations for x,, y; and z; yields a single
equation involving [R], t, and the scaled image coordinates
that may be expressed concisely as

&

Hign|[=0, (2)
1

in which [Q] is the 3 X 3 matrix

(&7 =

(rist, —rpt) (gt —raty) (ripte —ruty)
Q1= (rust, —rnt,) (rt. —raty) (Pt —ruty)

(338, —rpt,) (ryt, —rut) (rat — rat,)
(®))

Thus, a single expression with the form of Eq. (2) is obtained
from the biplane image coordinates of each object point of
unknown position that can be located in both views. With ¥
object points located in both biplane images, the resulting
system of equations can be written as
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in which each row of [4] represents the coefficients of the
elements of [Q] in Eq. (2) and the 3 X 3 matrix [Q] is ex-
pressed now as a 9 X 1 column vector. Since Eq. (4) is homo-
geneous, its solution can be determined only to within an
unknown multiplicative constant. Hence, for convenience,
we are free to scale any solution [Q *] so that the sum of its
squared elements is equal to unity, which is equivalent to
normalizing the 9 X 1 column-vector version of [Q *] tobe a
unit vector. When error is absent, the elements of this unit
vector in nine-dimensional space are related to those of the
true [ Q] by an unknown multiplicative constant.

The exact solution of Eq. (4), when one exists—and the
least-squares solution when no exact solution exists—is giv-
en by the unit eigenvector that corresponds to the smallest of
the nine eigenvalues of [4 |7 [4 ]. Hereafter we denote the
ith eigenvalue of this matrix, in order of decreasing magni-
tude, by 4,. Recall that the eigenvectors of any matrix prod-
uct of the form [A4 ]7[4 ] represent the principal axes of the
rows of [A], and that each eigenvalue represents the sum of
the squared components of those row vectors in the direction
of the corresponding principal axis.

With N = 8 object points, or with N> 8 object points if
experimental and computational error is absent [i.e., if the
N> 8 equations of Eq. (4) are consistent], the rows of [A4]
will lie in an eight-dimensional subspace or hyperplane. In
this situation, there necessarily exists a solution vector [Q *}
such that its scalar product with each of the rows of [4] is
equal to zero. Thus, the ninth, or smallest, eigenvalue of
[4 ]7[A4 ] must equal zero, and the corresponding eigenvec-
tor provides an exact solution to Eq. (4). Aside from its sign
and magnitude, this exact solution is unique (unless the
points lie in certain “degenerate” 3-D configurations that
make some rows of [A] linearly dependent'? ). However, if
experimental and/or computational error is not negligible,
then with more than eight object points the rows of [4]
generally will deviate slightly from a common 8-dimensional
hyperplane. In this situation, the unit eigenvector corre-
sponding to the smallest eigenvalue of [4 ][4 ]—which we
take as our solution [Q * ]—corresponds to the direction in
nine-dimensional space that is perpendicular to the hyper-
plane which best fits the rows of [4] in a least-squares sense.
The amount by which the rows of [ 4] deviate from this best-
fit hyperplane is expressed by the mean squared projection,
Ao /N, which represents the variance of the row vectors in the
direction perpendicular to the best-fit hyperplane. Thus, in
situations involving more than eight object points, one may
expect that the magnitude of A, should reflect the magnitude
of experimental and computational error. In other words, as
Ag/N (or A,, for a fixed number of points) increases, the
average error of the solution may be expected to increase as
well.

The stability of the perpendicular to the best-fit hyper-
plane in nine-dimensional solution space depends upon the
stability of the best-fit hyperplane, even if all N rows of {4]
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lie within it. When the true row vectors of [4] are almost
parallel in their common hyperplane, the orientation of that
hyperplane is more sensitive to error in the vectors’ elements
(i.e., in the image coordinates) than when the row vectors
fan out broadly. The degree to which the row vectors diverge
within the best-fit hyperplane is reflected by the ratio 4, /4,
which we refer to henceforth as the “condition number” of
[417[4]. Larger condition numbers indicate rows of [A4]
that are more nearly collinear in their best-fit hyperplane,
and so should predict situations in which the solution of Eq.
(4) is more sensitive to error in measured image coordinates.

We described elsewhere'® a technique by which the solu-
tion [Q *] may be improved, in the presence of experimental
error, by taking note of the fact that the three rows of the true
3% 3 matrix [Q], which can be interpreted as 3-D vectors
q,, must be coplanar in 3-D space. The improved solution
[@ **] thatis obtained by forcing the rows of [ Q *] to occupy
a “best-fit” common plane can be scaled so it is appropriate
to a translation vector of unit magnitude, thereby producing
ascaled solution [ Q *¥*].'"* We also showed that an estimate
of the direction of t, which is a unit vector and is designated
t*, may be obtained from the normal to this common
plane."* However, we had been unable to ensure that the
scaled solution [Q ***] would result in an estimate of [R]
with the properties of a rigid rotation matrix (unitary with
determinant equal to + 1). Here we report a simple proce-
dure which provides a solution that ensures such an estimate
of [R]. Although the improved solution [Q ****] can be
calculated from the solution [ Q ***] discussed previously, it
can also be defined directly in terms of the initial (i.e., uns-
caled and uncorrected) solution [Q *] as

[Q****]=[Q*][E][D][E], (5)
where [ D] is the diagonal matrix
(1 o o
Ve
1= , L | (6)
V.
0 0 0

in which ¢, and @, are the largest and second-largest eigen-
valuesof [Q *] " [Q *], respectively, and where [E]isa 3 X3
unitary matrix with columns &,, é,, and &, that are the unit
eigenvectors corresponding to ¢, , ¢, and @;, respectively.
In effect, the process summarized by Eq. (5) forces the
eigenvalues of [Q****]T[Q****] tobe { + 1, + 1, 0},
which is a necessary and sufficient condition for the rows of
[Q ****] to represent projections of the rows of a rigid rota-
tion matrix onto a plane. With this procedure, the estimate
t* provided by &, is orthogonal to the rows of [Q ****], so it
can be used with the rows of [ Q ****] to calculate the rows of
an estimate of [R1 according to'*

I = (@ XT*) 4 (@ X q***), etc. 7

One can show that of all estimates of [ Q] which in this way
produce an [R] with the properties of a rigid rotation ma-
trix, [Q ****] is the particular estimate which minimizes
2 _ . |lgF*** — g¥|%. Thus, [Q****] constitutes the valid
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solution for [ Q] that is closest to the unscaled and uncor-
rected solution [Q *] in a least-squares sense. (After com-
pleting the work reported here, we learned that Weng,
Huang, and Ahuja'® recently proposed an alternative proce-
dure, based on an analysis of quaternions, that satisfies this
condition in the essentially equivalent task of inferring object
motion and structure from two fixed-perspective views tak-
en at different times.)

There are in fact four possible combinations of [R] and t
that are consistent with [Q****], since the signs of both
[Q****] and t* are ambiguous, but only one combination
yields positive values for all z;, and z/.!" Hence, the correct
combination of [R] and t* can be found by calculating the
3D coordinates of the object points with each of the four
possible combinations of [ R] and t*, and then selecting the
combination that yields positive values for all z, and z;.'""'*
Because the magnitude of the original translation vector t
cannot be determined with this approach, the calculated 3-D
coordinates of the object points are expressed in units of the
length of the actual translation vector. The absolute scale of
the object can be recovered if the absolute distance between
the two focal spot positions or between two or more object
points is known, however.'*

Ili. SIMULATION STUDY DESIGN

Our computer simulations of biplane imaging were con-
ducted with a VAX 11/750 computer (Digital Equipment
Corporation, Maynard, New Jersey ), VAX Fortran 77, and
double precision floating-point arithmetic. The simulation
experiments consisted of the following steps: (i) specifica-
tion of a biplane imaging geometry; (ii) random placement
of a preselected number of infinitesimal “object points”
within the common volume of the biplane imaging system
(defined as the 3-D region of object space seen by the image
receptors of both views); (iii) use of the resulting image
coordinates of the object points, along with the specified dis-
tances D and D, to determine the imaging geometry; (iv)
calculation of the object-point positions from the imaging
geometry and the image coordinates; and finally, (v) com-
parison of the calculated 3-D object-point configuration
with the true object-point configuration. Each of these steps
is described in detail next.

Several parameters must be specified to define completely
the biplane imaging geometry of a particular simulation ex-
periment. The size of the image receptor and the number of
pixels in two orthogonal directions determine the effective
pixel size of the system. In all of the simulations reported
here, we assumed a square 17.8X 17.8 cm image receptor, a
512% 512 image matrix, and thus a pixel size of 0.035 cm.
This combination of parameters is similar to that provided
by the 17-cm (7-in.) image intensifier (II) mode of many
digital angiographic systems. The perpendicular distances
between the two focal spots and their respective image
planes, D and D', must be specified also. We set both D and
D’ equal to 100 cm in our simulation experiments, except

where noted otherwise below. ) ‘ '
The angular orientation of the second biplane view with

respect to the first can be defined by three angles ® _, ® , and
@, that represent successive rotations about the &, rotated §,
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and twice-rotated Z axes such that the xyz coordinate system
becomes aligned with the x'y’z’ system. The point of intersec-
tion (or closest approach) of the Z and Z’ axes, shown in Fig.
1, is defined by the fractions of the lengths of D and D’ at
which the intersection (or closest approach) occurs. The
amount of skew, if any, between the Z and 2’ axes (see Fig. 1)
must be specified also. Error as a function of these param-
eters was investigated in our study.

Following the specification of a particular biplane imag-
ing geometry, a predetermined number of infinitesimal “ob-
ject points” (N>8) arescattered within the common volume
of the biplane imaging system by use of a uniform-deviate
random-number generator. In our work, a constraint is
placed on the object-point locations such that they are re-
quired to fall both within the common volume of the imaging
system and within a sphere of diameter 10 cm that is cen-
tered on the point at which the Z and Z" axes intersect. If skew
is included in the biplane geometry, then the sphere is cen-
tered midway between the Z and Z' axes at their point of
closest approach, as shown in Fig. 1. Thus, the object points
lie within a volume similar to that of the adult human heart.

After the N object points are generated, the exact image
coordinates of each object point in each view, (u,,v,) and
(u;,v}), are calculated. Unless noted otherwise below, the
assumed pixel size is then used to calculate the image coordi-
nates in each view in terms of pixels, after rounding to the
nearest pixel. The scaled image coordinates are calculated
from these discrete coordinates, and then the elements of the
matrix [A4] [in Eq. (4)] are determined by combining the
scaled image coordinates of the two views appropriately.
Subsequently, the eigenvalues and eigenvectors of the 9 X9
matrix [4]7[4] are found, and the eigenvector corre-
sponding to the smallest eigenvalue is taken as the initial
solution [Q *] from which the unit translation vector t* is
determined. The final solution [ Q ****] is calculated from
Eq. (5), and then Eq. (7) is u§ed to extract the rotation
matrix [R] from [Q ****] and t*. Finally, the 3D coordi-
nates of each object point in the xyz system, (x,,y;,z;), are
computed by least squares and converted, for comparison
with the true coordinates, to the scale of the original object
by multiplying each coordinate by the distance between the
two focal-spot positions of the true biplane geometry.

Experience has shown that the resulting estimates of the
object-point coordinates, when expressed in the xyz system,
can differ by a translation, rotation, and/or scale factor from
the true xyz coordinates defined in the simulation, even
when the relative positions of the object points are recovered
accurately. Translation, rotation, and scale-factor errors in
estimates of object-point configurations will be of little or no
importance in many potential applications of the technique,
however, because the 3-D positions of the object points rela-
tive to each other (rather than relative to one of the focal
spots and its image plane) will be of primary interest, and
because the absolute scale of the object is inherently ambigu-
ous when the true distance between the focal-spot positions
is unknown, as noted above. Therefore, in order to measure
meaningfully the precision with which the object-point con-
figurations are recovered, it is necessary first to translate,
rotate, and scale the computed configuration so as to mini-
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mize the sum of squared distances between the original and
estimated 3-D coordinates of the set of object points. Only
then is the accuracy of the estimated configuration calculat-
ed, in terms of the minimized root-mean-square (RMS) dis-
tance between the true and estimated object-point positions.
The condition number of the matrix [4 ]7[4 ] is also com-
puted for each configuration of object points.

In the simulated experiments we varied systematically
and individually each parameter of the biplane imaging ge-
ometry to investigate the effects of the system geometry on
the precision with which the 3-D object-point positions
could be recovered. We investigated also the effects of error
in measuring the distances D and D’ and the origins of the
two image-coordinate systems. Finally, we examined the ef-
fects of the number of object points (V) on the precision of
the method and explored the effects of errors in the measure-
ment of the image coordinates.

Unless otherwise noted below, we studied fifty indepen-
dently generated object-point configurations for each com-
bination of imaging geometry, measurement error and N,
and averaged RMS distance error and condition number
over the fifty configurations. A variety of different configu-
rations of object points was studied for each combination of
imaging parameters to reduce the impact of any particularly
“well-conditioned” or “ill-conditioned” configuration on
the results.

After image coordinates had been determined, calculation
of the 3-D object-point coordinates with the VAX 11/750
(0.6 MIPS) usually required less than one second.

IV. RESULTS

A.Effects of imaging geometry and number of object
points

The first goal of the simulation study was to examine the
inherent ability of the technique to recover 3-D information
under “perfect” conditions. To this end, the image coordi-
nates of each object point were computed exactly, rather
than simply to the nearest pixel, and no measurement error
was introduced into either the origins of the image-coordi-
nate systems or D and D'. Arbitrarily, a single biplane geom-
etry was selected with the following characteristics: both D
and D’ were equal to 100 cm; ©,, ®, and @, were equal to
70°, — 70° and 70", respectively; and the Z and %' axes inter-
sected at z = 0.5 D and z' = 0.5 D', with no skew. The num-
ber of object points (V) was varied systematically from eight
to thirty, with fifty configurations generated randomly and
then analyzed for each value of N. The results are shown in
Fig. 2(a), where each datum corresponds to the average
RMS distance error obtained from the fifty configurations.
In this and all subsequent simulations, the RMS distance
error was obtained by comparing the estimated 3-D object-
point coordinates with the true 3-D coordinates after the
calculated coordinates had first been multiplied by the true
length of the translation vector and then translated, rotated,
and scaled so as to minimize the RMS distance error between
the original and calculated coordinates.

It is clear from Fig. 2(a) that the inherent accuracy of the
method under “perfect” conditions was outstanding, with
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F1G. 2. Effect of the number of object points (N) on RMS 3D reconstruc-
tion error and condition number: ideal case. (a) Dependence of RMS error
on N. (b) Dependence of the condition number of [4]7{4] on N. The
conditioning of [4 ]7[4 ]| improves as the value of N increases.

average RMS 3-D distance error on the order of 10~ % cm.
(It should be noted that the amount of translation, rotation
and scaling of the calculated coordinates that was required
in this set of experiments was negligible.) Average error fell
approximately 30%, from 6.2 X107 to 4.3X10~%, when
the number of object points (N) increased from eight to
nine, and then rose slightly as & increased further from nine
to thirty. The latter small increase in error may be attributed
to an increase in computational roundoff error that occurs as
N becomes large. The rather dramatic decrease in error as N
went from eight to nine is explained in part by Fig. 2(b),
which illustrates the effect of N on the condition number of
[417[4]. Two things should be noticed from this figure:
first, the condition numbers were quite large overall; and
second, the average condition number decreased by approxi-
mately five orders of magnitude as NV increased from eight to
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nine, with an additional drop of only two orders of magni-
tude as N increased further from nine to thirty. Thus, the
inherent conditioning of the 3-D reconstruction problem im-
proved dramatically as &V increased from eight to nine, lead-
ing to the observed decrease in average error. The additional
improvement in condition number as V increased from nine
to thirty was not sufficient to offset the increasingly impor-
tant effects of computational roundoff error, however.

To assess the reliability of the technique under somewhat
more realistic conditions, we simulated a set of experiments
similar to those described above, but with the image coordi-
nates of each object point known only to the nearest pixel. A
pixel size of 0.035 cm was used in these and all subsequent
simulations. The imaging geometry was the same as that
described above; no errors were introduced into D and D’ or
the origins of the image coordinate systems; and fifty config-
urations of object points were examined for each number of
object points (V). The dependence of image reconstruction
variance (defined as the square of the RMS distance error
for each object-point configuration) and the condition num-
ber of [417[4 ] on N is shown in Fig. 3. RMS reconstruc-
tion error (the square root of variance) dropped by more
than an order of magnitude, from approximately 0.5 to 0.03
cm, as NV increased from eight to thirty. It is evident that
condition number was a fairly good predictor of 3D recon-
struction error in these experiments.

The effect of imaging system geometry on the overall pre-
cision of the calculated object coordinates was examined in
several ways. The importance of the relative rotation
between the two imaging views was assessed by varying the
values of @,, ®, and @, jointly from 1°to 179°. In this set of
experiments D and D’ were set equal to 100 cm; the Z and 2’
axes intersected at 0.5D and 0.5D’ with no skew in the sys-
tem, NV was equal to ten, and the image coordinates were

2
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object points (). The logarithms of the condition number and variance
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Image coordinates were known only to nearest 0.035 cm pixel.
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calculated configurations of ten object points. The abscissa indicates rota-
tions in all three angles. Reconstruction error is essentially constant for
angles between about 40° and 140°.

known to the nearest pixel. The results are shown in Fig. 4. It
is clear that RMS error increased substantially as the values
of ®,, ®, and ©, approached the extremes of 0° and 180°.
This was to be expected, since the two images become more
similar as the angles ©,, ®, and ©, approach these ex-
tremes. Notably, RMS error is almost independent of angle
for rotations between about 40° and 140°.

Figure 5 shows the dependence of RMS error on the loca-
tion of the intersection of the Z and Z' axes when skew was

0.6 b

0.4 1

0.3+ 1

RMS Distance Error (cm)

Intersection of £ and %' Axes,
as a Fraction of D and D'

FIG. 5. Effect of the position of the intersection of the Z and 2’ axes on RMS
reconstruction error for N = 10; Dand D’ = 100cm; ©,, @, and ®, = 70°,
— 70° and 70", respectively; and no skew. Average RMS error increases as
the intersection moves away from the focal spots.
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absent. The point of intersection of the two axes ranged from
(0.2D, 0.2D’) to (0.9D, 0.9D’). The general increase in
RMS error seen as the point of intersection moved away
from the focal spots can be ascribed to two effects. First, the
overall “size” of the collection of object points became larger
as the point of intersection moved away from the focal spots,
because the common volume of the two views became larger.
This continued until the common volume exceeded that of
the 10-cm-diam sphere into which the points were required
also to fit. Second, as the object points moved closer to the
image planes, each nearest-pixel quantization error in the
image coordinates corresponded to a greater 3-D distance
error in the associated object-point position.

We examined the dependence of RMS error on the values
of D and D’ by varying these two distances jointly from 70 to
130 cm. In these studies the values of @,, @, and ©, were
70°, — 70° and 70°, respectively; the Z and 2’ axes intersected
at (0.5 D, 0.5 D’) with no skew, and N was equal to ten.
Average error increased as both D and D' became larger,
from approximately 0.1 cm at distances of 70 to 0.2 cm at
distances of 130 cm. This effect was due to the fact that the
solid angle subtended by the collection of object points be-
came smaller as D and D’ lengthened. This caused the rows
of [4] to become more nearly equal; thus, the condition
number of [4 ]17[A4 ] became larger, producing an increas-
ingly ill-conditioned 3-D reconstruction task. A similar phe-
nomenon occurred when the skew between the Z and Z’ axes
was increased from the usual O cm to a value of 6 cm, thus
decreasing the common volume of the system. The distances
D and D’ were equal to 100 cm in these experiments, and the
Z and Z’ axes intersected at (0.5 D, 0.5 D’). In this situation,
RMS error increased from approximately 0.12 to 0.53 cm.
Under these conditions 6 cm of skew substantially reduced
the common volume within which the object points could be
scattered, so the solid angle subtended by the collection of
object points was reduced as well.

B. Effects of error in measured quantities

Toimplement our technique with actual imaging systems,
it is necessary to determine the distances D and D’, the loca-
tions of the origins of the image coordinate systems in both
image planes, and the coordinates of the NV object points in
both images. We investigated the effects of error in each of
these measured quantities on the accuracy of the method.

The values of D and D’ and the pixel size are used only to
form scaled image coordinates, (&,,7,) and (£ [,5}), for each
object point that is identified in both biplane views. To assess
the effects of error in the measured distances D and D', we
introduced positive or negative errors of up to 20 cm in both
distances. These simulations included true values of D and
D’ equal to 100 cm; ®,, ®, and ©, equal to 70°, — 70° and
70°, respectively; intersection of the Z and 2’ axes at (0.5 D,
0.5 D') with no skew; and ten object points. As shown in Fig.
6, average RMS error in the estimated 3-D object-point con-
figurations did not increase substantially until both D and D’
were in error by approximately 10 cm. We simulated combi-
nations of positive error in D and negative error in D’ also,
with similar results. Thus, for the conditions studied, we
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F1G. 6. Dependence of RMS reconstruction error on errors in the measured
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10 cm do not affect the 3D reconstruction substantially.

conclude that errors of approximately 10 cm in D and D’ are
required before RMS object-point error is increased substan-
tially. Since D and D’ are used reciprocally with pixel size to
form the scaled image coordinates from the pixel coordi-
nates, the effects of error in measured pixel size may be esti-
mated from the observed effects of error in the measured
distances D and D’'.

The origins of the image coordinate systems must be de-
termined in order to measure the image coordinates of the
object points. Recall that these origins are defined as the
position in each image plane where a perpendicular from the
corresponding focal spot intersects that plane. Errors in the
origin positions were simulated by adding to or subtracting
from the true image coordinates of each point a fixed number
of pixels in both directions. The biplane geometry was identi-
cal to that described above, and again ten object points were
included in each configuration. Effects of origin errors of up
to 500 pixels in both directions, with positive errors intro-
duced into the coordinates of one image and negative errors
into the other, are shown in Fig. 7. It is interesting to note
that, in these simulations, errors in origin position greater
than 256 pixels corresponded to origin locations completely
outside the assumed image-receptor field. From Fig. 7 one
can see that errors greater than about 100 pixels were re-
quired before RMS error of the calculated object-point loca-
tions increased noticeably. Positive errors in the origin posi-
tions of both images produced similar 3-D error. These
perhaps surprising results can be explained by noting that
100 pixels in the image plane correspond to 3.5 cm and that
the distances D and D’ were both 100 cm; thus, a ray extend-
ing from the erroneous origin to the focal spot differed from
the perpendicular by only 2°.

We examined the effects of error in measured image co-
ordinates by adding uncorrelated normally distributed de-
viations to the image coordinates of each object point in ei-
ther one or both views. The resulting image-point
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distributions were centered on the exact image location, with
standard deviations that varied systematically from O pixels
to 5 pixels in different simulated experiments. Each image
coordinate produced in this way was then rounded to the
nearest pixel; thus, an error distribution with a standard de-
viation of O pixels produced error-free image coordinates
rounded to the nearest pixel, as in earlier experiments. Fig-
ure 8 shows the effects of this image-coordinate error on
RMS 3-D object-coordinate error for the situations in which
error was added to the coordinates in one or both views.
Substantial sensitivity of the 3-D object-point estimates to
image-coordinate error is evident in these figures, though the
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Fi1G. 8. Effects of normally distributed image-coordinate error in one or
both views on RMS reconstruction error, for ten object points.
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similarity of the results obtained with image-coordinate er-
rors in one or both views is surprising.

We argued earlier that the condition number of [4 ][4 ]
should correspond to the accuracy with which we are able to
determine [Q *] and hence the object-point locations, and
this relationship was evident in Fig. 3. To study the relation-
ship further, we adopted a single biplane geometry and gen-
erated 100 different configurations of ten object points
(N = 10). Linear regression of average 3-D reconstruction
variance against average condition number produced a slope
of 0.96 and a correlation coefficient of 0.66. Although this
near-unit slope indicates that condition number provided a
good indicator of reconstruction error on the average, the
low correlation indicates that condition number is clearly
not the only factor which determines reconstruction accura-

cy.

V. DISCUSSION

The computer simulation experiments reported here indi-
cate that the described technique should allow three-dimen-
sional structure of (cardiovascular) objects to be recovered
from real biplane images. We have shown that the method
performs well for a variety of imaging geometries, and that
the accuracy of the 3-D information obtained is not affected
strongly by errors in measured quantities other than the im-
age coordinates.

Throughout our simulation experiments, we found the
condition numbers of the matrix [4 ] T[4 ] tobe quite large,
ranging from 10° to 102, Still, the 3-D object-point estimates
were generally quite good, with RMS errors commonly in
the range of 0.1 to 0.2 cm. It should be noted that we added
several steps to the basic reconstruction algorithm described
by Longuet-Higgins'' to improve the robustness of the 3-D
information recovered in this inherently ill-conditioned so-
lution task. Among these steps were use of the third unit
eigenvector of [Q *] T[Q *] as an estimate of the unit trans-
lation vector t*, and calculation of [Q ****] via Eq. (5),
which guarantees that the matrix {R] estimated from
[@****] and t* via Eq. (7) will be unitary. For the purpose
of comparison, we applied the basic algorithm as proposed
originally,"' without the various additional steps described
here and elsewhere,'* to simulated data in which the image
coordinates were known to the nearest pixel and found RMS
errors typically an order of magnitude larger than those ob-
tained with our modified algorithm. Thus, the computa-
tional steps we have added seem necessary for successful
application of the technique to radiographic images.

Figures 2(a) and (b) illustrate the effects of the number of
object points on RMS error and condition number when
“perfect” data were employed. It is apparent that the inher-
ent conditioning of the problem under “perfect” conditions
improves dramatically as N increases from eight to nine or
ten. It is also apparent from Fig. 2(b) that the effects of
computational roundoff error overshadow those of condi-
tion number for large values of N. Figure 3 shows that this
was not the case when imperfect data were used, however.
There, the image coordinates were known only to the nearest
pixel, and the resulting variance closely followed condition
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number. In this situation, where experimental error was not
negligible, condition number rather than computational
roundoff error proved to be the primary determinant of ac-
curacy.

Effects of the actual imaging geometry on 3-D reconstruc-
tion accuracy were studied thoroughly. The effect of rota-
tion between the views was shown to be minimal when the
three rotation angles were between 40° and 140°; thus, it is
evident that nearly orthogonal imaging views are not re-
quired for accurate recovery of 3-D information with this
method.

Other parameters that specify the actual biplane geometry
are the distances D and D’, the amount of skew, and the
point at which the Z and 2’ axes intersect (or approach most
closely). We found that RMS reconstruction error varied
approximately linearly with D and D’ in the range of values
studied, due to the dependence of the angle subtended by the
object points on the values of D and D'. From Fig. 1 and the
definitions of (£,,7;) and (£.,m;), it is evident that the
scaled image coordinates are simply the tangents of the an-
gles between the perpendicular to each image plane (i.e., the
Z and Z' axes) and components of the ray that extends from
the focal spot to the corresponding image-point location. As
D and D' become larger, the tangents of these angles become
smaller in magnitude. Equations (2) and (4) show that as
the scaled image coordinates of a particular object point ap-
proach zero, all elements except the last in the corresponding
row of [A] approach zero as well. Thus, the matrix
[4]17[A ] becomes increasingly close to singular, in turn
increasing the solution’s sensitivity to any error in the input
data. This explains not only the dependence of RMS recon-
struction error on the values of D and D’, but also the depen-
dence of that error on the amount of skew in the system. As
stated above, the common volume of the system, and thus
the solid angle subtended by the object points, becomes
smaller as skew becomes larger. The relationship between
the location at which the Z and Z' axes intersect and RMS
error was pointed out in the previous section.

Overall, we found the method to be remarkably resilient to
errors in the measured distances D and D’ and in the origins
of the image coordinate systems. The fact that the scaled
image coordinates represent tangents of angles explains this
happy and perhaps surprising result also.

To investigate the possibility that errors in different mea-
sured parameters might reinforce each other, we performed
simulations with image coordinates that were known only to
the nearest pixel, errors of + 5and — 5cmin D and D’, and
simultaneous errors of 10, 20, 30 and 40 pixels in the posi-
tions of the image coordinate system origins. The resulting
RMS reconstruction errors ranged from 0.1 to 0.2 cm, thus
ruling out any substantial synergistic effect of combined
measurement errors, at least for these error values.

Recall from the previous section that we found recon-
struction variance to correlate strongly with condition num-
ber. Additional analysis of the same 100 simulations showed
little or no correlation between variance and A, alone.
Hence, 3-D image reconstruction variance seems to be gov-
erned primarily by the condition number of {4 17 [4 ] when
image coordinates are known to the nearest pixel and N is
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constant. This result contrasts with that found when image
coordinates were known to the nearest pixel but the number
of object points (V) was varied. Recall that A, /N represents
the variance of the rows of [4] in the direction of the solu-
tion [Q *]. Figure 9 shows that A, /N was inversely related
to reconstruction error for values of N ranging from 9 to 30,
though condition number also was a good predictor of 3-D
reconstruction error in these experiments, as indicated by
Fig. 3.

Turning now to the effects of error in the measured image
coordinates, we see from Fig. 8 that 3-D reconstruction error
rose markedly as the standard deviation of the coordinate
errors increased from O to 5 pixels. Relationships between
image-coordinate error and the values of A; and A,, for a
fixed number of object points, are shown in Fig. 10(a). Not
surprisingly, the value of A, increased with image-coordi-
nate error, because the vectors corresponding to the rows of
[4] deviated more from the best-fit hyperplane when the
errors in the image coordinates increased. The average value
of Az (which governed condition number) also increased
slightly as more error was introduced, indicating that the
rows of [4] became more dispersed within the best-fit hy-
perplane as well. As shown in Fig. 10(b), 4, was a better
predictor than condition number of 3-D reconstruction er-
ror when image-coordinate error was not constant.

In summary, then, condition number appears to be a good
predictor of error in calculated object-point configurations
across situations where the magnitude of image-coordinate
error is relatively constant. In that case, the ratio A,/N by
itself does not predict 3-D reconstruction error well. How-
ever, in situations where the amount of error in the image
coordinates changes but the number of object points (N)
does not, the value of A, (or 4,/N ) correlates strongly with
the resultant error, and condition number can be quite mis-
leading. These observations carry implications for the even-
tual implementation of this technique with clinical images,
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where error in the measured image coordinates is likely to
constitute the most important limitation of accuracy in the

recovery of 3-D information.

As mentioned in Sec. II1, we evaluated the precision of the
calculated object-point configurations by superimposing
each pair of true and calculated configurations as closely as
possible. This required a translation of the calculated object
points, multiplication of the resulting coordinates by a scale
factor, and subsequent rotation of the calculated configura-
tion until the sum of the squared distances between the origi-
nal and calculated object points was minimized. Values of
the required translation fell between zero and tens of cm;
values of the scale-factor correction typically were 0.95 to
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1.05; and the rotations ranged from fractions of a degree to
tens of degrees. In general, the required amount of transla-
tion, scaling, and rotation correlated strongly with the mini-
mized RMS error that could be achieved in the 3-D object-
point configurations. When large translations and rotations
were required, the final accuracy of the calculated configura-
tion usually was poor. Additional investigation will be need-
ed to reveal the factors that cause error in the calculated
locations, scales, and orientations of object-point configura-
tions, as opposed to error in the configurations themselves.

VI. CONCLUSIONS

We have shown that the determination of 3-D object
structure from biplane images is feasible and potentially ac-
curate without prior knowledge of the relative orientation of
the two views. Errors in calculated object-point positions
were typically on the order of a few millimeters in our simu-
lation studies, a level of accuracy that may be sufficient in
many clinical applications. Experiments that employ both
phantom and clinical images are needed now to evaluate the
effectiveness of this technique in more realistic situations.
Both the speed (on the order of one second at 0.6 MIPS) and
the accuracy of the method suggest that it may be useful in
clinical settings.
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