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ABSTRACT 30 

Purpose: We are developing a computerized system for bladder segmentation in CT urography 

(CTU) as a critical component for computer-aided detection of bladder cancer. 

Methods: A Deep-Learning Convolutional Neural Network (DL-CNN) was trained to distinguish 

between the inside and the outside of the bladder using 160,000 regions of interest (ROI) from CTU 

images. The trained DL-CNN was used to estimate the likelihood of an ROI being inside the bladder 35 

for ROIs centered at each voxel in a CTU case, resulting in a likelihood map. Thresholding and 

hole-filling were applied to the map to generate the initial contour for the bladder, which was then 

refined by 3D and 2D level sets. The segmentation performance was evaluated using 173 cases: 81 

cases in the training set (42 lesions, 21 wall thickenings, 18 normal bladders), and 92 cases in the 

test set: (43 lesions, 36 wall thickenings, 13 normal bladders). The computerized segmentation 40 

accuracy using the DL likelihood map was compared to that using a likelihood map generated by 

Haar features and a random forest classifier, and that using our previous Conjoint Level set Analysis 

and Segmentation System (CLASS) without using a likelihood map. All methods were evaluated 

relative to the 3D hand-segmented reference contours.  

Results: With DL-CNN-based likelihood map and level sets, the average volume intersection ratio, 45 

average percent volume error, average absolute volume error, average minimum distance, and the 

Jaccard index for the test set were 81.9±12.1%, 10.2±16.2%, 14.0±13.0%, 3.6±2.0 mm, and 

76.2±11.8%, respectively. With the Haar-feature-based likelihood map and level sets, the 

corresponding values were 74.3±12.7%, 13.0±22.3%, 20.5±15.7%, 5.7±2.6 mm, and 66.7±12.6%, 

respectively. With our previous CLASS with LCR method, the corresponding values were 50 

78.0±14.7%, 16.5±16.8%, 18.2±15.0%, 3.8±2.3 mm, 73.9±13.5% respectively. 
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Conclusions: We demonstrated that the DL-CNN can overcome the strong boundary between two 

regions that have large difference in gray levels and provides a seamless mask to guide level set 

segmentation, which has been a problem for many gradient-based segmentation methods. Compared 55 

to our previous CLASS with LCR method, which required two user inputs to initialize the 

segmentation, DL-CNN with level sets achieved better segmentation performance while using a 

single user input. Compared to Haar-feature-based likelihood map, the DL-CNN-based likelihood 

map could guide the level sets to achieve better segmentation. The results demonstrate the feasibility 

of our new approach of using DL-CNN in combination with level sets for segmentation of the 60 

bladder. 

 

Key Words: Computer-Aided Detection, Deep-Learning, Segmentation, CT Urography, Bladder, 

Level Set 
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1. INTRODUCTION 

Bladder cancer is the fourth most common cancer diagnosed in men. The American Cancer 

Society estimates that bladder cancer will cause 16,000 deaths (11,510 in men, 4,490 in women) in 

the United States in 2015, with 74,000 new cases (56,320 in men, 17,680 in women) diagnosed, and 

early detection and treatment of bladder cancer increase patient survivability
1
. 70 

Multi-detector row CT (MDCT) urography is the imaging modality of choice for tracking 

urinary track abnormalities, as a single exam can be used to evaluate the kidneys, intrarenal 

collecting systems, and ureters
2-6

. Interpretation of a CT Urography (CTU) study, however, requires 

extensive time. On average, 300 slices are generated for each CTU scan (range: 200 to 600 slices), 

and the radiologist interpreting the study has to visually determine if lesions are present within the 75 

urinary tracts. The possibility that multiple lesions may be present requires that the radiologist pays 

close attention throughout the entire urinary tract while frequently adjusting the displayed images to 

better visualize possible lesions. In addition, many different urinary anomalies may be found in a 

single CTU study. The radiologist has to identify and determine how likely each anomaly is an 

urothelial neoplasm. The challenges of analyzing a CTU study leads to a substantial variability 80 

among radiologists in detection of bladder cancer, with reported sensitivities ranging from 59% to 

92%
7, 8

. Due to the workload of interpreting CTU studies, the chance for a radiologist to miss a 

subtle lesion may not be negligible, thus any technique that may help radiologists identify urothelial 

neoplasms within the urinary tract may be useful. Computer-aided detection (CAD) used as an 

adjunct may reduce the chance of oversight by the radiologists. We are developing a CAD system to 85 

detect bladder cancer in CTU, and bladder segmentation is a crucial step for such CAD systems. The 

segmented bladder defines the search region for the subsequent steps to detect lesion candidates. 

Thus any lesions excluded from the segmented bladder region will be missed during the detection 

step. On the other hand, non-bladder structures included in the segmented region will increase the 
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possibility of false positive objects being detected. Therefore, accurate bladder segmentation that 90 

isolates the bladder from the surrounding anatomical structure is a critical component of a bladder 

cancer CAD system
9
. 

Other researchers have attempted to segment the bladder on various imaging modalities. Li et 

al
10

 and Duan et al
11

 segmented the bladder wall from magnetic resonance (MR) cytoscopy in 6 

patients and analyzed it for suspected lesions. In a different study, Duan et al
12

 developed a 95 

segmentation method using an adaptive window-setting scheme to detect tumor surfaces in MR 

images of 10 patients. Han et al
13

 segmented the bladder wall in T1-weighted MR images using an 

adaptive Markov random field model and coupled level-set information in 6 patients. These 

methods are developed for MR images, which differ from the modality used in our study. In 

addition, the methods presented in these studies have not been validated with a larger data set. 100 

Chai et al
14

 developed a semi-automatic bladder segmentation method for cone beam CT images 

using population data as prior knowledge, using 8 patients for training and 22 patients for 

validation. Using the population data, however, may result in poor performance for cases that have 

large deviations from the training set. These studies have smaller data sets compared to the study 

being presented. 105 

There are challenges to segment bladders in CTU. Bladders may be filled with intravenous 

(IV) contrast material that partially or fully opacifies the bladder. The boundaries between the 

bladder wall and the surrounding soft tissue have very low contrast such that they are often 

difficult to delineate. In addition, bladders may be imaged in a variety of shapes and sizes. To 

address these challenges, Hadjiiski et al
15, 16

 developed preliminary bladder segmentation methods 110 

for CTU using active contour with 15 patients and level sets with 70 patients. Hadjiiski et al
17

 also 

developed a segmentation package specifically designed based on the characteristics of the bladder 

in CTU images, referred to as Conjoint Level set Analysis and Segmentation System (CLASS), 
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that segments the contrast-enhanced and non-contrast regions of the bladder separately, using two 

input bounding boxes, and then joins the regions together. They qualitatively evaluated the 115 

segmentation performance of 81 bladders and performed quantitative evaluation of 30 bladders 

comparing the computer-segmented contours to hand-segmented reference contours and obtained 

promising results. The CLASS method was further developed by Cha et al
18

 to improve the 

segmentation accuracy. Model-guided refinement was used to propagate the contours of the 

contrast-enhanced region if the level set propagation stopped prematurely due to substantial non-120 

uniformity of the contrast. An energy-driven wavefront propagation that used changes in energies, 

smoothness criteria of the contour, and a stop criterion determined by the previous slice contour was 

designed to further propagate the conjoint contours to the correct bladder boundary. The 

segmentation performance was evaluated using 81 training cases and 92 independent test cases. 

Convolutional neural networks (CNN) have been used previously to classify patterns in 125 

medical images for use with computer-aided detection and specifically for microcalcification 

detection in mammograms
19-26

. In these applications, the training sets were typically small, 

generally using less than 500 samples. As computational power grows, CNNs with very complex 

architectures that require training with massive data become practical. The deep-learning CNN 

(DL-CNN) using graphics processing units (GPU) has been shown to be able to classify natural 130 

images using a large training set. Krizhevski et al
27, 28

 has shown that by using DL-CNN, they are 

able to achieve relatively low error rates and good classification accuracy on the ImageNet 

ILSVRC-2010 and ILSVRC-2012 data sets
29

, and the CIFAR-10 data set
30

. 

In this study, we explored the application of the DL-CNN to bladder segmentation. The DL-

CNN was trained to recognize the patterns inside and outside the bladder and generated a bladder 135 

likelihood map to guide the level set segmentation. For comparison, we also generated a bladder 

likelihood map by using Haar features
31, 32

, to differentiate bladder region from the surrounding 
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structures as classified by a random forest classifier. To evaluate the effectiveness of the template-

based approach, their performances were compared to our previous CLASS with local contour 

refinement (LCR) method.  140 

The paper is organized as follows. First, the data set used in the study is described. Second, the 

method of generating the bladder likelihood map using DL-CNN is presented. Third, the level set 

segmentation method using the likelihood map is described. Fourth, the method of generating the 

likelihood map using Haar features is designed as a comparison to the DL-CNN approach. Finally, 

the segmentation results are presented and discussed. 145 

 

2. MATERIALS AND METHODS 

 A DL-CNN was trained to distinguish between regions of interest (ROI) that are inside and 

outside of the bladder. The DL-CNN outputs the likelihood that an input ROI is inside the bladder, 

which is used to form the bladder likelihood map. The map is used to generate the initial contour for 150 

level-set-based bladder segmentation. A flowchart of the segmentation method is shown in Figure 1. 
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Figure 1. Flowchart of the template-based segmentation method. 

 

2.1 Data set 

In this study, a data set of 173 patients undergoing CTU who subsequently underwent 

cystoscopy and biopsy was utilized. The cases were collected retrospectively from the Abdominal 155 

Imaging Division of the Department of Radiology at the University of Michigan with approval of 
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the Institutional Review Board. We designated 81 of these cases as the training set, and the other 92 

cases as the test set. The cases were assigned to the training or the test sets by balancing the 

difficulty of the cases between the two sets. 

 Of the 81 bladders in the training set, 42 contained focal mass-like lesions (40 malignant and 2 160 

benign), 21 had wall thickening (16 malignant and 5 benign) and 18 were normal. Sixty-one 

bladders were partially filled with IV contrast material, 8 were completely filled with contrast 

material, and 12 had no visible contrast material. Of the 92 bladders in the test set, 43 contained 

focal mass-like lesions (42 malignant and 1 benign), 36 had wall thickening (23 malignant and 13 

benign) and 13 were normal. Eighty-five bladders were partially filled with IV contrast material, 4 165 

were completely filled with contrast material, and 3 had no visible contrast material. The bladder 

conspicuity was medium to high in both sets.  

The CTU scans used in this study were acquired with GE Healthcare LightSpeed MDCT 

scanners. Excretory phase images, obtained 12 minutes after the initiation of the first bolus of a split-

bolus IV contrast injection and 2 minutes after the initiation of the second bolus of 175 ml of 170 

nonionic contrast material at a concentration of 300 mg iodine per ml, were utilized. The images 

used were acquired using 120 kVp and 120–280 mA and reconstructed at a slice interval of 1.25 mm 

or 0.625 mm. Since patients were not turned prior to image acquisition, dependently layering IV 

contrast material that had been excreted into the renal collecting systems partially filled the bladder 

on the CTU images. 175 

Three-dimensional (3D) hand-segmented contours for all 173 cases were obtained as reference 

standard (RS1) in this study. An experienced radiologist provided manual outlines on the CT slices 

for all cases using a graphical user interface. The bladder was outlined on every 2D CT slice on 

which the bladder was visible, resulting in a 3D surface contour. There were a total of 16,197 slices 

for the 173 bladders. A subset of cases which contains lesions (41 training set cases, 50 test set cases, 180 



10 

 

a total of 8,420 slices) were outlined by a different reader experienced in bladder segmentation to 

provide a second reference standard (RS2). The two sets of independent manual outlines allowed us 

to study the inter-observer variability and to evaluate the difference in the computer segmentation 

performance relative to the two sets of hand outlines. 

 185 

2.2 Bladder likelihood map generation using deep-learning convolutional neural network (DL-

CNN) 

 We applied the DL-CNN developed by Krizhevski et al called cuda-convnet
27, 28

 to the 

classification of ROIs on 2D slices as being inside or outside of the bladder. The neural network is 

trained using labeled ROIs extracted from the CTU slices in the training cases. Each of the extracted 190 

ROIs is input into the DL-CNN, which outputs the likelihood of the ROI to be inside the bladder. To 

use the trained DL-CNN to generate a bladder likelihood map, it is applied to ROIs centered at each 

pixel on an axial slice in a CTU scan that contains the bladder and the likelihood value for the ROI is 

assigned to the center pixel. The resulting output over all pixels on the slice forms a bladder 

likelihood map, and the 2D maps over the consecutive CT slices constitutes a 3D likelihood map.  195 

 

2.2.1 DL-CNN components 

 Components of the DL-CNN are briefly described in the following. More information about 

this network can be found in literature
27,28

. 

Neurons: A DL-CNN neuron consists of two functional parts: (1) summation of the weighted 200 

inputs to the neuron and (2) application of an activation function to the sum. The activation function 

used in this DL-CNN is a non-saturation nonlinear function, defined by the following equation: 

 𝑓(𝑥) =  max (0, 𝑥) (1) 
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The output of a neuron generally is obtained by a sigmoid activation function; however, it was 

shown that networks trained with gradient descent can converge much faster when neurons with the 

activation function in Eq. (1) are used, which were named Rectified Linear Units, following Nair et 205 

al
28, 33

. 

 Convolution layer: In the convolution layer, the input ROI is convolved with the convolution 

kernels. The resulting values are collected into the corresponding neurons within the corresponding 

kernel maps in the convolution layer (Fig. 2). The output signals of these Rectified Linear Unit 

neurons are generated using the activation function given by Eq. (1).  210 

 
Figure 2. Diagram of the convolution layer. An input ROI is convolved with multiple 

convolution kernels, and the resulting values are collected into corresponding neurons in the 

kernel maps. 

 

 Pooling layer: The pooling layers summarize the outputs of neighboring groups of neurons 

within the same kernel map. We compared two commonly used overlapping pooling for our 

application; one used the maximum values and the other used average values within 3 x 3 groups of 

Convolution

Kernels

Input ROI

Kernel Maps
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pixels centered at the pooling unit, with the distance between pooling set to two pixels. It was found 215 

that using overlapping pooling was less prone to overtraining
28

. 

 Local Response Normalization layer: Using local normalization scheme aids in the 

generalization of the training. The activity of a neuron was normalized using the following 

equation
28

: 

 
𝑏𝑥,𝑦

𝑖 =
𝑎𝑥,𝑦

𝑖

(1 +
𝜏
𝑁

∑ (𝑎𝑥,𝑦
𝑗

)
2min(𝑛,𝑖+

𝑁
2)

𝑗=max(0,𝑖−
𝑁
2)

)

𝜀 
(2) 

where 𝑏𝑥,𝑦
𝑖  is the response-normalized neuron activity, 𝑎𝑥,𝑦

𝑖  is the neuron activity computed by 220 

applying the kernel 𝑖 at the coordinates (x,y), 𝑛 is the number of kernel maps, and 𝑁, 𝜏, and 𝜀 are 

constants. For our implementation of the DL-CNN, we used 𝑁 = 9 , 𝜏 = 0.001 , and 𝜀 = 0.75 , 

following the study by Krizhevsky et al
28

. 

 

2.2.2 DL-CNN architecture 225 

A block diagram of the network architecture used in this study is shown in Figure 3. The 

network consists of five main layers: two convolution layers, two locally-connected layers, and one 

fully-connected layer. The locally-connected layers perform the same operation as the convolution 

layer, except that instead of applying a single convolution kernel to every location of the input image 

to obtain a kernel map, different convolution kernels are applied at every location of the input image, 230 

and the resulting values are collected into the corresponding neurons within the corresponding 

kernel map. The fully-connected layer uses every kernel map element multiplied by a weight as 

input. All of the inputs are summed, and the activation function (Eq. 1) is applied to generate output 

values. 
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 The first convolution layer filters the input images with 64 kernels of size 5 x 5. The output 235 

of the layer is pooled and normalized using the pooling and local response normalization, and is 

input into the second convolution layer, which filters the output with an additional 64 kernels of size 

5 x 5. The first locally-connected layer takes as input the pooled and normalized output of the 

second convolution layer and filters it with 64 kernels of size 3 x 3. The second locally-connected 

layer has 32 kernels of size 3 x 3 connected to the normalized, pooled output of the first locally-240 

connected layer. The fully-connected layer outputs two values. The outputs from the fully-connected 

layer are input into a Softmax layer which computes the following function: 

 
𝑓(𝑥𝑖) =

𝑒𝑥𝑖

∑ 𝑒𝑥𝑗
𝑗

 (3) 

where 𝑥𝑖 is each input value to the layer. The output of this layer ranges from 0 to 1, which can be 

interpreted as the likelihood of the input ROI being classified into the one of the given categories.  
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Figure 3. Block diagram of the DL-CNN architecture used in this study. 

 245 

2.2.3 DL-CNN training 

 The DL-CNN was trained using the cases in the training set. A cropped CTU slice of a 

bladder case is shown in Figure 4(a). For each axial slice of the cases in the training set, ROIs of N x 

N-pixels inside and outside the bladder were extracted using hand-outlines provided by an 

experienced radiologist (Fig. 4(b)). Three ROI sizes, N = 16, 32, 64 were studied but the size of 32 x 250 

32 pixels was used in the following discussion. Each bladder ROI was labeled as being inside or 

outside of the bladder as follows. If over 90% of an ROI was within the hand-outlined bladder, the 

ROI was labeled as being inside the bladder. 90% was chosen to ensure a sufficient number of ROIs 
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is identified as being inside the bladder. If less than 5% of an ROI was within the hand-outlined 

bladder, the ROI was labeled as being outside the bladder to avoid most of the bladder and the 255 

bladder wall while including the background regions that surround the bladder. ROIs not labeled as 

being inside or outside of the bladder were excluded. Figure 4(c) shows examples of ROIs that were 

extracted from a slice. 

  
(a) (b) 

 
(c) 

Figure 4. Images of a CTU slice from a training case. (a) Cropped CTU slice centered at the 

bladder. (b) the CTU slice shown with radiologist’s hand outline of the bladder. (c) Example 

of ROIs that were extracted from the CTU slice to train the DL-CNN. The bright ROI at the 
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 Approximately 160,000 ROIs were generated from the cases in the training set after 

balancing the number of ROIs that were inside and outside of the bladders. Figure 5(a) and 5(b) 260 

show examples of the ROIs inside and outside the bladder, respectively, used to train the DL-CNN.  

 

(a) 

top of the bladder shows the size of a 32x32-pixel ROI. The ROIs are partially overlapping. 

The darker ROIs are ones marked as outside of the bladder. The lighter ROIs are ones 

marked as inside of the bladder. 
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(b) 

Figure 5. Images of the 160,000 ROIs used to train the DL-CNN using the cases in the training 

set. Each ROI is 32x32 pixels. (a) ROIs that are labeled as inside the bladders. (b) ROIs that are 

labeled as outside the bladders. A small subset of the ROIs in each class is zoomed in to illustrate 

the content of typical ROIs. 

 

The neural network was trained for 1500 iterations, but the DL-CNN trained for 1000 

iterations was selected to generate the bladder likelihood maps. We observed that a network trained 

up to 1000 iterations had similar classification error rates to a network trained up to 1500 iterations. 265 

Classification error rate is defined as the ratio of the number of incorrectly identified ROIs to the 
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total number of ROIs. Figure 6 shows the classification error rate of the DL-CNN training for the 

entire training set as the number of iterations increased. In addition, we observed that bladder 

likelihood maps generated using DL-CNN trained for 1000 iterations were better or comparable to 

maps generated using network trained for 1500 iterations for representative cases of a range of 270 

difficulties in the training set, thus 1000 iterations was used to generate the likelihood maps. 

Training the network using 160,000 ROIs and 1000 iterations took approximately 5.5 hours using a 

Tesla C2075 GPU. 
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Figure 6. Plot of the classification error rate of DL-CNN training for the entire training set as the 

number of iterations increase. The error rates at iterations 1000 and 1500 were very similar. 

The training results from iteration 1000 were used to generate the bladder likelihood maps. 
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2.2.4 Bladder likelihood map generation with DL-CNN 275 

 For every axial slice in a CTU scan that contains the bladder, a bladder likelihood map was 

generated. Our current segmentation system uses a single box, or volume of interest (VOI) that 

approximately encloses the bladder as input. The bladder likelihood map is therefore generated 

within this VOI. The trained DL-CNN is applied to each voxel within the VOI. At each voxel, a 32 x 

32-pixel ROI on the axial slice is extracted and input to the DL-CNN, which outputs the likelihood 280 

that the input ROI is inside the bladder. The likelihood score for the ROI is assigned to the center 

pixel of the ROI. The collection of voxel-wise likelihood scores forms a bladder likelihood map. 

Figure 7 shows the bladder likelihood map of the CTU slice shown in Figure 4. 

 

2.3 Bladder segmentation using DL-CNN bladder likelihood map 285 

We are developing a software package that uses the DL-CNN bladder likelihood map and 

level sets to segment the bladder from the surrounding tissue. The system is initialized by the same 

 
 

Figure 7. Bladder likelihood map of the CTU slice shown in Figure 4. High intensity represents 

high likelihood of the voxel being inside the bladder. In this example, for demonstration 

purposes, the bladder likelihood map was generated for an area larger than the VOI. The VOI 

is shown by the box around the bladder. 
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VOI that encloses the bladder within which the bladder likelihood map is generated. The system 

consists of four stages: (1) preprocessing (2) initial segmentation, (3) 3D level set segmentation, and 

(4) 2D level set segmentation.  290 

In the first stage, preprocessing techniques are applied in 3D to the VOI. Smoothing, 

anisotropic diffusion, gradient filters and the rank transform of the gradient magnitude are applied to 

the slices within the VOI to obtain a set of gradient magnitude images and a set of gradient vector 

images, which are used during level set propagation in the third stage. 

In the second stage, the initial segmentation surface is generated using the DL-CNN bladder 295 

likelihood maps. First, a binary bladder mask, 𝐷𝐿𝑀𝑎𝑠𝑘 , is generated by applying the following 

criterion to every pixel on all slices of the bladder likelihood map: 

 
𝐷𝐿𝑀𝑎𝑠𝑘(𝑥, 𝑦) = {

1, 𝐷𝐿𝑆𝑐𝑜𝑟𝑒(𝑥, 𝑦) ≥ 𝜃
0, 𝐷𝐿𝑆𝑐𝑜𝑟𝑒(𝑥, 𝑦) < 𝜃

 (4) 

where 𝐷𝐿𝑀𝑎𝑠𝑘(𝑥, 𝑦) is the pixel value on the bladder mask at the coordinates (𝑥, 𝑦), 𝐷𝐿𝑆𝑐𝑜𝑟𝑒(𝑥, 𝑦) is 

the bladder likelihood score at the coordinates (𝑥, 𝑦), and 𝜃 is the threshold imposed on the bladder 

likelihood score. The value for 𝜃 was determined by histogram analysis. A histogram of the DL-300 

CNN likelihood score for the pixels inside and outside of the bladder within the VOIs in the training 

cases was generated (Fig. 8). We observed that the likelihood score of 0.85 provided a good 

separation of the two classes (e.g. inside the bladder and outside the bladder), with a large number of 

pixels correctly identified as being inside the bladder. Thresholding the likelihood maps at the score 

of 0.85 gave the best contour that did not leak to the outside of the bladder while closely 305 

approaching the hand segmentation for cases in the training set. For these reasons, 0.85 was chosen 

as the threshold. 

Second, an ellipsoid whose minor and major axes are 1.5 of the width and height of the VOI, 

respectively, centered at the centroid of the bladder mask, is placed on the 𝐷𝐿𝑀𝑎𝑠𝑘. The intersection 



21 

 

of the bladder mask and the ellipsoid is labeled as the object region. The ellipsoid is used to prevent 310 

the object region from leaking into the organs above the bladder and the pelvic bone, as these 

structures can also obtain high likelihood scores from the DL-CNN. Finally, a morphological 

dilation filter with a spherical structuring element of 2 voxels in radius, 3D flood fill algorithm, and 

a morphological erosion filter with a spherical structuring element of 2 voxels in radius are applied 

to the object region to connect neighboring components and extract an initial segmentation surface, 315 

𝜙0(𝑥). 

 

In the third stage, the initial segmentation surface is propagated towards the bladder 

boundary using cascading level sets. Our chosen level set implementation evolves according to the 

equation: 320 

 

{

𝜕

𝜕𝑡
𝛹(𝑥) = −𝛼𝐴(𝑥)𝛻𝛹(𝑥) − 𝛽𝑃(𝑥)|𝛻𝛹(𝑥)| + 𝛾𝜅(𝑥)|𝛻𝛹(𝑥)|

𝛹(𝑥, 𝑛 = 0) = 𝜙0(𝑥)

 (5) 

 

Figure 8. Histogram of the DL-CNN likelihood score for the pixels in the training set. Higher 

likelihood score indicates that the pixel is more likely to be inside the bladder. 
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where 𝛼, 𝛽, and 𝛾  are the coefficients for the advection, propagation, and curvature terms, 

respectively, 𝐴(𝑥) is a vector field image (assigning a vector to each voxel in the image) which 

drives the contour to move towards regions of high gradient, 𝑃(𝑥) is a scalar speed term between 0 

and 1 causing the contour to expand at the local rate, and 𝜅(𝑥) = 𝑑𝑖𝑣 (
𝛻𝛹(𝑥)

|𝛻𝛹(𝑥)|
) is the mean curvature 

of the level set at point x. The symbol 𝛻 denotes the gradient operator and 𝑑𝑖𝑣 is the divergence 325 

operator
34

. 𝜙0(𝑥) is the initial segmentation surface, and 𝑛 is the number of iterations. 

Three 3D level sets with predefined sets of parameters are applied in series to the initial 

segmentation surface. The corresponding parameters of the 3 level sets are presented in Table 1. 

Table 1. Parameters for the level sets 

Level set: α β γ n 

First 1 2 1 10 

Second 1 0.6 q 150 

Third 0 1.0 0 10 

2D slices 4.0 0.2 0.5 100 
 

 

The first 3D level set slightly expands and smoothes the initial contour. The second 3D level set 330 

brings the contour towards the sharp edges, but also expands it slightly in regions of low gradient. 

The parameter “q” in Table 1 is defined to be a linear function 𝜎𝑀 + 𝜙 of the 2D diagonal distance 

M of the VOI box in millimeters (mm), where 𝜎 = 0.06, 𝜙 = −0.11 as shown previously
34

. The 

third 3D level set further draws the contour towards sharp edges. As a final step, a 2D level set is 

applied to every slice of the segmented object to refine the 3D contours using the 3D level set 335 

contours as the initial contour. Further details on the level sets used can be found in the literature
34

. 

An example of the segmented bladder for CTU slice shown in Figure 4 using the DL-CNN bladder 

likelihood map with level sets (DL-CNN with level sets) is shown in Figure 9. 
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2.4 Bladder likelihood map generation using Haar features and random forest classifier 340 

 To compare the performance of DL-CNN for bladder likelihood map generation, the maps 

were also generated using Haar features and random forest classifier. Fifty-nine Haar features were 

extracted from the 32 x 32-pixel ROIs used to train the DL-CNN. A large number of Haar features 

can be extracted from a 32 x 32-pixel ROI. Using every possible Haar feature would be difficult due 

to the enormous number of features that would be generated; therefore, we considered the 345 

representative shapes for the bladder boundaries, and after experimenting on the training cases, we 

selected 59 different Haar features to generate the bladder likelihood maps, which are described in 

Table 2. 

 

 350 

 

 

 
 

Figure 9. Bladder segmentation of the CTU slice shown in Figure 4 using the DL-CNN bladder 

likelihood map with level sets. 
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Table 2. Number of features extracted for different Haar filter sizes and filter types as 

described by Viola et al and Lienhart et al. 

 

 
8 x 8-

pixel 

16 x 16-

pixel 

16 x 18-

pixel 

18 x 16-

pixel 

16 x 32-

pixel 

32 x 16-

pixel 

32 x 32-

pixel 

Edge Features 10 8 0 0 2 2 2 

Line Features 10 0 4 4 0 0 2 

Four-Rectangle 

Features* 
9 5 0 0 0 0 1 

*A single filter of this Four-Rectangle feature filter consists of 4 smaller, equal-sized 

rectangles arranged in a checkerboard pattern. 
 

 

 The extracted features were used to train a random forest classifier which combined the 

features together to generate a score that corresponds to an ROI’s likelihood of being inside the 355 

bladder. The random forest classifier with 100 trees was trained using the same set of 160,000 

training ROIs as described above for training the DL-CNN. The bladder likelihood map was 

generated by extracting the 59 Haar features values from each ROI. The feature values were input 

into the trained random forest classifier, which output the likelihood that the input ROI was inside 

the bladder. The likelihood score for the ROI was assigned to the center pixel of the ROI. The 360 

collection of likelihood scores over the voxels in the VOI formed the bladder likelihood map. 

The distribution of the Haar-feature-based bladder likelihood scores was different than that 

from the DL-CNN scores, thus a different threshold of 0.56 was chosen experimentally using the 

training cases and used to generate the binary bladder mask for initialization of the level sets. After 

the Haar-feature-based bladder binary mask was generated, the bladder segmentation process was 365 

identical to that described in Section 2.3.  
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2.5 Evaluation Methods 370 

Segmentation performance was evaluated by comparing the automatic segmentation results to 

the 3D hand-segmented contours. The volume intersection ratio, the volume error, the average 

minimum distance, and the Jaccard index
35

 between the hand-segmented contours and computer-

segmented contours were calculated. The performance metrics are described briefly below and more 

details can be found in our previous studies
17, 18

.  375 

 The volume intersection ratio (R
3D

) is the ratio of the intersection between the reference 

volume and the given volume to the reference volume: 

 
𝑅3𝐷 =

𝑉𝐺 ∩ 𝑉𝑈

𝑉𝐺
, (6) 

where VG is the volume enclosed by the reference standard contour G and VU is the volume enclosed 

by the contour U being evaluated.  

 The volume error (E
3D

) is the ratio of the difference between the reference volume and the 380 

given volume to the reference volume: 

 
𝐸3𝐷 =

𝑉𝐺 − 𝑉𝑈

𝑉𝐺
, (7) 

where positive error indicates under-segmentation, whereas a negative error indicates over-

segmentation. Because the average of the volume error does not show the actual deviations from the 

reference standard due to over- and under-segmentation, the absolute error |E
3D

| is also calculated. 

From the volume intersection ratio and the volume error, other performance indicators can be 385 

derived
36

. 

 The average distance, AVDIST, is the average of the distances between the closest points of 

the two contours: 

 
𝐴𝑉𝐷𝐼𝑆𝑇(𝐺, 𝑈) =

1

2
(

∑ min{𝑑(𝑥, 𝑦): 𝑦 ∈ 𝑈}𝑥∈𝐺

𝑁𝐺
+

∑ min{𝑑(𝑥, 𝑦): 𝑥 ∈ 𝐺}𝑦∈𝑈

𝑁𝑈
), (8) 
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where G and U are two contours being compared. NG and NU denote the number of voxels on G and 

U, respectively. The function d is the Euclidean distance. For a given voxel along the contour G, the 390 

minimum distance to a point along the contour U is determined. The minimum distances obtained 

for all points along G are averaged. This process is repeated by switching the roles of G and U. 

AVDIST is then calculated as the average of the two average minimum distances.  

 The Jaccard index (JACCARD
3D

) is defined as the ratio of the intersection between the 

reference volume and the segmented volume to the union of the reference volume and the 395 

segmented volume: 

 
𝐽𝐴𝐶𝐶𝐴𝑅𝐷3𝐷 =

𝑉𝐺 ∩ 𝑉𝑈

𝑉𝐺 ∪ 𝑉𝑈
, (9) 

A value of 1 indicates that VU completely overlaps with VG, whereas a value of 0 implies VU and VG 

are disjoint. 

3. RESULTS 

3.1 Segmentation performance using DL-CNN bladder likelihood map with level sets 400 

 The trained DL-CNN obtained a classification error rate of 0.054 for the training set. The 

error rate for the classification of the ROIs was not measured, as the classification of the ROI is not 

the final goal of this study. Examples of the segmentation from cases in the test set are shown in 

Figure 10. Figure 11 shows the bladder likelihood maps used to generate the bladder boundaries in 

Figure 10. The segmentation performance measures averaged over the cases in the training and test 405 

sets are presented in Table 3. 
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(a) (b) 

Figure 10. Examples of bladder segmentations using DL-CNN with level sets for two cases in the 

test set. (a) Malignant bladder wall thickening was fully enclosed within the segmentation. (b) 

The bladder segmentation enclosed the lesion present in the bladder; however, the bottom of the 

contrast-enhanced region was slightly under-segmented. Arrows point to the wall thickening and 

lesion in (a) and (b), respectively. The lighter contour represents segmentation result from DL-

CNN with level sets. The darker contour represents the radiologist’s hand outline. 

 

 

 
(a) (b) 

Figure 11. Bladder likelihood maps and the corresponding bladder segmentation for cases shown in 

Figure 10. (a) Refining the initial contour generated from the likelihood map by level sets results 

in accurate bladder segmentation. (b) Regions within the non-contrast region of the bladder had 

low likelihood of being within the bladder. The level sets propagated the initial contour to 

enclose the lesion and the non-contrast region. The lighter contour represents segmentation result 

from DL-CNN with level sets. The darker contour represents the radiologist’s hand outline. 

 

 

 410 
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Table 3. Segmentation evaluation results using DL-CNN-based likelihood map with level sets 

averaged over the 81 training cases and 92 test cases. 

 

 

Volume 

intersection 

ratio 
Volume error 

Absolute 

volume error 

Average 

minimum 

distance 
Jaccard index 

R
3D

 E
3D

 |E
3D

| AVDIST JACCARD
3D

 

Training Set 87.2±6.1% 6.0±9.1% 8.8±6.4% 3.0±1.2 mm 81.9±7.6% 

Test Set  81.9±12.1% 10.2±16.2% 14.0±13.0% 3.6±2.0 mm 76.2±11.8% 
 

 

 The histograms for volume intersection ratio, volume error, average distance, and the Jaccard 

index for both the training set and the test set are shown in Figures 12, 13, 14, and 15, respectively. 
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Figure 12. Histogram of the percent volume intersection ratio for the training and test sets. The 

mean volume intersection was 87.2% for the 81 training cases, and 81.9% for the 92 test 

cases. 



29 

 

 415 

 

Volume Error [%]
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Figure 13. Histogram of the volume error for the training and test sets. The mean volume error 

was 6.0% for the 81 training cases, and 10.2% for the 92 test cases. 
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Figure 14. Histogram of the average distance for the training and test sets. The mean average 

distance was 3.0 mm for the 81 training cases, and 3.6 mm for the 92 test cases. 
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Of the 81 cases in the training set, 70 bladders (86.4%) had a volume intersection ratio 

greater than 80% (Fig. 12). There were 79 bladders (97.5%) whose absolute volume error for the 

training set was less than 20% (Fig. 13). Forty-six bladders (56.8%) in the training set had an 420 

average distance less than 3 mm (Fig. 14), and 50 bladders (61.7%) had Jaccard indices of over 80% 

(Fig. 15).  

Of the 92 test cases, 61 bladders (66.3%) had a volume intersection ratio greater than 80% 

(Fig. 12). There were 73 bladders (79.3%) whose absolute volume error for the test set was less than 

20% (Fig. 13). Forty-six bladders (50.0%) in the test set had an average distance less than 3 mm (Fig. 425 

14), and 42 bladders (45.7%) had Jaccard indices of over 80% (Fig. 15). 

 

3.2 Dependence of segmentation performance on input ROI size and DL-CNN pooling 

 Table 4 summarizes the segmentation performance on the test cases for the conditions: (1) 

the maximum pooling layers was replaced by average pooling layers while keeping the input ROI 430 
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Figure 15. Histogram of the Jaccard index for the training and test sets. The mean Jaccard index 

was 81.9% for the 81 training cases, and 76.2% for the 92 test cases. 
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size at 32 x 32 pixels and other parameters the same as those in Section 3.1, (2) the input ROI size 

was changed to 16 x 16 pixels and 64 x 64 pixels while all other parameters the same as those in 

Section 3.1. The training set results showed similar trends. Figure 16 shows examples of the bladder 

likelihood map for 16x16-pixel ROI and the 64x64-pixel ROI for the CTU slice shown in Figure 4. 

Table 4. Segmentation evaluation results for DL-CNN with level sets using average pooling with 

32x32-pixel ROI, and maximum pooling using 16x16-pixel ROI, and 64x64-pixel ROI averaged 

over the 92 test cases. Training set results showed similar trends.  

 

 

Volume 

intersection ratio 
Volume error 

Absolute 

volume error 

Average 

minimum 

distance 

Jaccard 

index 

R
3D

 E
3D

 |E
3D

| AVDIST JACCARD
3D

 

Average Pooling 

32x32-pixel ROI 
81.0±12.1% 5.3±21.5% 16.2±14.9% 4.5±2.9 mm 72.1±13.3% 

Maximum Pooling 

16x16-pixel ROI 
79.2±14.2% 11.0±20.1% 17.4±14.8% 4.4±2.5 mm 72.6±14.0% 

Maximum Pooling 

64x64-pizel ROI 
67.1±12.7% 24.9±19.8% 27.9±15.1% 6.4±2.8 mm 62.8±13.1% 

 

 435 
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3.3 Variability of reference standards 

Table 5 shows the segmentation results using DL-CNN likelihood map with level sets 

compared against the two reference standards, as well as the results comparing the two hand-outlines 440 

with each other.  

  

  

(a) (b) 

Figure 16. Bladder likelihood map of the CTU slice shown in Figure 4 using different ROI sizes. 

(a) Likelihood map generated using 16x16-pixel ROIs. (b) Likelihood map generated using 

64x64-pixel ROIs. 
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Table 5. Segmentation evaluation results in a subset of test cases with lesions (41 training cases, 

50 test cases) between hand-segmented reference standards (RS1, RS2) by two different 

readers for DL-CNN with level sets. Segmentation evaluation of RS2 using RS1 as the 

reference is included to show inter-observer variations. 

 

 Volume 

intersection 

ratio 

Volume 

error 

Absolute 

volume 

error 

Average 

minimum 

distance 

Jaccard 

index 

R
3D 

E
3D

 |E
3D

| AVDIST JACCARD
3D

 

DL-CNN 

vs RS1 

Training Set 85.9±6.6% 6.9±9.6% 9.3±7.1% 3.2±1.3 mm 80.4±8.4% 

Test Set 81.2±11.5% 12.5±13.5% 13.4±12.5% 3.6±1.9 mm 76.4±11.5% 

DL-CNN 

vs RS2 

Training Set 84.3±7.1% 9.7±10.0% 11.4±7.9% 3.4±1.3 mm 79.8±8.2% 

Test Set 78.2±10.9% 17.5±12.0% 17.7±11.6% 4.0±2.1 mm 75.1±11.0% 

RS2 vs 

RS1 

Training Set 96.2±2.8% -3.0±4.8% 4.2±3.8% 1.4±0.5 mm 90.2±4.8% 

Test Set 95.0±8.1% -6.2±15.3% 10.3±12.8% 1.7±1.0 mm 86.1±9.5% 
 

 

3.4 Comparison of segmentation performance using DL-CNN-based and Haar-feature-based 

bladder likelihood maps 445 

 

 Table 6 summarizes the segmentation performance measures using the Haar-feature-based 

likelihood map to guide the level sets, averaged over the cases in the training and test sets. An 

example comparing the segmented bladder using the Haar-feature-based likelihood map with that 

using the DL-CNN-based likelihood map is shown in Figure 17.  450 
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(a) (b) (c) 

Figure 17. Comparison of bladder segmentations using DL-CNN-based likelihood map and Haar-

feature-based likelihood map. (a) DL-CNN-based segmentation (light contour) encloses the 

bladder lesion within the segmentation, while the Haar-feature-based segmentation (darker 

contour) does not fully enclose the lesion and leaks into the prostate. The arrow points to the 

lesion. The darkest contour represents the radiologist’s hand outline. (b) Bladder likelihood map 

generated using DL-CNN. (c) Bladder likelihood map generated using Haar features and random 

forest classifier. 

 

Table 6. Segmentation evaluation results using Haar-feature-based likelihood map with level 

sets averaged over 81 training cases and 92 test cases. 

 

Volume 

intersection 

ratio 

Volume error 
Absolute 

volume error 

Average 

minimum 

distance 

Jaccard index 

R
3D

 E
3D

 |E
3D

| AVDIST JACCARD
3D

 

Training Set 76.2±10.4% 15.5±15.0% 18.1±11.6% 5.2±1.7 mm 70.7±10.0% 

Test Set  74.3±12.7% 13.0±22.3% 20.5±15.7% 5.7±2.6 mm 66.7±12.6% 
 

 

 Table 7 shows the initial segmentation surface (𝜙0(𝑥)) generated from the DL-CNN-based 

and Haar feature-based bladder likelihood maps in comparison to the hand outlines (RS1). The 455 

results show the segmentation performance without the refinement by the level sets and the 

differences between the DL-CNN-based likelihood maps and the Haar-feature-based likelihood 

maps. 
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Table 7. Segmentation evaluation results using initial contours (no level sets) generated using 

bladder likelihood maps with DL-CNN and Haar Features averaged over the 92 test cases. 

Training cases showed similar trends. 

 

 

Volume 

intersection 

ratio 

Volume error 
Absolute 

volume error 

Average 

minimum 

distance 

Jaccard index 

R
3D

 E
3D

 |E
3D

| AVDIST JACCARD
3D

 

DL-CNN 68.7±12.0% 27.3±13.7% 27.4±13.6% 5.7±2.2 mm 66.2±11.8% 

Haar 

Features  
59.8±12.1% 32.3±18.6% 34.0±15.2% 8.1±2.6 mm 55.6±11.4% 

 

 460 

3.5 Comparison of segmentation performance using DL-CNN bladder likelihood map with 

level sets and CLASS with LCR 

Segmentation results of several test cases for both CLASS with LCR and DL-CNN with 

level sets are shown in Figure 18. The segmentation performance measures for CLASS with LCR 

method are shown in Table 8. 465 
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(a) (b) 

 

  

(c) (d) 

Figure 18. Comparison of bladder segmentation using DL-CNN with level sets and CLASS with 

LCR. (a) DL-CNN slightly under-segments the upper region of the non-contrast region, but 

encloses more of the large, malignant lesion and does not leak towards the bones. (b) The two 

segmentation methods perform similarly, but DL-CNN with level sets encloses the lesion, 

whereas CLASS does not. (c) DL-CNN with level sets does not leak into the surrounding organs 

in the non-contrast region, unlike CLASS. (d) CLASS performs better than DL-CNN with level 

sets in the non-contrast enhanced region. Both methods over-segment the contrast-enhanced 

region. The light contour represents segmentation using DL-CNN with level sets. The darker 

contour represents segmentation using CLASS with LCR. The darkest contour represents the 

radiologist’s hand outline. 
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Table 8. CLASS with LCR segmentation evaluation results averaged over the 81 training cases and 

92 test cases. 

 

Volume 

intersection 

ratio 

Volume error 
Absolute 

volume error 

Average 

minimum 

distance 

Jaccard index 

R
3D

 E
3D

 |E
3D

| AVDIST JACCARD
3D

 

Training Set 84.2±11.4% 8.2±17.4% 13.0±14.1% 3.5±1.9 mm 78.8±11.6% 

Test Set  78.0±14.7% 16.5±16.8% 18.2±15.0% 3.8±2.3 mm 73.9±13.5% 
 

 

4. DISCUSSION 470 

 In this study, a new segmentation method that combines a likelihood map generated by DL-

CNN with cascading level sets was developed and applied to a data set containing bladders in CTUs 

having a wide range of image quality. Most of the bladders were partially filled with excreted 

contrast material; however, some bladders were entirely filled with excreted contrast material and 

others did not contain any contrast-enhanced urine due to variation in timing for image acquisition. 475 

The presence of the two distinct areas that have very different attenuation values: an area filled 

with contrast material and an area without contrast material, poses a challenge for segmentation 

that needs to go across the strong boundary. To alleviate this problem, we previously require two 

manually input VOIs: one for the non-contrast region and the other for the contrast-enhanced 

region using our CLASS segmentation method
17, 18

 and an LCR method was needed to refine and 480 

connect the two contours. However, by combining the DL-CNN bladder likelihood maps with the 

level set methods, we no longer needed the separate input user inputs for the two different regions. 

A major contribution of this work is that it demonstrates the DL-CNN can overcome the strong 

boundary between two regions that have large difference in gray levels and provides a seamless 

mask to guide level set segmentation. This has been a problem for many gradient-based 485 
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segmentation methods. As a result, this new method requires only one user input bounding box for 

the entire bladder to start the segmentation procedure compared to the two user input bounding 

boxes for the previous method. 

Compared to our CLASS with LCR method using the same data set, segmentation using 

DL-CNN performed better. All performance measures were improved using DL-CNN with level 490 

sets compared to CLASS with LCR for both the training and test sets. The differences in the 

volume intersection ratio, absolute volume error, average minimum distance, and the Jaccard 

index for the training set were statistically significant, with p-values of 0.01, 0.007, 0.01, and 

0.002, respectively, by two-tailed paired t-test at an alpha level of 0.01 after the Bonferroni 

correction for the 5 comparisons. For the test set, the differences in the volume intersection ratio, 495 

volume error, and the absolute volume error were statistically significant with p-values of 0.004, 

0.001, and 0.005 by two-tailed paired t-test at the alpha level of 0.01. For the training set, the 

percentages of cases obtaining improvements in the 5 performance improvements in the 5 

performance measures range from 54% to 64%. For the test set, the improvements range from 54% 

to 67%. More importantly, DL-CNN with level sets better included lesions within its segmented 500 

region; 50 out of 59 (84.7%) lesions in the training set, and 64 out of 78 (82.1%) lesions in the test 

set were included better than or similar to the bladder segmented with CLASS with LCR. These 

improvements were obtained while reducing the number of user inputs (one box vs. two boxes). 

DL-CNN with level sets generally enclosed more of the lesions within the segmented 

regions compared to CLASS with LCR (Fig. 18(a, b)), which is important because further steps of 505 

the CAD system for lesion detection and characterization will be performed within the segmented 

bladder. The non-contrast enhanced region was segmented more accurately, without leaking into 

the adjacent organs using the DL-CNN (Fig. 18(a, c)). However, there were cases that performed 

worse than our previous method (Fig. 18(d)). These were caused by either the network giving low 
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likelihood scores for portions of the bladder, causing under-segmentation, or the network giving 510 

relatively high likelihood scores for other organs, such as the bone, causing over-segmentation. 

Organs that were given relatively high bladder likelihood scores, such as the femoral heads, can be 

seen in the regions outside the VOI in Figure 7. 

For a few test set cases, DL-CNN with level sets performed well below the average 

performance of the test data set. Some of these cases had poor image quality due to noise caused by 515 

the large patient size or the presence of hip prosthesis. Other large segmentation mistakes were due 

to the patient having advanced bladder cancer spreading into the neighboring organs and causing the 

segmentation to leak into those areas. We are working on improving our method to reduce the errors 

caused by these types of cases. 

When average pooling was used instead of maximum pooling in the network structure, the 520 

segmentation performance measures deteriorates in general. The differences between the two 

methods were statistically significant for the volume error, average minimum distance, and the 

Jaccard index for the test set. 

Using the 16x16-pixel ROIs as input to the network resulted in bladder likelihood maps 

with finer details, such as lesion boundaries and the boundary between the non-contrast and the 525 

contrast-enhanced regions of the bladder. However, these maps did not lead to better segmentation 

than the likelihood maps obtained from 32x32-pixel ROIs likely due to the fine details hindering 

the generation of the initial contour for the entire bladder. On the other hand, the bladder 

likelihood maps obtained from 64x64-pixel ROIs contained less details from the structures 

surrounding the bladder. However, the shapes of the bladder might have lost too much details 530 

compared to those in the likelihood maps generated using 32x32-pixel ROIs. It also had the 

tendency of misclassifying large lesions as outside of the bladder. As shown in Table 4, both the 
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smaller 16x16-pixel ROI and the larger 64x64-pixel ROI were inferior to the 32x32-pixel ROI for 

generating the bladder likelihood maps to guide bladder segmentation. 

The bladder segmentation using DL-CNN with level sets performed comparably regardless 535 

of which of the two hand outlines was used as the reference standard. The agreement between the 

computer and the hand outlines are slightly lower than the agreement between the two observers 

(approximately 10% for the volume intersection ratio and the Jaccard index), but the computer 

segmentation in this range of accuracy is acceptable and still useful for defining the search region 

for bladder lesion detection, as shown in our previous work on bladder lesion detection
9
. 540 

Comparing Table 3 and Table 6, it is seen that the bladder likelihood maps obtained from 

the Haar features and the random forest classifier were not as effective as those from the DL-CNN, 

resulting in lower bladder segmentation performance. The differences in all performance measures 

but the volume error for the test set were statistically significant. 

The comparison of the initial segmentation surfaces generated from the bladder likelihood 545 

maps with the reference standards show that the DL-CNN-based maps are closer to the hand 

outlines than the Haar-feature-based maps (Table 7). The result also shows that segmentation using 

the DL-CNN alone cannot reach the high performance level achieved by DL-CNN with refinement 

by level sets. The DL-CNN bladder likelihood maps are generally under-segmenting the bladder, 

often catching the edge of the inner bladder wall for cases with circumferential bladder wall 550 

thickening while lowering the threshold for the DL-CNN bladder likelihood map would lead to 

leaking. Applying the level sets to the slightly under-segmented contours allows better control of the 

balance between under- and over-segmentation.  

We chose the network structure size and level sets parameters by experimentation where 

each parameter was varied over a reasonable range, and the best parameter within the studied range 555 

was chosen based on the evaluation of the training set results. Our sensitivity analysis of the level 
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sets can be found in the literature
34

. We have performed a sensitivity analysis of the network 

structure size. The number of kernels within the first two convolution layers was varied between 32, 

64, and 96. The network was trained on the training set, and the bladders were segmented using DL-

CNN likelihood maps with level sets. The change in the volume intersection ratio was in the range 560 

of 0.5-1.9%, absolute volume error 0.2-9.3%, average minimum distance 0.6-10.1%, and the 

Jaccard index 0.1-2.2%. These results demonstrate that our DL-CNN based segmentation system is 

robust within a reasonable range of parameters.  

A limitation to the new method is the long training time for the DL-CNN. The DL-CNN 

requires training, which takes approximately 5.5 hours for 160,000 ROIs and 1500 iterations. 565 

However, the processes involving the DL-CNN have not been optimized, and a slower GPU was 

used for compatibility reasons for this study. Optimizing the process and using faster hardware 

will reduce the runtime for training the DL-CNN. Once the DL-CNN has been trained, it takes 

approximately 4 minutes to generate the bladder likelihood maps within the VOI of a case. It takes 

2 – 5 minutes to mark the VOI and run the level set segmentation, depending on the bladder size. 570 

On the other hand, CLASS with LCR takes approximately 4 – 10 minutes per case to mark the 

VOI and run the segmentation. Therefore, for an unknown case, it may require up to 10 minutes 

for DL-CNN with level sets, which is comparable to the CLASS with LCR method. 

It is difficult to perform direct comparison of segmentation performance to the previous 

methods by other investigators summarized in the Introduction due to the differences in the data sets 575 

and in their degrees of difficulty. A rough comparison can be made to only one of the studies
14

, 

which reported quantitative results. Chai et al
14

 achieved Jaccard indices of 70.5% and 77.7% for 

their automatic and semi-automatic methods, respectively, using 95 scans of 8 patients for training, 

and 233 scans of 22 patients for testing. Our segmentation method using DL-CNN achieved 
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higher accuracy than the automatic method from Chai et al
14

, and achieved comparable results to 580 

their semi-automatic method, while using a larger independent test set.  

 

5. CONCLUSION 

Our results show that the proposed segmentation method using DL-CNN can accurately 

segment the bladders on CTU scans. While only using a single bounding box for the entire bladder 585 

as the input to the system, the new method performed comparable to or better than our previous 

CLASS with LCR method for all performance measures, which required two bounding boxes as 

input. However, the cost of this improvement is the increased runtime for training the DL-CNN. 

Once the DL-CNN is trained and implemented as a part of the segmentation package, the runtime 

for an unknown case becomes comparable. We observed that DL-CNN can differentiate the inside 590 

and outside of the bladder regions better than the Haar features with random forest classifier, 

resulting in a more accurate bladder likelihood map and segmentation after refinement by level sets. 

Further work is underway to optimize the segmentation process and to improve the segmentation 

accuracy, especially important is to include the bladder lesions inside the segmented bladder 

boundaries. This study is a step toward the development of a reliable system for segmentation of 595 

bladders, which is a critical component of a CAD system for detection of urothelial lesions imaged 

with CT urography. 
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