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Abstract Forecast models were derived for energetic electrons at all energy ranges sampled by the
third-generation Geostationary Operational Environmental Satellites (GOES). These models were based on
Multi-Input Single-Output Nonlinear Autoregressive Moving Average with Exogenous inputs methodologies.
The model inputs include the solar wind velocity, density and pressure, the fraction of time that the
interplanetary magnetic field (IMF) was southward, the IMF contribution of a solar wind-magnetosphere
coupling function proposed by Boynton et al. (2011b), and the Dst index. As such, this study has deduced
five new 1 h resolution models for the low-energy electrons measured by GOES (30–50 keV, 50–100 keV,
100–200 keV, 200–350 keV, and 350–600 keV) and extended the existing >800 keV and >2 MeV
Geostationary Earth Orbit electron fluxes models to forecast at a 1 h resolution. All of these models were
shown to provide accurate forecasts, with prediction efficiencies ranging between 66.9% and 82.3%.

1. Introduction

The radiation belts consist of energetic particles trapped by the terrestrial magnetic field and were discovered
from the first in situ space radiation measurements. The outer radiation belt is made up of trapped electrons
ranging in energy from keVs to several MeVs. Blake et al. [1992] and Reeves [1998] showed that the electron
fluxes can vary by several orders of magnitude in a few hours. The high fluence of these energetic electrons
can cause a number of problems on spacecraft depending on the electron energy. For example, low-energy
electrons (1 keV to 100 keV) can cause surface charging that interferes with the satellite electronic systems
[Olsen, 1983; Mullen et al., 1986], while higher energies (above 1 MeV and above) cause deep dielectric charging
that may permanently damage the materials on board the satellite [Baker et al., 1987; Wrenn et al., 2002; Gubby
and Evans, 2002; Lohmeyer and Cahoy, 2013; Lohmeyer et al., 2015].

There are still many unanswered questions about the mechanisms involved within the radiation belts, such as
the acceleration mechanisms and loss processes of the electrons [Friedel et al., 2002]. Since we do not have a
complete understanding of the physics, radiation belt models based on first principals struggle to capture the
variable dynamics of the system [Horne et al., 2013b]. As such, these models often exhibit large errors between
the forecast and the observed electron population [Horne et al., 2013a].

The system identification approach has also been applied to modeling the radiation belts. In this approach,
models are automatically deduced from input-output data by the system identification algorithms. The sys-
tem identification methodologies include linear prediction filters [Baker et al., 1990], dynamic linear models
[Osthus et al., 2014], neural networks [Koons and Gorney, 1991; Freeman et al., 1998; Ling et al., 2010], and
Nonlinear Autoregressive Moving Average with Exogenous inputs (NARMAX) [Wei et al., 2011; Boynton et al.,
2013a, 2015]. While linear prediction filters and dynamic linear models are suitable for linear systems, the main
advantage of NARMAX and neural networks is that they are capable of modeling nonlinear dynamics within
the system. NARMAX and neural networks can both provide accurate and reliable models for nonlinear sys-
tems such as the radiation belts; however, NARMAX has the advantage of interpretability over neural networks.
Neural networks result in the relationship between input and output measurements being described through
a maze of multilayered neurones, in which each connection has an associated weight factor and each neurone
has an activation function. This makes neural networks extremely difficult to interpret, i.e., to find out how
the input variables couple together to produce changes in the output. In contrast, NARMAX models can
result in a simple polynomial, from which understanding how the inputs change the output is intuitive.
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Therefore, this study uses the NARMAX methodologies to model the electron fluxes observed by the
Geostationary Operational Environmental Satellites (GOES), situated in Geostationary Earth Orbit (GEO).

The main aim of this study is to create reliable forecast models for the electron flux energy ranges observed by
the third-generation GOES. The second aim is to increase temporal resolution of the forecast to that which
currently operates on the University of Sheffield Space Weather Website (http://www.ssg.group.shef.ac.uk/
USSW/UOSSW.html) and was developed by Boynton et al. [2015]. In section 2, we discuss the methodology
used to deduce the forecast models. This includes a brief description of the NARMAX algorithm. Section 3
presents an extension of the current 24 h resolution >800 keV and >2 MeV GEO electron flux models,
developed by Boynton et al. [2015], to 1 h resolution and a calculation of their performance. In section 4, the
methodology and data used to derive the low-energy models and the results of the model performances are
shown. The limitations of the models and their performance are discussed in section 5, and the conclusions
from this study are presented in section 6.

2. NARMAX Methodology

As stated in section 1, NARMAX models provide reliable forecasts and are also easy to interpret. As such,
the methodology has been applied to a wide range of scientific fields, from analyzing the adaptive changes
in the photoreceptors of Drosophila flies [Friederich et al., 2009] to modeling the tide at the Venice Lagoon
[Wei and Billings, 2006]. In the field of space physics, the methodology was first used to model the Dst index
using the half-wave rectifier (solar wind velocity multiplied by the southward interplanetary magnetic field
(IMF) component) as the input [Balikhin et al., 2001; Boaghe et al., 2001]. More recently, due to lack of knowl-
edge about the inputs to the Dst index system, Boynton et al. [2011b] used the NARMAX model structure
detection methodology to identify the main control parameter, or solar wind coupling function, for geomag-
netic storms quantified using the Dst index. This coupling function was p1∕2V4∕3BT sin6(𝜃∕2), where p is the
pressure, V is the velocity, BT =

√
(B2

y+B2
z ) is the tangential IMF, and𝜃= tan−1(By∕Bz) is the clock angle of the IMF

in GSM coordinates. Boynton et al. [2011a] used this coupling function to deduce a reliable model for the Dst
index. Boynton et al. [2013b] and Balikhin et al. [2011] employed a similar approach to identify the solar wind
control parameters for electron fluxes at GEO. In these studies, they found that the solar wind velocity and
density were the main control parameters. The interpretability of these results allowed Balikhin et al. [2012] to
make a direct comparison with the energy diffusion equation, where they found that acceleration due to local
diffusion does not dominate at GEO. Recently, the NARMAX model structure detection methodology has been
employed by Beharrell and Honary [2016] to determine the relationship between the solar wind and SYM-H.

NARMAX models were first proposed by Leontaritis and Billings [1985a, 1985b] who demonstrated that the
models have the potential to represent a wide class of nonlinear systems. A Multi-Input Single-Output
NARMAX model, which was used in this study to model the electron fluxes at GEO, is expressed by

y(t) = F
[

y(t − 1),… , y
(

t − ny

)
,

u1(t − 1),… , u1

(
t − nu1

)
,… ,

um(t − 1),… , um

(
t − num

)
,… ,

e(t − 1),… , e
(

t − ne

)]
+ e(t)

(1)

where y, u, and e represent the output, input, and error terms, respectively, F[⋅] represents some nonlinear
function (a polynomial in the case of this study), m is the number of system inputs, and ny , nu1

,… , num
, ne are

the maximum time lags for the output, each of the m inputs, and the error, respectively.

Billings et al. [1988] developed the first Forward Regression Orthogonal Least Squares (FROLS) algorithm that
automatically fits a NARMAX model using input-output training data sets. Simply put, the overall algorithm
developed by Billings et al. [1988] involved three stages. The first stage is model structure detection, which
identifies the variables or combination of variables that control the evolution of the system. In equation (1),
the expansion of F[⋅] in terms of a high-degree polynomial results in a huge number of monomials, especially
if there are many possible inputs. The vast majority of the possible monomials will have little influence on
the system; i.e., the coefficients of the monomial will be zero. Therefore, only a small number of monomials
are required to represent the dynamics of the system. The FROLS procedure identifies the most significant
monomials by use of the Error Reduction Ratio (ERR). Once the model structure is detected, the second stage
is to estimate the coefficient for each of the monomials detected in the model. These first two stages are
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referred to as training the model. The final stage is to validate the model. Since its inception, many variants on
the FROLS algorithm have been developed [Billings et al., 1989; Mao and Billings, 1997; Wei and Billings, 2008].
This study employs the Iterative Orthogonal Forward Regression (IOFR) algorithm, developed by Guo et al.
[2014], which is more likely to detect the optimal model when the data are oversampled.

The IOFR is largely based upon the initial FROLS algorithm, where the ERR of each of the monomials is calcu-
lated with respect to the output. The monomial with the highest ERR is then selected as the first monomial for
the initial model structure. For the next step of the algorithm, all other monomials are orthogonalized relative
to the first monomial that has just been selected. This effectively removes the first monomials contribution to
the output from the remaining monomials. The ERRs of these orthogonalized monomials are then calculated
with respect to the output, and the one with the highest ERR is selected as the second monomial for the initial
model. For the third step, the remaining monomials are orthogonalized relative to both the first and second
monomials selected for the initial model and the ERR is calculated. Again, the orthogonalized monomial with
the highest ERR is selected and this will be the third monomial for the model. This process of orthogonalizing
the remaining monomials with respect to all the selected model terms then selecting the orthogonalized
monomial with the highest ERR for the model is continued until the model has the optimum number of model
monomials. To decide the optimum number of model terms, this study employed the Adjustable Prediction
Error Sum of Squares (APRESS) [Billings and Wei, 2008]. After each monomial is selected during every step of
the FROLS algorithm, the APRESS is calculated from the ERR

APRESS = 1
(1 − 𝜆k∕N)2

(
1 −

k∑
i=1

ERRi

)
(2)

where N is the number of data points, k is the number of monomials that has been selected, and 𝜆 is an
adjustable factor that was between 5 and 10. At each step, i, APRESS(i) is calculated and compared to the
previous APRESS(i− 1). APRESS will decrease as each significant monomial is added to the model until a local
minima is reached. After this turning point, the addition of more model monomials is less likely to increase the
performance of the model and may lead to the model becoming overfit [Billings and Wei, 2008]. Therefore, the
turning point in APRESS dictates the optimum number of model monomials and the initial model polynomial
structure is obtained. A least squares procedure then identifies the coefficients for each monomial to yield
the model.

3. Increasing the Time Resolution of the Existing >800 keV and >2 MeV GEO
Electron Flux Models

Models for forecasting the fluxes of >800 keV and >2 MeV electrons at GEO were developed by Boynton et al.
[2015]. These models were deduced using the NARMAX methodology and provide a 1 day resolution fore-
cast for 1 day ahead. Both of these models were shown to have a high prediction efficiency for estimating
the next day’s electron flux value [Boynton et al., 2015]. The forecast results can be found online at www.ssg.
group.shef.ac.uk/USSW/UOSSW.html.

The original model only produces one forecast for the day. This forecast is for the average electron flux
between 00:01 UTC 1 day to 00:00 UTC on the next day, calculated at 00:01 UTC. This means that at the start of
every UTC day the original model calculates a forecast for the average electron flux over the next 24 h. One of
the aims of this study is to increase the temporal resolution of these forecasts. Therefore, the time resolution
of the >800 keV and >2 MeV GEO electron flux models was extended to give a forecast of the electron fluxes
every hour for the next 24 h in contrast to only one daily forecast per day. This means that every hour the
model will calculate a forecast for the average electron flux over the next 24 h, producing 24 forecasts per day.

3.1. Data and Methodology
The >800 keV and >2 MeV electron flux models rely on solar wind inputs to forecast the electron flux. The
solar wind inputs are the daily average velocity and density and the amount of time the IMF is southward
in a 24 h period. The 1 min solar wind velocity, density, and IMF Bz component data were obtained from
the OMNI website (http://omniweb.gsfc.nasa.gov/ow_min.html) from 1 January 2011 to 28 February 2015.
At every hour, the past 24 h average of the solar wind velocity and density was calculated. For example, the
point at 10:00:00 UTC on 5 January 2015 is an average of the 1440 1 min points between 10:01:00 UTC on
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4 January 2015 and 10:00:00 UTC on 5 January 2015. In addition, the number of minutes that the IMF was
southward during the past 24 h was determined for the final input.

The electron flux data used to analyze the performance of the extended temporal resolution >800 keV and
>2 MeV GEO electron flux models were from GOES 13. The electron fluxes on board the GOES 13 satel-
lite are measured by the Energetic Proton Electron and Alpha Detector (EPEAD) [Hanser, 2011] and the
Magnetospheric Electron Detector (MAGED). [Hanser, 2011]. The data for these instruments can be accessed
from http://www.ngdc.noaa.gov/stp/satellite/goes/dataaccess.html, and the MAGED will be discussed in
section 4.1.

The EPEAD measures the relativistic integral electron fluxes and has two detectors pointing in opposite
directions, both tangential to the spacecrafts orbit, named the east and west detectors. Since the EPEAD mea-
sures integral flux, the >2 MeV electrons will be measured by the >800 keV channel; however, the >2 MeV
electrons account for less than 3% of the electrons detected on average. These data were used to assess the
1 h temporal resolution of the SNB3GEO electron flux models (SN stands for Sheffield NARMAX, and B3 corre-
sponds to the letters of surnames of three model developers and GEO stands for geostationary orbit). The data
period used for this part of the study was from 1 January 2011 to 28 February 2015. The study employed the
>800 keV and >2 MeV energy channels from both the east and west detectors on board the GOES 13 satellite.
The 5 min proton-corrected electron flux values were averaged between the east and west detectors. This was
then time averaged resulting in a data set with 1 h resolution, such that each 1 h point was determined by
averaging the 5 min data over the past 24 h; e.g., the point at 10:00:00 UTC on 5 January 2015 is average of the
288 5 min points between 10:05:00 UTC on 4 January 2015 and 10:00:00 UTC on 5 January 2015. These data
were then compared to the model forecast. The 1 h moving average data will allow for a more continuous
forecast of the daily average electron flux, such that every hour the online model will be able to forecast the
electron flux value over the next 24 h, compared to only producing one forecast for each UTC day. Therefore,
the forecast horizon for both the >800 keV and >2 MeV models will be 24 h.

3.2. Model Performance
The >800 keV and >2 MeV GEO electron flux models were run using the 1 h resolution input data, and the
results were compared to the EPEAD 1 h electron flux data, for the period from 1 January 2011 to 28 February
2015. The performance of the models during the period could then be analyzed.

The performance of the models was assessed statistically by the correlation coefficient (CC), equation (3), and
the prediction efficiency (PE), equation (4), which are commonly used to assess models [Temerin and Li, 2006;
Li, 2004; Boynton et al., 2011a; Wei et al., 2004; Boynton et al., 2015; Rastatter et al., 2013].

𝜌yŷ =
∑N

t=1

[
(y(t) − ȳ)

(
ŷ(t) − ̄̂y

)]√∑N
t=1

[
(y(t) − ȳ)2]∑N

t=1

[(
ŷ(t) − ̄̂y

)2
]100% (3)

EPE =
⎡⎢⎢⎢⎣1 −

∑N
t=1

[(
y(t) − ŷ(t)

)2
]

∑N
t=1

[
(y(t) − ȳ)2]

⎤⎥⎥⎥⎦ 100% (4)

Here EPE is the PE, 𝜌 is the CC, y(t) is the output at time t, ŷ is the estimated output from the model, N is the
length of the data, and the bar signifies the average.
3.2.1. The >800 keV Model
Figure 1a shows the past 24 h average >800 keV electron flux measured by GOES in blue and the model 24 h
ahead forecast in orange for the period from 1 January 2011 to 28 February 2015, while Figure 1b depicts the
model error (e = log10(JGOES) − log10(Jmodel)). During this period, the PE was 72.1% and the CC was 85.1%.
3.2.2. The >2 MeV Model
Figure 1c shows the past 24 h average >2 MeV electron flux measured by GOES in blue and the model 24 h
ahead forecast in orange for the period from 1 January 2011 to 28 February 2015, Figure 1d depicts the>2 MeV
electron flux model error. The PE for the >2 MeV model was 82.3%, while the CC was 90.9%. Figures 1a and 1c
reflect the better statistical performance of the >2 MeV model over the >800 keV model, since it can clearly
be seen that the >2 MeV model follows more closely the blue observed GOES electron flux, particularly for
the lower electron flux values.
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Figure 1. (a) The past 24 h average >800 keV electron flux measured by GOES in blue and the model 24 h ahead forecast in orange for the period from 1 January
2011 to 28 February 2015. (b) The >800 keV electron flux model error (log10(JGOES) − log10(Jmodel)). (c) The past 24 h average >2 MeV electron flux measured by
GOES in blue and the model 24 h ahead forecast in orange for the period from 1 January 2011 to 28 February 2015. (d) The >2 MeV electron flux model error
(log10(JGOES) − log10(Jmodel)).

4. Modeling the Low-Energy Electron Fluxes Measured by GOES 13

Models to forecast the low-energy electrons measured by GOES satellites were deduced using the NARMAX
IOFR algorithm. This method requires input-output data for training the models.

4.1. Data and Methodology
The electron flux data for the training and validation of these models come again from GOES 13. The MAGED
has nine telescopes pointing in different directions and measures the lower energy differential electron fluxes
in five energy channels: 30–50 keV, 50–100 keV, 100–200 keV, 200–350 keV, and 350–600 keV [Hanser, 2011].
The data period used for this part of the study was from 1 May 2010 to 28 February 2015 and employed all
energy channels available from the instrument. This study is concerned mainly with the trapped electrons and
therefore should not use a telescope that is directed in the loss cone, which is <5∘ at GEO. Since telescopes
1–5 of the MAGED are in the east-west plane, they should be directed farther away from the loss cone than
telescopes 6–9, which are directed north or south. Figure 2a shows the 30–50 keV electron flux for the nine
telescopes, and Figure 2b shows the pitch angle for each of the telescopes, which can be downloaded from
http://www.ngdc.noaa.gov/stp/satellite/goes/dataaccess.html. These are displayed for an arbitrary period
between 13 November 2012 and 27 October 2013. The figure shows that telescopes 1–6 have pitch angles
between ∼110∘ and ∼40∘, and with a telescope cone angle of 30∘ none of these should be directed in the
loss cone. Since GOES 13 is positioned above the equator at ∼0∘ latitude and the magnetic North Pole is ∼60∘

west of the satellite and has a latitude of ∼85∘ north during this period, the telescope pointing farthest south
(telescope 7) is the only one permanently looking in the loss cone. As such, the electron flux of telescope 7
is less than the others. Therefore, we arbitrarily chose the data from telescope 3 to use as the output for this
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Figure 2. (a) The 30–50 keV electron flux for the nine telescopes. (b) The pitch angle of each telescope. For the period from 13 November 2012 to 27 February
2013.

particular study. Using only one telescope makes the real-time online procedure of processing the data more
simple, which will reduce the possibility of bugs occurring thus making the real-time procedure more reliable.

Solar wind and geomagnetic indices were used as input data for training the models. The 1 min solar
wind velocity, density, and IMF data were obtained from the OMNI website (http://omniweb.gsfc.nasa.gov/
ow_min.html), while the Dst geomagnetic index was from the World Data Center for Geomagnetism, Kyoto
(http://wdc.kugi.kyoto-u.ac.jp/index.html).

4.2. Model Training
The training data were from 1 March 2011 to 28 February 2013. For the training data, the 1 min corrected
electron flux values were daily averaged between 00:01:00 UTC and 00:00:00 UTC the next day for each day,
resulting in training 790 data points. This was chosen because a NARMAX model requires a training set that
covers a wide range of the systems variation, which is usually approximately a few hundred data points [Billings
et al., 1989].

The studies by Boynton et al. [2013b] and Balikhin et al. [2012] showed that the time delay in the reaction of
electron fluxes to changes in the solar wind increases with the energy. The high-energy models of >800 keV
and >2 MeV had minimum time delays of 1 day, and thus, it is possible to forecast 1 day into the future.
However, same day values of the solar wind affect the current low-energy electron flux. Therefore, it is not
possible to forecast 1 day ahead. To get around this problem, the past 24 h averages were calculated for each
hour, as previously described. Therefore, the input time lags in the algorithm, num

, were shifted hourly not
daily. For example, if input U(t − 10 h) is selected by the model, this monomial represents the average of the
points between U(t − 10 h) and U(t − 34 h). Initially, a number of window intervals from 1 h averages, past 3 h,
past 12 h, and 24 h were investigated. The 12 and 24 h windows gave the better results, but it was decided to
use 24 h averaging for convenience because the same inputs could be used for >2 MeV and 800 keV models.
This also makes the procedure simpler when implemented online and therefore less chance of bugs.

The algorithm was run for the five energy ranges using lagged inputs from 2 to 48 h. These inputs were the
solar wind velocity V and density n, the amount of time the IMF is southward in a 24 h period TBs,
the Dst index, and the term resulting from the coupling function proposed by Balikhin et al. [2010] and
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Figure 3. The PE of a 30–50 keV model between 1 May 2010 and 28 February 2011 versus the minimum lag included in
that model.

Boynton et al. [2011b], BT sin6(𝜃∕2) (where BT =
√
(B2

y + B2
z ) is the tangential IMF and 𝜃 = tan−1(By∕Bz) is the

clock angle of the IMF). Therefore, the NARXAX model of the electron flux J will be

J(t) = F[J(t − 24), J(t − 48),
V(t − 2), V(t − 3),… , V(t − 48),
n(t − 2), n(t − 3),… , n(t − 48),
TBs(t − 2), TBs(t − 3),… , TBs(t − 48),
Dst(t − 2),Dst(t − 3),… ,Dst(t − 48),… ,

BT sin6(𝜃∕2)(t − 2), BT sin6(𝜃∕2)(t − 3),… , BT sin6(𝜃∕2)(t − 48),
e(t − 24), e(t − 48)] + e(t) (5)

where the lags are in hours. When F is expanded to a second degree polynomial, there will be over 10,000
monomials for the FROLS algorithm to search through.

For the 30–50 keV electrons, a compromise had to be made between producing a reliable forecast and the
forecast horizon, the amount of time the model can forecast into the future. The model detected by the algo-
rithm included input terms I, with a minimum lag of 6 h J(t) = F[I(t−6), ...]. Therefore, employing the inputs at
the present time t, it is possible to estimate the electron flux 6 h into the future, J(t+6) = F[I(t), ...]. To increase
the forecast horizon, the ≤6 h time lagged monomials were manually removed from the algorithms search to
see if the performance of the model, based on PE and the CC, dropped significantly on a period of test data
from 1 May 2010 to 28 February 2011. It was found that there was only a negligible drop in performance if the
detected model had input terms with a minimum of 7 h time lag. This process of manually removing mono-
mials with larger and larger time lags was continued until there was a significant performance drop in the
model output. Figure 3 shows the results of this process with PE having a significant drop at a minimum lag of
11 h. Therefore, the model with a minimum of 10 h lag was selected as the final 30–50 keV model and could
forecast the past 24 h average of the flux 10 h in the future. This methodology was repeated for the other four

Table 1. Table Showing the Performance of the Five Low-Energy Electron Flux Models As Well As the Forecast Length

Model Forecast Horizon 1 Day PE (%) 1 Day CC (%) 1 h PE (%) 1 h CC (%)

30–50 keV 10 h 72.0 84.9 66.9 82.0

50–100 keV 12 h 70.7 84.2 69.2 83.5

100–200 keV 16 h 71.1 84.4 73.2 85.6

200–350 keV 24 h 69.5 83.7 71.6 84.9

350–600 keV 24 h 69.9 83.8 73.6 85.9
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Figure 4. The daily average (a) 30–50 keV, (c) 50–100 keV, and (e) 100–200 keV electron flux measured by GOES in blue and the model forecast in orange for the
period from 1 March 2013 to 28 February 2015 and (b) 30–50 keV, (d) 50–100 keV, and (f ) 100–200 keV model error (log10(JGOES) − log10(Jmodel)).

energy channels, and as with the studies by Boynton et al. [2013b] and Balikhin et al. [2012], the time delay of
electron fluxes increased with the energy. The forecast horizons for each of the models are shown in Table 1. In
each of the NARMAX models, the monomial with the minimum lag is due to a velocity component within the
monomial. For example, in the 30–50 keV model, the FROLS algorithm selected V(t − 10)BT sin(𝜃∕2)(t − 12)
as the exogenous monomial with the highest ERR. The exogenous monomial with the highest ERR in each of
the models had a component of the velocity at the models minimum lag. For the three lowest energies the
velocity was coupled with the IMF factor, while for the two higher energies the FROLS algorithm selected the
linear velocity.
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Figure 5. The daily average (a) 200–350 keV and (c) 350–600 keV electron flux measured by GOES in blue and the model 24 h ahead forecast in orange for the
period from 1 March 2013 to 28 February 2015 and (b) 200–350 keV and (d) 350–600 keV model error (log10(JGOES) − log10(Jmodel)).

4.3. Final Model Performance
The performance of the models was analyzed statistically using the PE and CC. Each of the models were run
on the data from 1 March 2013 to 28 February 2015. At first, the models were run on the daily averaged data
which resulted in 730 points for the period. Then, the models were extended to 1 h resolution of the past
24 h average, which contains 17,520 points, to assess each of the model’s performance with an increased
time resolution.

Table 1 lists the performance of the five low-energy electron flux models, showing the PE and CC for the 1 day
and 1 h resolution data. The table also shows the minimum time lag used in the model and thus how far ahead
the model can forecast into the future. This is in agreement with the studies by Boynton et al. [2013b] and
Balikhin et al. [2012], since the minimum time lags increase with energy. The PEs of the models are between
66.9% and 73.6%, which means that the mean square error is well within the variance of the fluxes, and the CC
82% and 85.9%. The results of the five models for the 1 h resolution data are illustrated in Figures 4a (30–50 keV
model), 4(c) (50–75 keV model), 4e (100–200 keV model), 5a (200–350 keV model), and 5c (350–600 keV
model). These figures show the observed GOES electron flux in blue and the model forecast in orange. Below
each of these figures are their respective model error plots in blue, where the dashed black line is zero error.
The figures show that the models approximately follow the measured fluxes with the errors within 1 order
of magnitude.

5. Discussion

One of the aims of this study was to increase the time resolution of the forecasts of the >800 keV and >2 MeV
GEO electron flux models that currently operate online. These models provide daily averaged 1 day ahead
forecasts for each UTC day. Increasing the resolution of the model by using 1 h averages of the GOES data is not
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that simple because during a 24 h GEO orbit there is a significant spatial variation of the electron fluxes that
is independent of any temporal changes due to adiabatic acceleration and loss. This is due to changes in the
structure of the terrestrial magnetic field, where the compressed dayside leads to an increase in the strength
of the magnetic field compared to the nightside. As electrons drift from the nightside to the dayside, these
changes in the structure of the magnetic field cause the electrons to move outward as they approach noon
and back inward as they drift back to midnight. Since the electron flux is generally greater deeper within the
magnetosphere, higher fluxes are observed when GOES is situated at noon compared to midnight. This spatial
variation makes it difficult to deduce a data-based model because the satellites position is always changing.
As such, to achieve the aim of increasing the temporal resolution, we employed a moving average of the pre-
ceding 24 h calculated every hour. We applied the existing>800 keV and>2 MeV GEO electron flux models to
this 1 h averaged data because these models have already been proven to be reliable in their online operation
[Balikhin et al., 2016]. This change in input time resolution resulted in high values for the PE and CC, higher
than those reported by Boynton et al. [2015]. Boynton et al. [2015] showed, using the 1 day resolution data, that
the >2 MeV model had a PE of 78.6% and a CC of 89.4% and that the >800 keV model had a PE of 70% and a
CC of 84.7% between the 1 January 2011 and 30 June 2012, all of which are lower than the results shown in
this study. However, these statistics should really be compared over the same time period. Based on the time
period between the 1 January 2011 and 30 June 2012, the 1 h PE was 76.0% and the CC was 87.5% for the
>800 keV model and the PE was 82.3% and the CC was 90.8% for the >2 MeV model. Therefore, these mod-
els perform better using the 1 h resolution data. It can be seen that the >2 MeV model has a higher PE and
CC than the >800 keV model for all the periods of data. One of the explanations for this could be that since
it takes more time for the electrons to be accelerated to >2 MeV, this larger time delay may allow for a more
accurate prediction. Another explanation is that the variance of the GOES logarithmic >2 MeV fluxes was over
twice that of the logarithmic >800 keV fluxes for this time period and since prediction efficiency is dependent
on the variance of the observed signal, a larger variance for the same mean squared error will mean a higher
prediction efficiency. Three out of the five lower energy models also performed better using the 1 h resolu-
tion data, where only the two lowest energy models had lower performance statistics on the 1 h resolution
data compared to the 1 day resolution data.

One of the limitations of the three lowest energy electron models is that the advance time of the forecast is less
than the higher-energy models, since the low-energy electron fluxes at GEO respond to solar wind changes
significantly faster than high-energy electrons [Balikhin et al., 2012; Boynton et al., 2013b]. The 30–50 keV
model is only able to forecast the 24 h average electron flux 10 h into the future, which means that 14 h of this
average is already measured. Also, it should be noted that better models with higher performance statistics
for the MAGED models, except for the 350–600 keV energy channel, could be obtained if the forecast length
was sacrificed. For example, the 30–50 keV model had a 4% higher PE if 6 h time lags were included in the
algorithm but this would mean that 18 h of the forecast had already been measured by GOES.

The distributions of the model errors (log10(JGOES) − log10(Jmodel)) were plotted to provide some technical
information about the quality of the models. Moreover, the distribution of model errors when the Dst index
<−40 nT was also plotted to show the model performance during geomagnetic activity. Figure 6 shows the
distributions for the MAGED energies, while Figure 7 shows the distributions for the EPS energies. The variance
of the model errors, 𝜎e, is also shown in the top right distributions. The distribution of the model errors for
all energies resembles a normal distribution. For the EPEAD energy models, the distribution of the errors is
wider, which could be due to the larger variance of the integral fluxes. From the channels between 200 and
350 keV to >2 MeV (Figures 6g, 6i, 7a, and 7c), it can be seen that more errors occur <−0.5 than >0.5. The
errors <−0.5 indicate that the model prediction was higher than the GOES observation. This could be due
to the model overshooting or missing electron flux dropouts. When inspecting the model error distribution
during geomagnetically active times, the trend of more negative errors occurring can be seen down to the
100–200 keV (Figures 6f, 6h, 6j, 7b, and 7d). This implies that these models tend to overshoot or miss dropouts
during geomagnetic storms.

To investigate whether the model is tending to overshoot or miss dropouts, the model output versus observed
values were plotted for 1 month time scales along with the Dst index. Figure 8 shows the observed electron
flux in blue with the model forecast in orange for the various energy channels (Figures 8a–8g) and the Dst
index (Figure 8h) between 15 April 2013 and 15 May 2013. The figure shows that a moderate geomagnetic
storm occurs on 24 April with a Dst index of ∼−50 nT, which results in the enhancement of the electron fluxes
for all energy ranges, with the lower energies reacting on the same day as the main phase of the storm and the
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Figure 6. (a, c, e, g, and i) Distribution of the model errors (log10(JGOES) − log10(Jmodel)) for the MAGED energy channels
with the variance of the model errors, 𝜎e, shown in the top right of each panel. (b, d, f, h, and j) Distribution of the model
errors when Dst < −40 nT.
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Figure 7. (a and c) Distribution of the model errors (log10(JGOES) − log10(Jmodel)) for the EPS energy channels with the variance of the model errors, 𝜎e, shown in
the top right of each panel. (b and d) Distribution of the model errors when Dst < −40 nT.

highest energies peaking a couple of days after, during the storm recovery. This enhancement of the fluxes is
forecast by each of the models, with all models increasing within a few hours of the actual onset, some models
a few hours before (>2 MeV) and others a few hours after (350–600 keV). Another moderate storm occurs
on 1 May 2016 with a Dst index of ∼−65 nT. This storm causes a dropout of electron fluxes that recovers the
next day for energies >100 keV while causing an enhancement in the two lowest energy channels. The two
models for the two lowest energy channels manage to forecast the fluxes accurately; however, the five models
that predict fluxes >100 keV do not manage to forecast the dropout. Another dropout occurs on 4 May 2013,
during a small storm, for energies >100 keV, while the lower energies had slower decay starting at the same
time as the recovery phase of the previous storm on 1 May 2013. Again, the model forecast misses the dropout
and so the model error (e = log10(JGOES) − log10(Jmodel)) is negative. This trend is prevalent throughout the
data and helps to explain why more large negative errors occur in the distribution (Figures 6 and 7). One of
the reasons that the models miss the dropouts in electron fluxes could be due to a faster time scale for the
dropouts. The models with energies >100 keV have minimum lags ≥16 h. If the time scales of the dropouts
occur quicker than this, then the model will not be able to forecast the dropouts.

If the models fail to predict a dropout or an enhancement, the models tend to lag the output by 24 h. This is
due to the past value of election flux term, J(t − 24), within the models. For example, in the case of a missed
dropout, the model output will continue as if the sudden change in electron flux has not occurred until after
24 h when the change in the J(t−24)monomial, due to the dropout 24 h earlier, causes the model to decrease.
This results in the 24 h delay that can occur with the models.
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Figure 8. The daily average electron flux measured by GOES in blue and the model forecast in orange for the period from 15 April 2013 to 15 May 2013
(a) 30–50 keV, (b) 50–100 keV, (c) 100–200 keV, (d) 200–350 keV, (e) 350–600 keV, (f ) >800 keV, and (g) >2 MeV), with the (h) Dst index.
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It is worth noting that the convective and substorm-associated electric fields strongly affect the evolution
of keV electron fluxes within the inner magnetosphere [Ganushkina et al., 2013, 2014, 2015], leading to flux
variations on time scales significantly shorter then 24 h. The Inner Magnetosphere Particle Transport and
Acceleration Model can provide a good nowcast of the short time scale variations, but the model is not able
to forecast in advance [Ganushkina et al., 2015].

There are other applications of the models in addition to providing forecasts of the electron fluxes. The models
could potentially be employed for the prediction of wave intensities. This could be achieved by using the
NARMAX electron flux models in combination with models deduced by Li et al. [2013] or Mourenas et al. [2014],
which are able to estimate the wave activity from the dynamics of electron fluxes.

6. Conclusions

The aim of this study was to create forecast models for the electron flux energy ranges observed by the
third-generation GOES satellites, which have an increased temporal resolution over the>800 keV and>2 MeV
GEO electron flux models that were previously developed [Boynton et al., 2015]. The increase in time reso-
lution provided by the 1 h moving average data allows for a more continuous forecast of the daily average
electron flux rather than producing only one forecast for each UTC day. Instead, every hour the online model
is able to forecast the electron flux value over the next 24 h. As such, this study has deduced five new 1 h reso-
lution models for the low-energy electrons measured by GOES, ranging in energy from 30 keV to 600 keV and
extended the existing >800 keV and >2 MeV GEO electron flux models to forecast at a 1 h resolution. These
models had prediction efficiencies between 66.9% and 73.6% for the period between 1 March 2013 and 28
February 2015.

All of these models are implemented in real time to forecast the electron fluxes at GEO and can be found at
the University of Sheffield Space Weather website (www.ssg.group.shef.ac.uk/USSW2/UOSSW.html).
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