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Abstract. Forecast models were derived for energetic electrons at all en-3

ergy ranges sampled by the third generation Geostationary Operational En-4

vironmental Satellites (GOES). These models were based on Multi-Input Single-5

Output (MISO) Nonlinear AutoRegressive Moving Average with eXogenous6

inputs (NARMAX) methodologies. The model inputs include the solar wind7

velocity, density and pressure, the fraction of time that the Interplanetary8

Magnetic Field (IMF) was southward, the IMF contribution of a solar wind-9

magnetosphere coupling function proposed by Boynton et al. [2011b] and the10

Dst index. As such, this study has deduced five new 1-hour resolution mod-11

els for the low energy electrons measured by GOES (30-50 keV, 50-100 keV,12

100-200 keV, 200-350 keV and 350-600 keV) and extended the existing >80013

keV and >2 MeV GEO electron fluxes models to forecast at a 1-hour res-14

olution. All of these models were shown to provide accurate forecasts, with15

prediction efficiencies ranging between 66.9% and 82.3%.16
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1. Introduction

The radiation belts consist of energetic particles trapped by the terrestrial magnetic17

field and were discovered from the first in situ space radiation measurements. The outer18

radiation belt is made up of trapped electrons ranging in energy from keVs to several19

MeVs. Blake et al. [1992] and Reeves [1998] showed that the electron fluxes can vary by20

several orders of magnitude in a few hours. The high fluence of these energetic electrons21

can cause a number of problems on spacecraft depending on the electron energy. For22

example, low energy electrons (1 keV to 100 keV) can cause surface charging that interferes23

with the satellite electronic systems [Olsen, 1983; Mullen et al., 1986], while higher energies24

(above 1 MeV and above) cause deep dielectric charging that may permanently damage25

the materials onboard the satellite [Baker et al., 1987; Wrenn et al., 2002; Gubby and26

Evans , 2002; Lohmeyer and Cahoy , 2013; Lohmeyer et al., 2015].27

There are still many unanswered questions about the mechanisms involved within the28

radiation belts, such as the acceleration mechanisms and loss processes of the electrons29

[Friedel et al., 2002]. Since we do not have a complete understanding of the physics,30

radiation belt models based on first principals struggle to capture the variable dynamics31

of the system [Horne et al., 2013b]. As such, these models often exhibit large errors32

between the forecast and the observed electron population [Horne et al., 2013a].33

The system identification approach has also been applied to modelling the radiation34

belts. In this approach, models are automatically deduced from input-output data by the35

system identification algorithms. The system identification methodologies include linear36

prediction filters [Baker et al., 1990], dynamic linear models [Osthus et al., 2014], neural37
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networks [Koons and Gorney , 1991; Freeman et al., 1998; Ling et al., 2010], and Nonlinear38

AutoRegressive Moving Average with eXogenous inputs (NARMAX) [Wei et al., 2011;39

Boynton et al., 2013a, 2015]. While linear prediction filters and dynamic linear models40

are suitable for linear systems, the main advantage of NARMAX and neural networks41

is that they are capable of modelling nonlinear dynamics within the system. NARMAX42

and neural networks can both provide accurate and reliable models for nonlinear systems43

such as the radiation belts, however, NARMAX has the advantage of interpretability over44

neural networks. Neural networks result in the relationship between input and output45

measurements being described through a maze of multilayered neurones, in which each46

connection has an associated weight factor and each neurone has an activation function.47

This makes neural networks extremely difficult to interpret, i.e., to find out how the input48

variables couple together to produce changes in the output. In contrast, NARMAX models49

can result in a simple polynomial, from which understanding how the inputs change the50

output is intuitive. Therefore, this study uses the NARMAX methodologies to model51

the electron fluxes observed by the Geostationary Operational Environmental Satellites52

(GOES), situated in Geostationary Earth Orbit (GEO).53

The main aim of this study is to create reliable forecast models for the electron flux en-54

ergy ranges observed by the third generation GOES. The second aim is to increase tempo-55

ral resolution of the forecast to that which currently operates on the University of Sheffield56

Space Weather Website (http://www.ssg.group.shef.ac.uk/USSW/UOSSW.html) and was57

developed by Boynton et al. [2015]. In Section 2, we discuss the methodology used to de-58

duce the forecast models. This includes a brief description of the NARMAX algorithm.59

Section 3 presents an extension of the current 24-hour resolution > 800 keV and > 260
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MeV GEO electron flux models, developed by Boynton et al. [2015], to 1-hour resolution61

and a calculation of their performance. In Section 4, the methodology and data used62

to derive the low energy models and the results of the models performances are shown.63

The limitations of the models and their performance are discussed in Section 5 and the64

conclusions from this study are presented in Section 6.65

2. NARMAX Methodology

As stated in Section 1, NARMAX models provide reliable forecasts and are also easy to66

interpret. As such, the methodology has been applied to a wide range of scientific fields,67

from analysing the adaptive changes in the photoreceptors of Drosophila Flies [Friederich68

et al., 2009] to modelling the tide at the Venice Lagoon [Wei and Billings , 2006]. In the69

field of space physics, the methodology was first used to model the Dst index using the half70

wave rectifier (solar wind velocity multiplied by the southward IMF component) as the71

input [Balikhin et al., 2001; Boaghe et al., 2001]. More recently, due to lack of knowledge72

about the inputs to the Dst index system, Boynton et al. [2011b] used the NARMAX73

model structure detection methodology to identify the main control parameter, or solar74

wind coupling function, for geomagnetic storms quantified using the Dst index. This75

coupling function was p1/2V 4/3BT sin6(θ/2), where p is the pressure, V is the velocity,76

BT =
√

(B2
y + B2

z ) is the tangential IMF and θ = tan−1(By/Bz) is the clock angle of the77

IMF in GSM co-ordinates). Boynton et al. [2011a] used this coupling function to deduce78

a reliable model for the Dst index. Boynton et al. [2013b] and Balikhin et al. [2011]79

employed a similar approach to identify the solar wind control parameters for electron80

fluxes at GEO. In these studies, they found that the solar wind velocity and density81

were the main control parameters. The interpretability of these results allowed Balikhin82
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et al. [2012] to make a direct comparison with the energy diffusion equation, where they83

found that acceleration due to local diffusion does not dominate at GEO. Recently, the84

NARMAX model structure detection methodology has been employed by Beharrell and85

Honary [2016] to determine the relationship between the solar wind and SYM-H.86

NARMAX models were first proposed by Leontaritis and Billings [1985a, b] who demon-87

strated that the models have the potential to represent a wide class of nonlinear systems.88

A Multi-Input Single-Output (MISO) NARMAX model, which was used in this study to89

model the electron fluxes at GEO, is expressed by90

y(t) = F [y(t− 1), ..., y(t− ny),

u1(t− 1), ..., u1(t− nu1), ...,

um(t− 1), ..., um(t− num), ...,

e(t− 1), ..., e(t− ne)] + e(t) (1)

where y, u, and e represent the output, input and error terms respectively, F [·] repre-91

sents some nonlinear function (a polynomial in the case of this study), m is the number92

of system inputs and ny, nu1 ,..., num , ne are the maximum time lags for the output, each93

of the m inputs, and the error, respectively.94

Billings et al. [1988] developed the first Forward Regression Orthogonal Least Squares95

(FROLS) algorithm that automatically fits a NARMAX model using input-output train-96

ing data sets. Simply put, the overall algorithm developed by Billings et al. [1988] involved97

three stages. The first stage is model structure detection, which identifies the variables98

or combination of variables that control the evolution of the system. In Equation 1, the99

expansion of F [·] in terms of a high degree polynomial, results in a huge number of mono-100
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mials, especially if there are many possible inputs. The vast majority of the possible101

monomials will have little influence on the system, i.e., the coefficients of the monomial102

will be zero. Therefore, only a small number of monomials are required to represent the103

dynamics of the system. The FROLS procedure identifies the most significant monomi-104

als by use of the Error Reduction Ratio (ERR). Once the model structure is detected,105

the second stage is to estimate the coefficient for each of the monomials detected in the106

model. These first two stages are referred to as training the model. The final stage is to107

validate the model. Since its inception, many variants on the FROLS algorithm have been108

developed [Billings et al., 1989; Mao and Billings , 1997; Wei and Billings , 2008]. This109

study employs the Iterative Orthogonal Forward Regression (IOFR) algorithm, developed110

by Guo et al. [2014], which is more likely to detect the optimal model when the data is111

oversampled.112

The IOFR is largely based upon the initial FROLS algorithm, where the ERR of each113

of the monomials is calculated with respect to the output. The monomial with the highest114

ERR is then selected as the first monomial for the initial model structure. For the next115

step of the algorithm, all other monomials are orthogonalized relative to the first monomial116

that has just been selected. This effectively removes the first monomials contribution to117

the output from the remaining monomials. The ERR of these orthogonalized monomials118

are then calculated with respect to the output and the one with the highest ERR is119

selected as the second monomial for the initial model. For the third step, the remaining120

monomials are orthogonalised relative to both the first and second monomials selected121

for the initial model and the ERR is calculated. Again, the orthogonalised monomial122

with the highest ERR is selected and this will be the third monomial for the model. This123
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process of orthogonalizing the remaining monomials with respect to all the selected model124

terms then selecting the orthogonalised monomial with the highest ERR for the model is125

continued until the model has the optimum number of model monomials. To decide the126

optimum number of model terms, this study employed the Adjustable Prediction Error127

Sum of Squares (APRESS) [Billings and Wei , 2008]. After each monomial is selected128

during every step of the FROLS algorithm, the APRESS is calculated from the ERR129

APRESS =
1

(1 − λk/N)2

(
1 −

k∑
i=1

ERRi

)
(2)

where N is the number of data points, k is the number of monomials that have been130

selected and λ is an adjustable factor that was between 5 and 10. At each step, i,131

APRESS(i) is calculated and compared to the previous APRESS(i − 1). APRESS132

will decrease as each significant monomial is added to the model until a local minima is133

reached. After this turning point, the addition of more model monomials is less likely134

to increase the performance of the model and may lead to the model becoming overfit135

[Billings and Wei , 2008]. Therefore, the turning point in APRESS dictates the optimum136

number of model monomials and the initial model polynomial structure is obtained. A137

least squares procedure then identifies the coefficients for each monomial to yield the138

model.139

3. Increasing the time resolution of the existing > 800 keV and > 2 MeV

GEO electron flux models

Models for forecasting the fluxes of > 800 keV and > 2 MeV electrons at GEO were140

developed by Boynton et al. [2015]. These models were deduced using the NARMAX141

methodology and provide a 1-day resolution forecast for one day ahead. Both of these142

models were shown to have a high prediction efficiency for estimating the next day’s143
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electron flux value [Boynton et al., 2015]. The forecast results can be found online at144

www.ssg.group.shef.ac.uk/USSW/UOSSW.html.145

The original model only produces one forecast for the day. This forecast is for the146

average electron flux between 00:01 UTC one day to 00:00 UTC on the next day, calculated147

at 00:01UTC. This means at the start of every UTC day the original model calculates a148

forecast for the average electron flux over the next 24 hour. One of the aims of this study149

is to increase the temporal resolution of these forecasts. Therefore, the time resolution of150

the > 800 keV and > 2 MeV GEO electron flux models were extended to give a forecast of151

the electron fluxes every hour for the next 24 hours in contrast to only one daily forecast152

per day. This means that every hour the model will calculate a forecast for the average153

electron flux over the next 24 hour, producing 24 forecasts per day.154

3.1. Data and methodology

The > 800 keV and > 2 MeV electron flux models rely on solar wind inputs to forecast155

the electron flux. The solar wind inputs are the daily average velocity and density; and156

the amount of time the IMF is southward in a 24 hour period. The 1-minute solar wind157

velocity, density and IMF Bz-component data were obtained from the OMNI website158

(http://omniweb.gsfc.nasa.gov/ow min.html) from 1 January 2011 to 28 February 2015.159

At every hour, the past 24 hour average of the solar wind velocity and density was cal-160

culated. For example, the point at 10:00:00 UTC on 5 January 2015 is an average of the161

1440 1-minute points between 10:01:00 UTC on 4 January 2015 and 10:00:00 UTC on 5162

January 2015. In addition, the number of minutes that the IMF was southward during163

the past 24 hours was determined for the final input.164
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The electron flux data used to analyse the performance of the extended temporal res-165

olution > 800 keV and > 2 MeV GEO electron flux models were from GOES 13. The166

electron fluxes onboard the GOES 13 satellite are measured by the Energetic Proton Elec-167

tron and Alpha Detector (EPEAD) [Hanser , 2011] and the MAGnetospheric Electron De-168

tector (MAGED). [Hanser , 2011]. The data for these instruments can be accessed from169

http://www.ngdc.noaa.gov/stp/satellite/goes/dataaccess.html and the MAGED will be170

discussed in Section 4.1.171

The EPEAD measures the relativistic integral electron fluxes and has two detectors172

pointing in opposite directions, both tangential to the spacecrafts orbit, named the east173

and west detectors. Since the EPEAD measures integral flux, the > 2 MeV electrons174

will be measured by the > 800 keV channel, however, the > 2 MeV electrons account for175

less than 3% of the electrons detected on average. These data were used to assess the176

1-hour temporal resolution of the SNB3GEO electron flux models (SN stands for Sheffield177

NARMAX, B3 corresponds to the letters of surnames of three model developers and GEO178

stands for geostationary orbit). The data period used for this part of the study was from179

1 January 2011 to 28 February 2015. The study employed the > 800 keV and > 2 MeV180

energy channels from both the east and west detectors onboard the GOES 13 satellite.181

The 5-minute proton corrected electron flux values were averaged between the east and182

west detectors. This was then time averaged resulting in a data set with 1-hour resolution,183

such that each 1-hour point was determined by averaging the 5-minute data over the past184

24 hours, e.g., the point at 10:00:00 UTC on 5 January 2015 is average of the 288 5-minute185

points between 10:05:00 UTC on 4 January 2015 and 10:00:00 UTC on 5 January 2015.186

This data was then compared to the model forecast. The one hour moving average187
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data will allow for a more continuous forecast of the daily average electron flux, such that188

every hour the online model will be able to forecast the electron flux value over the next189

24 hours, compared to only producing one forecast for each UTC day. Therefore, the190

forecast horizon for both the >800 keV and >2 MeV models will be 24 hours.191

3.2. Model Performance

The > 800 keV and > 2 MeV GEO electron flux models were run using the 1-hour192

resolution input data and the results were compared to the EPEAD 1-hour electron flux193

data, for the period from 1 January 2011 to 28 February 2015. The performance of the194

models during the period could then be analysed.195

The performance of the models was assessed statistically by the Correlation Coefficient

(CC), Eq. (3), and the Prediction Efficiency (PE), Eq. (4), which are commonly used to

assess models [Temerin and Li , 2006; Li , 2004; Boynton et al., 2011a; Wei et al., 2004;

Boynton et al., 2015; Rastatter et al., 2013].

ρyŷ =

N∑
t=1

[
(y(t) − ȳ)

(
ŷ(t) − ¯̂y

)]
√√√√ N∑

t=1

[
(y(t) − ȳ)2

] N∑
t=1

[(
ŷ(t) − ¯̂y

)2]100% (3)

EPE =

1 −

N∑
t=1

[
(y(t) − ŷ(t))2

]
N∑
t=1

[
(y(t) − ȳ)2

]
 100% (4)

Here, EPE is the PE, ρ is the CC, y(t) is the output at time t, ŷ is the estimated output196

from the model, N is the length of the data and the bar signifies the average.197

3.2.1. > 800 keV model198
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Panel (a) of Figure 1 shows the past 24 hour average > 800 keV electron flux measured199

by GOES in blue and the model 24 hour ahead forecast in orange for the period from 1200

January 2011 to 28 February 2015, while below in panel (b) of Figure 1 depicts the model201

error (e = log10(JGOES) − log10(Jmodel)). During this period, the PE was 72.1% and the202

CC was 85.1%.203

3.2.2. > 2 MeV model204

Panel (c) of Figure 1 shows the past 24 hour average > 2 MeV electron flux measured205

by GOES in blue and the model 24 hour ahead forecast in orange for the period from206

1 January 2011 to 28 February 2015, while below in panel (d) of Figure 1 depicts the207

> 2 MeV electron flux model error. The PE for the > 2 MeV model was 82.3% while208

the CC was 90.9%. Figures 1 (a) and (c) reflect the better statistical performance of the209

> 2 MeV model over the > 800 keV model, since it can clearly be seen that the > 2210

MeV model follows more closely the blue observed GOES electron flux, particularly for211

the lower electron flux values.212

4. Modelling the low energy electron fluxes measured by GOES 13

Models to forecast the low energy electrons measured by GOES satellites were deduced213

using the NARMAX IOFR algorithm. This method requires input-output data for train-214

ing the models.215

4.1. Data and Methodology

The electron flux data for the training and validation of these models comes again from216

GOES 13. The MAGED has 9 telescopes pointing in different directions and measures217

the lower energy differential electron fluxes in 5 energy channels: 30-50 keV, 50-100 keV,218
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100-200 keV, 200-350 keV and 350-600 keV [Hanser , 2011]. The data period used for this219

part of the study was from 1 May 2010 to 28 February 2015 and employed all energy220

channels available from the instrument. This study is concerned mainly with the trapped221

electrons and therefore should not use a telescope that is directed in the loss cone, which222

is < 5◦ at GEO. Since telescopes 1-5 of the MAGED are in the east-west plane, they223

should be directed further away from the loss cone than telescopes 6-9, which are directed224

north or south. Figure 2(a) show the 30-50 keV electron flux for the 9 telescopes and225

Figure 2(b) shows the pitch angle for each of the telescopes, which can be downloaded226

from http://www.ngdc.noaa.gov/stp/satellite/goes/dataaccess.html. These are displayed227

for an arbitrary period between 13 November 2012 and 27 October 2013. The Figure228

shows that telescopes 1-6 have pitch angles between ∼ 110◦ and ∼ 40◦ degrees and with a229

telescope cone angle of 30◦ none of these should be directed in the loss cone. Since GOES230

13 is positioned above the equator at ∼ 0◦ latitude and the magnetic north pole is ∼ 60◦
231

West of the satellite and has a latitude of ∼ 85◦ North during this period, the telescope232

pointing furthest south (telescope 7) is the only one permanently looking in the loss cone.233

As such, the electron flux of telescope 7 is less than the others. Therefore, we arbitrarily234

chose the data from telescope 3 to use as the output for this particular study. Using only235

one telescope makes the real-time online procedure of processing the data more simple,236

which will reduce the possibility of bugs occurring thus making the real time procedure237

more reliable.238

Solar wind and geomagnetic indices were used as input data for training the mod-239

els. The 1-minute solar wind velocity, density and IMF data were obtained from the240

OMNI website (http://omniweb.gsfc.nasa.gov/ow min.html), while the Dst geomagnetic241
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index was from the World Data Center for Geomagnetism, Kyoto (http://wdc.kugi.kyoto-242

u.ac.jp/index.html).243

4.2. Model Training

The training data was from 1 March 2011 to 28 February 2013. For the training data,244

the 1-minute corrected electron flux values were daily averaged between 00:01:00 UTC245

and 00:00:00 UTC the next day for each day, resulting in training 790 data points. This246

was chosen because a NARMAX model requires a training set that covers a wide range of247

the systems variation, which is usually approximately a few hundred data points Billings248

et al. [1989].249

The studies by Boynton et al. [2013b] and Balikhin et al. [2012] showed that the time250

delay in the reaction of electron fluxes to changes in the solar wind increase with the251

energy. The high energy models of > 800 keV and > 2 MeV had minimum time delays252

of one day and thus it is possible to forecast one day into the future. However, same day253

values of the solar wind affect the current low energy electron flux. Therefore, it is not254

possible to forecast one day ahead. To get around this problem, the past 24 hour averages255

were calculated for each hour, as previously described. Therefore, the input time lags in256

the algorithm, num , were shifted hourly not daily. For example, if input U(t− 10 hours)257

is selected by the model, this monomial represents the average of the points between258

U(t − 10 hours) and U(t − 34 hours). Initially, a number of window intervals from 1259

hour averages, past 3 hours, past 12 hours as well as 24 hours were investigated. The 12260

and 24 hour windows gave the better results but it was decided to use 24 hour averaging261

for convenience because the same inputs could be used for > 2 MeV and 800 keV models.262
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This also makes the procedure simpler when implemented online and therefore less chance263

of bugs.264

The algorithm was run for the 5 energy ranges using lagged inputs from 2 to 48 hours.265

These inputs were the solar wind velocity V and density n, the amount of time the266

IMF is southward in a 24 hour period TBs, the Dst index, and the term resulting267

from the coupling function proposed by Balikhin et al. [2010] and Boynton et al. [2011b],268

BT sin6(θ/2) (where BT =
√

(B2
y + B2

z ) is the tangential IMF and θ = tan−1(By/Bz) is269

the clock angle of the IMF). Therefore, the NARXAX model of the electron flux J will270

be271

J(t) = F [J(t− 24), J(t− 48),

V (t− 2), V (t− 3), ..., V (t− 48),

n(t− 2), n(t− 3), ..., n(t− 48),

TBs(t− 2), TBs(t− 3), ..., TBs(t− 48),

Dst(t− 2), Dst(t− 3), ..., Dst(t− 48), ...,

BT sin6(θ/2)(t− 2), BT sin6(θ/2)(t− 3), ..., BT sin6(θ/2)(t− 48),

e(t− 24), e(t− 48)] + e(t) (5)

where the lags are in hours. When F is expanded to a second degree polynomial, there272

will be over 10 thousand monomials for the FROLS algorithm to search through.273

For the 30-50 keV electrons, a compromise had to be made between producing a reliable274

forecast and the forecast horizon, the amount of time the model can forecast into the275

future. The model detected by the algorithm included input terms, I, with a minimum276

lag of 6 hours J(t) = F [I(t−6), ...]. Therefore, employing the inputs at the present time t,277
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it is possible to estimate the electron flux 6 hours into the future, J(t+6) = F [I(t), ...]. To278

increase the forecast horizon, the ≤ 6 hour time lagged monomials were manually removed279

from the algorithms search to see if the performance of the model, based on PE and the280

CC, dropped significantly on a period of test data from 1 May 2010 to 28 February 2011. It281

was found there was only a negligible drop in performance if the detected model had input282

terms with a minimum of 7 hour time lag. This process of manually removing monomials283

with larger and larger time lags was continued until there was a significant performance284

drop in the model output. Figure 3 shows the results of this process with PE having a285

significant drop at a minimum lag of 11 hours. Therefore, the model with a minimum of286

10 hours lag was selected as the final 30-50 keV model and could forecast the past 24 hour287

average of the flux 10 hours in the future. This methodology was repeated for the other288

4 energy channels and as with the studies by Boynton et al. [2013b] and Balikhin et al.289

[2012], the time delay of electron fluxes increased with the energy. The forecast horizons290

for each of the models is shown in Table 1. In each of the NARMAX models, the monomial291

with the minimum lag is due to a velocity component within the monomial. For example,292

in the 30-50 keV model, the FROLS algorithm selected V (t−10)BT sin(θ/2)(t−12) as the293

exogenous monomial with the highest ERR. The exogenous monomial with the highest294

ERR in each of the models had a component of the velocity at the models minimum lag.295

For the three lowest energies the velocity was coupled with the IMF factor, while for the296

two higher energies the FROLS algorithm selected the linear velocity.297

4.3. Final Model Performance

The performance of the models were analysed statistically using the PE and CC. Each298

of the models were run on the data from 1 March 2013 to 28 February 2015. At first, the299
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models were run on the daily averaged data which resulted in 730 points for the period.300

Then, the models were extended to 1-hour resolution of the past 24 hour average, which301

contains 17520 points, to assess each of the models performance with an increased time302

resolution.303

Table 1 lists the performance of the five low energy electron flux models, showing the304

PE and CC for the 1-day and 1-hour resolution data. The Table also shows the minimum305

time lag used in the model and thus how far ahead the model can forecast into the future.306

This is in agreement with the studies by Boynton et al. [2013b] and Balikhin et al. [2012],307

since the minimum time lags increase with energy. The PE of the models are between308

66.9% and 73.6%, which means that the mean square error is well within the variance309

of the fluxes, and the CC 82% and 85.9%. The results of the five models for the 1-hour310

resolution data are illustrated in Figures 4 (a) (30-50 keV model), 4 (c) (50-75 keV model),311

4 (e) (100-200 keV model), 5 (a) (200-350 keV model) and 5 (c) (350-600 keV model).312

These figures show the observed GOES electron flux in blue and the model forecast in313

orange. Below each of these figures are their respective model error plots in blue, where314

the dashed black line is zero error. The figures show that the models approximately315

follow the measured fluxes with the errors within one order of magnitude.316

5. Discussion

One of the aims of this study was to increase the time resolution of the forecasts of the317

> 800 keV and > 2 MeV GEO electron fluxes models that currently operate online. These318

models provide daily averaged one day ahead forecasts for each UTC day. Increasing the319

resolution of the model by using one hour averages of the GOES data is not that simple320

because during a 24 hour GEO orbit there is a significant spatial variation of the electron321
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fluxes that is independent of any temporal changes due to adiabatic acceleration and322

loss. This is due to changes in the structure of the terrestrial magnetic field, where the323

compressed dayside leads to an increase in the strength of the magnetic field compared to324

the nightside. As electrons drift from the nightside to the dayside, these changes in the325

structure of the magnetic field cause the electrons to move outward as they approach noon326

and back inward as they drift back to midnight. Since the electron flux is generally greater327

deeper within the magnetosphere, higher fluxes are observed when GOES is situated at328

noon compared to midnight. This spatial variation makes it difficult to deduce a data329

based model because the satellites position is always changing. As such, to achieve the330

aim of increasing the temporal resolution, we employed a moving average of the preceding331

24 hours calculated every hour. We applied the existing > 800 keV and > 2 MeV GEO332

electron flux models to this 1-hour averaged data because these models have already been333

proven to be reliable in their online operation [Balikhin et al., 2016]. This change in input334

time resolution resulted in high values for the PE and CC, higher than those reported by335

Boynton et al. [2015]. Boynton et al. [2015] showed, using the 1-day resolution data, that336

the > 2 MeV model had a PE of 78.6% and a CC of 89.4% and that the > 800 keV model337

had a PE of 70% and a CC of 84.7% between the 1 January 2011 and 30 June 2012, all338

of which are lower than the results shown in this study. However, these statistics should339

really be compared over the same time time period. Based on the time period between the340

1 January 2011 and 30 June 2012 the 1 hour PE was 76.0% and the CC was 87.5% for the341

> 800 keV model and the PE was 82.3% and the CC was 90.8% for the > 2 MeV model.342

Therefore, these models perform better using the 1-hour resolution data. It can be seen343

that the >2 MeV model has a higher PE and CC than the >800 keV model for all the344
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periods of data. One of the explanations for this could be that since it takes more time345

for the electrons to be accelerated to >2 MeV, this larger time delay may allow for a more346

accurate prediction. Another explanation is that the variance of the GOES logarithmic347

>2 MeV fluxes was over twice that of the logarithmic > 800 keV fluxes for this time period348

and since prediction efficiency is dependent on the variance of the observed signal, a larger349

variance for the same mean squared error will mean a higher prediction efficiency. Three350

out of the five lower energy models also performed better using the 1-hour resolution data,351

where only the two lowest energy models had lower performance statistics on the 1-hour352

resolution data compared to the 1-day resolution data.353

One of the limitations of the three lowest energy electron models is that the advance354

time of the forecast is less than the higher energy models, since the low energy electron355

fluxes at GEO respond to solar wind changes significantly faster than high energy electrons356

[Balikhin et al., 2012; Boynton et al., 2013b]. The 30-50 keV model is only able to forecast357

the 24 hour average electron flux 10 hours into the future, which means that 14 hours358

of this average is already measured. Also, it should be noted that better models with359

higher performance statistics for the MAGED models, except for the 350-600 keV energy360

channel, could be obtained if the forecast length was sacrificed. For example, the 30-50361

keV model had a 4% higher PE if 6 hour time lags were included in the algorithm but362

this would mean that 18 hours of the forecast had already been measured by GOES.363

The distributions of the model errors (log10(JGOES) − log10(Jmodel)) were plotted to364

provide some technical information about the quality of the models. Moreover, the dis-365

tribution of model errors when the Dst index <-40 nT were also plotted to show the366

models performance during geomagnetic activity. Figure 6 shows the distributions for the367
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MAGED energies, while Figure 7 shows the distributions for the EPS energies. The vari-368

ance of the model errors, σe, is also shown in the top right distributions. The distribution369

of the model errors for all energies resemble a normal distribution. For the EPS energy370

models, the distribution of the errors is wider, which could be due to the larger variance371

of the integral fluxes. From the channels between 200-350 keV to > 2 MeV (Figures 6372

(g), 6 (i), 7 (a) and 7 (c)), it can be seen that more errors occur < −0.5 than > 0.5. The373

errors < −0.5 indicate that the model prediction was higher than the GOES observation.374

This could be due to the model overshooting or missing electron flux dropouts. When375

inspecting the model error distribution during geomagnetically active times, the trend of376

more negative errors occurring can be seen down to the 100-200 keV (Figures 6 (f), 6 (h),377

6 (j), 7 (b) and 7 (d)). This implies that these models tend to overshoot or miss dropouts378

during geomagnetic storms.379

To investigate whether the model is tending to overshoot or miss dropouts, the model380

output vs observed values were plotted for 1 month time scales along with the Dst index.381

Figure 8 shows the observed electron flux in blue with the model forecast in orange for the382

various energy channels in panels (a)-(g) and the Dst index in panel (h) between 15 April383

2013 and 15 may 2013. The figure shows that a moderate geomagnetic storm occurs on the384

24 of April with a Dst index of ∼-50 nT, which results in the enhancement of the electron385

fluxes for all energy ranges, with the lower energies reacting on the same day as the main386

phase of the storm and the highest energies peaking a couple of days after, during the387

storm recovery. This enhancement of the fluxes is forecast by each of the models, with all388

models increasing within a few hours of the actual onset, some models a few hours before389

(>2 MeV) and others a few hours after (350-600 keV). Another moderate storm occurs on390
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1 May 2016 with a Dst index of ∼-65 nT. This storm causes a dropout of electron fluxes391

that recovers the next day for energies >100 keV, while causing an enhancement in the392

two lowest energy channels. The two models for the two lowest energy channels manage to393

forecast the fluxes accurately, however, the 5 models that predict fluxes >100 keV do not394

manage to forecast the dropout. Another dropout occurs on 4 May 2013, during a small395

storm, for energies >100 keV, while the lower energies had slower decay starting at the396

same time as the recovery phase of the previous storm on 1 May 2013. Again, the model397

forecast misses the dropout and so the model error (e = log10(JGOES) − log10(Jmodel)) is398

negative. This trend is prevalent throughout the data and helps to explain why more399

large negative errors occur in the distribution figures (6 and 7). One of the reasons why400

the models miss the dropouts in electron fluxes could be due to a faster time scale for401

the dropouts. The models with energies > 100 keV have minimum lags ≥16 hours. If402

the time scales of the dropouts occur quicker than this then the model will not be able to403

forecast the dropouts.404

If the models fail to predict a dropout or an enhancement, the models tend to lag the405

output by 24 hours. This is due to the past value of election flux term, J(t− 24), within406

the models. For example, in the case of a missed dropout, the model output will continue407

as if the sudden change in electron flux has not occurred until after 24 hours when the408

change in the J(t− 24) monomial, due to the dropout 24 hours earlier, causes the model409

to decrease. This results in the 24 hour delay that can occur with the models.410

It is worth noting that the convective and substorm-associated electric fields strongly411

affect the evolution of keV electron fluxes within the inner magnetosphere [Ganushkina412

et al., 2013, 2014, 2015], leading to flux variations on time scales significantly shorter413

D R A F T October 11, 2016, 7:55pm D R A F T

This article is protected by copyright. All rights reserved.



X - 22 BOYNTON ET AL.: GOES ELECTRON FLUX MODELS

then 24 hours. The Inner Magnetosphere Particle Transport and Acceleration Model414

(IMPTAM) can provided a good nowcast of the short time scale variations, but the model415

is not able to forecast in advance [Ganushkina et al., 2015].416

There are other applications of the models in addition to providing forecasts of the417

electron fluxes. The models could potentially be employed for the prediction of wave418

intensities. This could be achieved by using the NARMAX electron flux models in combi-419

nation with models deduced by Li et al. [2013] or Mourenas et al. [2014], which are able420

to estimate the wave activity from the dynamics of electron fluxes.421

6. Conclusions

The aim of this study was to create forecast models for the electron flux energy ranges422

observed by the third generation GOES satellites, which have an increased temporal423

resolution over the > 800 keV and > 2 MeV GEO electron fluxes models that were424

previously developed Boynton et al. [2015]. The increase in time resolution provided by425

the one hour moving average data allow for a more continuous forecast of the daily average426

electron flux rather than producing only one forecast for each UTC day. Instead, every427

hour the online model is able to forecast the electron flux value over the next 24 hours.428

As such, this study has deduced five new 1-hour resolution models for the low energy429

electrons measured by GOES, ranging in energy from 30 keV to 600 keV and extended430

the existing > 800 keV and > 2 MeV GEO electron fluxes models to forecast at a 1-hour431

resolution. These models had prediction efficiencies between 66.9% and 73.6% for the432

period between 1 March 2013 and 28 February 2015.433
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All of these models are implemented in real time to forecast the electron fluxes434

at GEO and can be found at the University of Sheffield Space Weather website435

(www.ssg.group.shef.ac.uk/USSW2/UOSSW.html).436
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Table 1. Table showing the performance of the five low energy electron flux models as well

as the Forecast length

Model Forecast Horizon 1-day PE (%) 1-day CC (%) 1-hour PE (%) 1-hour CC (%)
30-50 keV 10 hr 72.0 84.9 66.9 82.0
50-100 keV 12 hr 70.7 84.2 69.2 83.5
100-200 keV 16 hr 71.1 84.4 73.2 85.6
200-350 keV 24 hr 69.5 83.7 71.6 84.9
350-600 keV 24 hr 69.9 83.8 73.6 85.9

Figure 1. Panel (a) shows the past 24 hour average > 800 keV electron flux measured by

GOES in blue and the model 24 hour ahead forecast in orange for the period from 1 January

2011 to 28 February 2015, while panel (b) shows the > 800 keV electron flux model error

(log10(JGOES) − log10(Jmodel)). Panel (c) shows the past 24 hour average > 2 MeV electron flux

measured by GOES in blue and the model 24 hour ahead forecast in orange for the period from

1 January 2011 to 28 February 2015, while panel (b) shows the > 2 MeV electron flux model

error (log10(JGOES) − log10(Jmodel)).

Figure 2. (a) The 30-50 keV electron flux for the 9 telescopes. (b) The pitch angle of each

telescope. For the period from 13 November 2012 to 27 February 2013

Figure 3. The PE of a 30-50 keV model between 1 May 2010 and 28 February 2011 vs the

minimum lag included in that model.

Figure 4. The daily average 30-50 keV (a), 50-100 keV (c) and 100-200 keV (e) electron

flux measured by GOES in blue and the model forecast in orange for the period from 1 March

2013 to 28 February 2015, and 30-50 keV (b), 50-100 keV (d) and 100-200 keV (f) model error

(log10(JGOES) − log10(Jmodel)).

Wrenn, G. L., D. J. Rodgers, and K. A. Ryden, A solar cycle of spacecraft anomalies due588

to internal charging, Ann. Geophys., 20 (7), 953–956, 2002.589
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Figure 5. The daily average 200-350 keV (a) and 350-600 keV (c) electron flux measured by

GOES in blue and the model 24 hour ahead forecast in orange for the period from 1 March 2013

to 28 February 2015, and 200-350 keV (b) and 350-600 keV (d) model error (log10(JGOES) −

log10(Jmodel)).

Figure 6. Distribution of the model errors (log10(JGOES) − log10(Jmodel)) for the MAGED

energy channels with the variance of the model errors, σe, shown in the top right of each panel

(Panels (a), (c), (e), (g), (i)). Distribution of the model errors when Dst<-40 nT (Panels (b),

(d), (f), (h), (j)).

Figure 7. Distribution of the model errors (log10(JGOES) − log10(Jmodel)) for the EPS energy

channels with the variance of the model errors, σe, shown in the top right of each panel (Panels

(a), (c)). Distribution of the model errors when Dst<-40 nT (Panels (b), (d)).

Figure 8. The daily average electron flux measured by GOES in blue and the model forecast

in orange for the period from 15 April 2013 to 15 May 2013 (Panel (a) 30-50 keV; (b) 50-100

keV; (c) 100-200 keV; (d) 200-350 keV; (e) 350-600 keV; (f) >800 keV; (g) >2 MeV), with the

Dst index in Panel (h).
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