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A computerized regional registration and characterization system for analysis of microcalcification
clusters on serial mammograms is being developed in our laboratory. The system consists of two
stages. In the first stage, based on the location of a detected cluster on the current mammogram, a
regional registration procedure identifies the local area on the prior that may contain the corre-
sponding cluster. A search program is used to detect cluster candidates within the local area. The
detected cluster on the current image is then paired with the cluster candidates on the prior image
to form true �TP-TP� or false �TP-FP� pairs. Automatically extracted features were used in a newly
designed correspondence classifier to reduce the number of false pairs. In the second stage, a
temporal classifier, based on both current and prior information, is used if a cluster has been
detected on the prior image, and a current classifier, based on current information alone, is used if
no prior cluster has been detected. The data set used in this study consisted of 261 serial pairs
containing biopsy-proven calcification clusters. An MQSA radiologist identified the corresponding
clusters on the mammograms. On the priors, the radiologist rated the subtlety of 30 clusters �out of
the 261 clusters� as 9 or 10 on a scale of 1 �very obvious� to 10 �very subtle�. Leave-one-case-out
resampling was used for feature selection and classification in both the correspondence and
malignant/benign classification schemes. The search program detected 91.2% �238 /261� of the
clusters on the priors with an average of 0.42 FPs/image. The correspondence classifier identified
86.6% �226 /261� of the TP-TP pairs with 20 false matches �0.08 FPs/image� relative to the entire
set of 261 image pairs. In the malignant/benign classification stage the temporal classifier achieved
a test Az of 0.81 for the 246 pairs which contained a detection on the prior. In addition, a classifier
was designed by using the clusters on the current mammograms only. It achieved a test Az of 0.72
in classifying the clusters as malignant and benign. The difference between the performance of the
temporal classifier and the current classifier was statistically significant �p=0.0014�. Our interval
change analysis system can detect the corresponding cluster on the prior mammogram with high
sensitivity, and classify them with a satisfactory accuracy. © 2008 American Association of Physi-
cists in Medicine. �DOI: 10.1118/1.3002311�
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I. INTRODUCTION

Mammography is currently the most effective method for
early breast cancer detection.1,2 Radiologists routinely com-
pare mammograms from a current examination with those
obtained in previous years, if available, for identifying inter-
val changes, detecting potential abnormalities, and evaluat-
ing breast lesions. It is widely accepted that analysis of in-
terval changes in mammographic features is very useful for
both detection and classification of abnormalities.3,4 A vari-
ety of computer-aided diagnosis �CAD� techniques have
been developed to detect mammographic abnormalities and
to distinguish between malignant and benign lesions. We are
studying the use of CAD techniques to assist radiologists in
interval change analysis.

Most CAD systems use information from a single exami-

nation. These systems have been shown to perform well in
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lesion classification problems.5–14 However, when multiple-
year mammograms of a lesion are available, new computer
vision methods that effectively use the temporal information
to improve the differentiation between benign and malignant
lesions are required.

The goal of our research is to develop a technique for
computerized analysis of temporal differences between a mi-
crocalcification cluster on the most recent mammogram and
a prior mammogram of the same view.15–17 The computer
system can be used to assist radiologists in evaluating inter-
val changes and distinguishing between malignant and be-
nign microcalcification clusters. It will also be useful for
improving the identification of new or developing clusters or
for improving classification of malignant and benign clusters
in a computer-aided diagnosis system. In our previous stud-

ies we have demonstrated that interval change analysis can
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improve differentiation of malignant and benign masses.18,19

Timp et al.20 also reported improved classification results
based on interval change analysis of masses using their au-
tomated registration and characterization system.

The purpose of this study is to develop a computerized
system which performs both automated registration and clas-
sification of microcalcification clusters on serial mammo-
grams and to evaluate the accuracy of this method. This sys-
tem is unique in two ways: It includes the automated tasks
for both microcalcification cluster registration and classifica-
tion, and it applies temporal analysis in the cluster classifi-
cation stage. To our knowledge, this is the first system to
perform both automated registration and classification of mi-
crocalcification clusters on serial mammograms.

II. MATERIALS AND METHODS

II.A. Data set

In this study, 261 serial mammogram pairs containing
biopsy-proven microcalcification clusters were used, of
which 94 were biopsy-proven to be malignant and 167 be-
nign. The 261 temporal pairs consisted of a total of 393
unique mammograms from 94 patients. The data collection
protocol had been approved by our Institutional Review
Board. Patient informed consent was waived for this retro-
spective study. The mammograms were digitized with a LU-
MISCAN 85 laser scanner at a pixel resolution of 50 �m
�50 �m and 4096 gray levels. The image matrix size was
reduced by averaging every 2�2 adjacent pixels and down-
sampled by a factor of 2 to obtain images with a pixel size of
100 �m�100 �m for analysis. The 393 mammograms con-
tained different mammographic views �CC, MLO, and lateral
views� and multiple examinations of the clusters. The 261
temporal pairs were formed by matching clusters of the same
view from two or three different examinations of the same
patient. In cases where there were only two examinations
available, a single pair was formed for the given view. If
there were three examinations, three temporal pairs were
formed �first exam paired with second exam, first exam with
third exam, and second exam with third exam�. Within a pair,
the current mammogram was defined as the one with the
later date. Therefore, for cases with three consecutive exami-
nations, where three temporal pairs were formed, two of the
mammograms for such a case could be termed “current.”
Among the 261 temporal pairs there were 221 current mam-
mograms, and 217 prior mammograms based on these defi-
nitions. An experienced MQSA radiologist identified the
biopsy-proven cluster locations on corresponding mammo-
gram pairs as the reference standard. The radiologist also
marked the nipple location on every film.

The radiologist rated the visibility of the clusters on the
mammograms relative to those encountered in clinical prac-
tice on a ten-point scale, with 1 representing the most obvi-
ous and 10 representing the subtlest cluster. The visibility of
the clusters on the prior mammogram is plotted against that
on the current mammogram for the malignant and benign
pairs in Figs. 1�a� and 1�b�, respectively. It can be seen that

the malignant clusters tend to be less visible on the prior
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mammogram than on the current mammogram �Fig. 1�a��,
while it is difficult to notice such a trend for the benign
clusters �Fig. 1�b��. The mean difference in the visibility rat-
ing between the prior and current mammograms for the ma-
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FIG. 1. Visibility ratings of the microcalcification clusters on the current
mammogram plotted against those on the prior mammogram for �a� malig-
nant and �b� benign temporal pairs. The visibility was rated on a ten-point
discrete scale �1=most obvious, 10=subtlest�. The area of the circles is
proportional to the number of data points with the same ratings. The small-
est circles in both �a� and �b� represent one data point. The largest circle in
�a� represents 15 data points, and the largest circle in �b� represents 29 data
points. The solid diagonal line y=x represents equal visibility ratings on the
current and prior mammograms. The dashed lines are the linear regression
lines for the data fitted as y=0.782x+2.54 for �a� and as y=0.899x+0.925
for �b�. The correlation coefficient is 0.593 for the malignant clusters and
0.791 for the benign clusters.
lignant cases is 1.40 compared to 0.39 for the benign cases.
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The correlation coefficient between the visibility ratings for
the current and prior clusters is 0.593 for the malignant and
0.791 for the benign clusters. On the priors, the radiologist
rated the subtlety of 30 clusters as 9 or 10. A histogram
depicting the temporal interval between the current and prior
mammograms of the data set is given in Fig. 2. The time
interval for the temporal pairs ranges from 3 to 36 months.
In addition, the radiologist estimated the cluster sizes as the
longest dimension of the cluster on the mammogram. The
average cluster sizes for the malignant cases were 10.4 mm
on the prior mammograms and 15.0 mm on the current mam-
mograms. The average cluster sizes for the benign cases
were 13.0 and 13.7 mm for the prior and current mammo-
grams, respectively.

II.B. Registration of corresponding clusters in serial
mammograms

Our automated system consists of two stages: �1� Regis-
tration of corresponding clusters on temporal pairs of mam-
mograms, and �2� characterization of the temporal pairs of
clusters as malignant or benign. The registration procedure is
described below. The characterization methods are described
in Sec. II C.

A flowchart outlining the registration procedure is shown
in Fig. 3. Initially, a regional registration procedure identifies
the local area on the prior mammogram that may contain the
corresponding cluster. An automated detection program is
used to detect cluster candidates within this local area that
may include true positives �TPs� and false positives �FPs�.
The cluster on the current image is then paired with each of
the detected cluster candidates on the prior image to form
either true �TP-TP� or false �TP-FP� pairs. A correspondence
classifier is used to reduce the false pairs. The individual
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FIG. 2. Temporal interval between the current and the prior mammograms
for the 261 pairs in our data set.
phases of the registration procedure are described below.
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II.B.1. Identification of local search area on prior
mammogram

Initially an automated procedure is used to detect the
breast boundary on the mammograms �Fig. 4�a��. The de-
tailed procedure for identification of a local search area on
the prior mammogram is described previously.21 Briefly, the
location of the microcalcification cluster on the current mam-
mogram �Fig. 4�b�� is determined in a polar coordinate sys-
tem with the nipple as the origin. By using the radial distance
Rcurr between the nipple and cluster centroid, �NC�, an arc is
drawn which intersects the breast boundary at points A and B
�Fig. 5�. Three angles are estimated at the radial distance

TP Cluster

Fan-shaped
search region

Detection of
cluster candidates

(TP and FP)

Elimination
of

TP-FP pairs

Pairing of
TP-TP and TP-FP

Current Mammogram

Prior Mammogram

FIG. 3. Block diagram of the regional registration for temporal microcalci-
fication clusters �stage 1�.

FIG. 4. Temporal pair of mammograms containing microcalcification clus-
ter. �a� Current and prior mammograms with automatically detected breast
boundaries, �b� current and prior microcalcification cluster. The current and

prior images were obtained 2 years apart.
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Rcurr: The angle � between NC and NA, the angle � between
NC and NB, and the angle � between NA and NB ��=�
+��. The location of the cluster is uniquely specified by Rcurr

and the angle � or �. Using the radial distance Rcurr to draw
an arc centered at the nipple centroid N� on the prior mam-
mogram, the two intersection points A� and B� with the
breast boundary on the prior mammogram are determined.
The angle �p between the radii �N�A�� and �N�B�� is esti-
mated. An angular scaling factor � can be calculated as the
ratio of the prior and the current angles, �=�p /�. In order to
predict the angular location of the microcalcification cluster
on the prior mammogram, the smaller of the two angles, �
and �, is selected as the angular coordinate of the cluster on
the current mammogram. The selected angle, multiplied by
the angular scaling factor �, is used as the predicted angle
from the corresponding axis on the prior mammogram. The
radial distance Rcurr is used to predict the radial position of
the microcalcification cluster center on the prior mammo-
gram.

An initial fan-shaped search region is then defined on the
prior mammogram centered at the predicted location of the
cluster centroid �Fig. 6�. The angular width of the fan-shaped
region was estimated previously21 as 2�, and � has the form
�=0.25+5 /Rcurr, where the constant 5 is in the same unit as
Rcurr �mm� and � is in radians. The radial length of the fan-
shaped region was also estimated previously21 to be 2�,
where �=20 mm. The constants were chosen experimentally
on an independent mass data set21 such that the estimated
fan-shaped regions will essentially include all masses on the
prior mammograms. Similarly, a fan-shaped region centered
at the input microcalcification cluster center is defined on the
current mammogram. More details on defining the fan-
shaped region can be found elsewhere.21

II.B.2. Detection of cluster candidates within the
local search area

An automated detection program is used to detect cluster

Prior

Current

FIG. 5. Initial estimation of the cluster centroid position on the prior mam-
mogram based on the nipple-cluster distance and the angle between the
nipple-cluster axis and breast periphery on the current mammogram.
candidates within the local area defined by the fan-shaped
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region �Fig. 6� in both the current and prior mammograms.
The automated program was previously developed in our
laboratory for detection of microcalcification clusters on the
entire mammogram and the detection results were previously
reported.8,22,23 In this study two parameters of the detection
program, namely, the maximum number of detected signals
and the convolution neural network threshold, were adjusted
to adapt it for detection in a local region. In brief, the detec-
tion program involves three key steps: Preprocessing, seg-
mentation, and classification. In the preprocessing step two
filters are applied to the extracted region inside the breast
boundary. The first is a signal enhancement filter which en-
hances potential microcalcifications on the image. The sec-
ond is a signal suppression filter whose main function is to
smooth and remove noise from the image. The two filtered
images are subtracted to yield a difference image. Ideally the
signal-to-noise ratio �SNR� in this difference image is en-
hanced such that the low frequency background structures
are removed and the high frequency noise is suppressed. In
the segmentation stage, candidate signal sites above a global
gray level threshold are identified. This threshold is deter-
mined automatically by an iterative procedure for which only
the maximum number of detected signals �1500� and the
maximum number of iterations are preset. At each identified
potential signal site, a locally adaptive gray level threshold,
derived from an input SNR threshold and the local noise, is
used to determine the number of connected pixels above the
local threshold. Furthermore, during the segmentation step,
signal characteristics to be used in the classification step,
such as size, SNR, and maximum contrast are extracted. Sig-
nals below a certain size �2 pixels� and larger than 80 pixels
are discarded. Signals having a contrast higher than an input
SNR threshold �10� are also discarded. A convolution neural
network with an output threshold of 0.4 was applied to the
individual signals and was used to reduce some of the false
positive microcalcification signals. A clustering criterion is

FIG. 6. Definition of an initial fan-shaped search region on the prior mam-
mogram centered at the predicted centroid location �black dot�. An auto-
mated microcalcification detection program was used to detect cluster can-
didates �true �TP� and false �FP�� within the search region on the prior. The
cluster on the current image is paired with the detected candidates on the
corresponding prior image to form true �TP-TP� or false �TP-FP� pairs.
applied to the remaining signals to eliminate isolated noise
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points. The detected cluster candidates within the local re-
gion may include TPs and FPs. A cluster candidate is
counted as a TP if it overlaps with the cluster identified by
the radiologist. Detected clusters that fail to achieve any
overlap are considered FPs.

Our CAD system only requires the input of a region of
interest �ROI� approximately containing the cluster of inter-
est on the current mammogram. The cluster ROI can be de-
termined by a radiologist or a CAD system. Since this cluster
location is known, any other FP cluster that may be detected
in the fan-shaped region on the current mammogram is
eliminated. Only the detected cluster candidate that overlaps
with the input ROI is retained and labeled as a TP. Since the
CAD system does not require the radiologist to identify the
cluster on the prior mammogram, all clusters detected in the
prior are retained. The number of FP clusters on the prior
mammogram is reduced using the correspondence classifier
described below.

II.B.3. Feature extraction

Morphological features were extracted from the automati-
cally detected microcalcification clusters, which were used
both in the correspondence classifier and in the classifiers for
characterization of malignant and benign clusters. These fea-
tures provided information about the size, shape, and orien-
tation of the detected microcalcification clusters, as well as
similar information about the signals comprising the clusters.
Five different features were extracted from the individual
microcalcifications in each cluster as described previously by
Chan et al.:8 Signal area, mean density �DENS�, eccentricity,
moment ratio, and axis ratio. We also defined a new feature,
the mean distance �MEAN�DIST�, which is the average of
the distances between the microcalcification and every other
microcalcification in the cluster. In addition, the signal vol-
ume was extracted from the individual microcalcifications as
previously described by Jiang et al.9 For each of these indi-
vidual microcalcification features three corresponding cluster
features were derived by calculating the average, the stan-
dard deviation, and the coefficient of variation �CV� of the
feature for the signals within the cluster. Six additional mor-
phological features were extracted from the cluster as a
whole. One feature was the total number of microcalcifica-
tions in the cluster as described by Chan et al.8 Three fea-
tures were those described by Jiang et al.:9 Area of cluster,
circularity of cluster, and cluster density. Finally, we de-
signed two new types of morphological cluster features. One
was the sum of the distances of the calcifications to the cen-
troid of the cluster �SUMDIST�, and the other
�SDEVQUADS� was calculated by dividing the cluster into
four quadrants and computing the standard deviation be-
tween the number of microcalcifications located in each of
the quadrants. Overall this resulted in a total of 27 �21 cluster
features derived from features extracted from individual mi-
crocalcifications and six extracted from the cluster as whole�
morphological features. Three sets of texture features were
also extracted. Texture features were extracted from a rect-

angular region of interest centered at the centroid of the au-

Medical Physics, Vol. 35, No. 12, December 2008
tomatically detected cluster. The size of the rectangular re-
gion was 512�512 pixels �approximately 50�50 mm�. The
extraction of texture features from run length statistics �RLS�
matrices was discussed in detail previously.18,24 Five differ-
ent texture measures were used: Short run emphasis , long
run emphasis �LRE�, gray level nonuniformity, run length
nonuniformity, and run percentage. These five measures
were extracted from either a vertical or a horizontal �H� gra-
dient image and in one of two directions, �=0°, and �=90°
resulting in a total of 20 RLS features. The extraction of gray
level dependence features �GLDS�, which measured the
coarseness of the texture elements of an image, was also
discussed in detail previously.25,26 Four unique GLDS fea-
tures were extracted: Angular second momentum, contrast,
mean, and entropy. The displacement vector used to compute
the GLDS features had a phase of �=0°, 45°, 90°, or 135°
and a distance of either 4 or 12 pixels. This resulted in a total
of 32 extracted GLDS features. The third set of texture fea-
tures consisted of spatial gray level dependence �SGLD� fea-
tures. The features were computed from two different SGLD
matrices �axial �A� and diagonal �D�� at a pixel pair distance
of 4 pixels. Thirteen unique features were computed from
each of the two SGLD matrices: Correlation, energy, entropy,
inertia, inverse difference moment, sum average, sum en-
tropy, difference entropy, information measure for correla-
tion 1, information measure for correlation 2, sum variance,
difference variance �DFV�, and difference average. This
yielded a total of 26 SGLD features. The construction of the
SGLD matrices and the computation of the features were
discussed in detail elsewhere.7,27

II.B.4. Correspondence classifier for FP reduction

As previously mentioned, the cluster of interest on the
current image is paired with the detected candidates on the
corresponding prior image to form TP-TP or TP-FP pairs
�Fig. 6�. The objective of the correspondence classifier is to
identify one TP-TP cluster pair for each temporal pair of
mammograms while eliminating the TP-FP pairs �Fig. 7�.16 A
set of 25 morphological features �all morphological features
described above except SUMDIST and SDEVQUADS� was
extracted from each of the detected cluster candidates from

Elimination of
TP-FP Pairs

Current
Features

Prior
Features

TP-TP pairs
TP-FP pairs

Discriminant
Score

LDASimilarity
Measure

FIG. 7. Block diagram of the correspondence classifier used to reduce the
false pairs �TP-FP�.
the prior mammograms. Similarly, the same set of morpho-
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logical features was extracted from the detected microcalci-
fications on the current mammograms. To utilize the tempo-
ral information, a difference feature 	diff, was derived from
each pair of corresponding current and prior cluster features
as follows:

	diff = � 1
2�0.1*�	prior−	current�,

where 	prior and 	current are the current and prior features,
respectively, for the temporal pair of candidate clusters.
Here, the absolute value of the difference between a specific
feature from the current cluster and the same feature from the
prior cluster is used to compute an exponent with a base
arbitrarily chosen to be smaller than one. A large difference
between the current and prior features would result in a 	diff

value close to 0; conversely, a small difference would result
in a 	diff value close to 1.

A leave-one-case-out resampling method was used for
stepwise feature selection from the set of 25 available differ-
ence morphological features �	diff�. The leave-one-case-out
resampling was performed per patient in this and the follow-
ing classifier design. In a given leave-one-case-out cycle, all
temporal pairs corresponding to the same patient were left
out during training and the trained classifier was applied to
the left-out pairs for testing. A linear discriminant analysis
�LDA� classifier was formulated in leave-one-case-out train-
ing and testing mode using the selected features. For each
temporal pair of mammograms, the candidate cluster pair
with the highest test discriminant score �i.e., the highest
similarity� was selected. Ideally all of the clusters selected by
the classifier on the prior mammograms would be TPs.

II.C. Classification of malignant and benign clusters

Classification of each temporal cluster pair as malignant
and benign can take one of two pathways depending on
whether or not a cluster was detected on the prior mammo-
gram for the case �Fig. 8�. A temporal classifier �Fig. 9�

Malignancy Score

TP-TP TP-FP No Detection
on Prior

Current ClassifierTemporal Classifier

Registration Stage

FIG. 8. Block diagram of classification stage for temporal microcalcification
clusters �stage 2�.
based on both current and prior information is used if a clus-
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ter has been detected on the prior mammogram; otherwise, a
current classifier based on information extracted from the
current mammogram alone is used.

II.C.1. Temporal classifier

All 27 unique morphological features described above,
along with the 20 RLS texture features, were available to the
temporal classifier for the characterization of the cluster
cases which had a detection on the prior. We derived four
different feature sets, three sets from the 27 morphological
features and one set from the RLS texture features, to de-
scribe the interval change information for malignant and be-
nign classification.

The first set consisted of the difference features, similar to
those for the correspondence classification, each of which
was derived from the features of the selected current and
prior cluster pair

	̂diff = � 1
2�0.005*�	prior−	current�,

where 	prior and 	current are the current and prior features for
the specific temporal pair of clusters. The constant in the
exponent in the difference feature above was smaller than the
one used for the correspondence classifier. This was related
to the fact that the correspondence classifier had to distin-
guish between the true and false microcalcification cluster
pairs �larger standard deviation of �	prior−	current��, whereas
the temporal malignant-benign classifier had to distinguish
between malignant and benign clusters within the set of the
true cluster pairs �smaller standard deviation of �	prior

−	current��. The smaller constant used for malignant-benign
classifier resulted in a normalized difference feature range
which is similar to the range of the correspondence classifier.

The second set of 27 morphological features consisted of
the features extracted from the current mammogram of each
temporal pair. The third set consisted of the features ex-
tracted from the prior mammogram of each pair. Finally, a
fourth set consisting of RLS texture features was constructed
by dividing the RLS feature extracted from the current clus-
ter with the corresponding RLS feature extracted from the
prior cluster for each temporal pair. Leave-one-case-out re-
sampling was used for stepwise feature selection from the

Discriminant Score

Difference
Features

Current
Features

Prior
Features

Classifier
TP-TP pairs
TP-FP pairs

FIG. 9. Block-diagram of the temporal classifier for classification of malig-
nant and benign microcalcification clusters. Both TP-TP and TP-FP pairs
can be input to the system.
combined feature space including the four sets of features
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described above. An LDA classifier was then trained and
tested in the leave-one-case-out mode using the selected
features.

II.C.2. Current classifier

Since we expect that for some subtle cases there will be
no microcalcification detection on the prior mammograms,
we have designed a separate classification scheme to classify
these cases. In order to perform the malignant-benign classi-
fication of the cases without a detection on the prior mam-
mogram, leave-one-case-out resampling feature selection
was applied to the 221 current mammograms from the data
set of 261 temporal pairs. Features were selected from a
feature space containing the 27 morphological features, the
32 GLDS texture features, and the 26 SGLD features. An
LDA classifier was trained and tested in the leave-one-case-
out mode using the selected features.

II.D. Receiver operating characteristic analysis

To evaluate the classifier performance, the training and
test discriminant scores were analyzed using receiver operat-
ing characteristic �ROC� methodology.28 The discriminant
scores of the malignant and benign microcalcification clus-
ters were used as decision variables in the LABROC

program,29 which fits a binormal ROC curve based on maxi-
mum likelihood estimation. The classification accuracy was
evaluated as the area under the ROC curve, Az, and the par-
tial area index30 calculated above a sensitivity threshold of
0.9, Az

�0.90�.

III. RESULTS

III.A. Registration stage

The objective in this stage was to identify a search area
for the corresponding cluster on the prior mammogram based
on the location of the detected cluster on the current mam-
mogram. For all 261 cases in this study, the fan-shaped re-
gion defined on the prior mammogram enclosed the true lo-
cation of the microcalcification cluster defined by the
radiologist. The average area of the defined fan-shaped
search region was 1598 mm2, and the average distance be-
tween the centroid of the search region and the center of the
true cluster location was 11.04 mm.

III.B. Detection stage

A total of 412 cluster candidates were identified by the
automated detection program within the fan-shaped regions
on the prior mammograms from the set of 261 temporal
pairs. In 246 of the 261 prior mammograms at least one
cluster was detected, while in the remaining 15 cases there
were no cluster candidates detected on the prior mammo-
gram. In 238 of the 246 priors that contained at least one
detection, there was an overlap between at least one of the
detected clusters and the true location of the cluster from the
reference standard. In other words, 91.2% �238 /261� of the

temporal pairs included at least one TP detection. Of the total
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of 412 detected cluster candidates, 110 were FPs, as they did
not overlap with the true cluster locations, yielding an FP
detection rate of 0.42 �110 /261� FPs/image. Most of the
multiple TP clusters in the search region were caused by the
cluster being detected as several smaller clusters.

For a subset of 54 temporal pairs, for which hand-marked
individual mirocalcification locations were available, we es-
timated the microcalcification detection rates of the detection
program. We defined a microcalcification true-positive detec-
tion ratio �TPD� and a microcalcification false-positive de-
tection ratio �FPD� following Jiang et al.9 as: TPD
=TPdet /TPgold; FPD= �ALLdet−TPdet� /TPgold, where TPdet

was the number of detected TP microcalcifications, TPgold

was the number of hand-marked TP microcalcifications, and
ALLdet was the number of all detected microcalcification
candidates. For the current mammograms the TPD was 72%
with an FPD of 148%. For the prior mammograms the TPD
was 68% with an FPD of 130%.

III.C. Correspondence classification

A set of 25 morphological features was extracted from
each of the 412 detected cluster candidates from the 246
prior mammograms. The 412 cluster candidates were then
paired with the clusters on the corresponding current mam-
mograms. These 412 pairs consisted of either TP-TP pairs or
TP-FP pairs. A leave-one-case-out resampling method was
used for feature selection from the set of 25 available mor-
phological difference features. An average of four difference
features was selected. The selected difference features in-
cluded the average effective microcalcification volume,
mean density, eccentricity, and the number of microcalcifica-
tions in cluster. The LDA classifier achieved a test Az of
0.78
0.03. For every mammogram pair, the candidate clus-
ter pair with the highest test discriminant score was selected.
This yielded 226 �86.6%� selected TP-TP pairs and 20 se-
lected TP-FP pairs for the total of 261 mammogram pairs in
the data set. The 20 TP-FP temporal pairs were considered to
be FPs yielding FP detection rate of 0.08 �20 /261� FPs/
image.

III.D. Classification of malignant and benign clusters

In this stage of the system two classifiers were used to
characterize the 261 cases as malignant or benign. The tem-
poral classifier was used to characterize the 246 cases for
which there was a cluster detected on the prior mammogram.
The current classifier was used to characterize the 15 cases
for which no cluster was detected on the prior mammogram.

III.D.1. Temporal classifier

Leave-one-case-out resampling was used for feature se-
lection from the feature sets described in Sec. II C 1. The
features most frequently selected are listed in Table I. An
average of six features were selected including two differ-
ence morphological features, one difference RLS texture fea-
ture, two prior morphological features, and one current mor-

phological feature. The LDA classifier using these features
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obtained a leave-one-case-out test Az of 0.81
0.03 for the
set of 246 �226 TP-TP and 20 TP-FP� temporal pairs �Fig.
10�, with a partial area index Az

�0.9� of 0.30. The test Az for the
subset of the 20 TP-FP temporal pairs was 0.63
0.15. The
large standard deviation reflects the fact that fitting an ROC
curve to the discriminant scores of the data set with such a
small sample size may not be reliable.

In our data set, the available temporal pairs per patient
differed in the number of available views �range: 1–3� and in
the number of temporal pairs per view �range: 1–3� among
the patients. For the 92 patients with detection on the prior
mammogram, if a single temporal pair score per patient was
generated by averaging the test discriminant scores of all
temporal pairs available for that patient, the Az was
0.82
0.04.

III.D.2. Current classifier

Features were selected using leave-one-case-out resam-
pling from a set of 27 morphological features, 32 GLDS, and
26 SGLD texture features extracted from the 221 current
mammograms. An average of two features was selected
�Table I�. One morphological feature and one SGLD texture
feature were selected consistently. The LDA classifier using

TABLE I. Features selected for malignant-vs-benign classification.

Feature type Feature name

Temporal classifier
Current
classifierCurr Prior Diff

Morphological SUMDIST X X
CV�MEAN�DIST X

CV�DENS X X
SDEVQUADS X

Texture �RLS� H�LRE�90 X
Texture �SGLD� DFV�A�4 X
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FIG. 10. ROC curves for the temporal malignant-benign classifier �Az

=0.81
0.03� and current malignant-benign classifier �Az=0.72
0.04�. The
difference in Az between the two classifiers was statistically significant

�p=0.0014�.
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the selected features yielded a leave-one-case-out test Az of
0.72
0.04 and a partial area index Az

�0.9� of 0.12 for the 221
current clusters. Fitting an ROC curve to the test discrimi-
nant scores for the 15 cases that had no detection on the
priors was not reliable due to the small sample size so that no
Az was estimated for this subset.

The difference in the test Az between the classifier based
on the temporal pairs and that based on the corresponding
current images alone �current images from the set of tempo-
ral pairs� is statistically significant �p=0.0014�. The ROC
curves for the temporal and the current classifiers are pre-
sented in Fig. 10.

IV. DISCUSSION

In the first stage of the system a fan-shaped region is
estimated on the prior mammogram based on the location of
the cluster on the current mammogram. It is of utmost im-
portance that the search region is determined correctly so
that it encloses the location of the microcalcification cluster
of interest on the prior mammogram. If an incorrect search
region is located, the cluster will certainly not be found be-
cause the detection is performed only inside the search re-
gion. Our registration algorithm was highly accurate in iden-
tifying the fan-shaped regions for this data set. As discussed
in Sec. III A, the fan-shaped regions enclosed the true loca-
tion of the microcalcification clusters on the prior mammo-
grams for all 261 cases. The high accuracy in registration
implies that all 261 clusters could potentially be identified by
the detection algorithm.

The detection algorithm consisted of three key steps: Im-
age preprocessing, segmentation, and classification. In the
segmentation step we could effectively control the sensitivity
of the detection algorithm by tuning the global gray level
threshold. Increasing this threshold decreased the sensitivity
in identifying potential microcalcification signals. While
choosing a high threshold will reduce the number of FP sig-
nals detected, the trade-off is that the detection system may
fail to identify signals which actually comprise the true mi-
crocalcification cluster. For some images the system may
even fail to detect any clusters. Conversely, it is possible to
increase the sensitivity of the detection system by setting a
low threshold with an increased number of FP detections.
This would consequently put a greater burden on the corre-
spondence classifier in the next step to eliminate the in-
creased number of FPs. We chose our threshold in such a
way as to keep a reasonable balance between the detection of
unwanted FP signals and the failure to detect signals of in-
terest. Of the 412 candidate clusters identified by the detec-
tion stage, 110 were FPs as there was no overlap between
them and the true cluster locations. In addition, as mentioned
previously, on 8 of the 246 prior images which contained
detected cluster candidates, there was no overlap between the
cluster candidates and the true cluster location. Ideally the
correspondence classifier would select a �TP-TP� pair of
clusters for each of the 246 cases, however, given the results
from the detection stage the best that could be achieved

would be 238 TP-TP pairs. The correspondence classifier
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proved to be highly effective in reducing the number of FP
detections such that it reduced the FP rate from
0.42�110 /261� to 0.08 �20 /261� FPs/image and identified
226 TP-TP pairs.

The input feature space for the correspondence classifier
contained temporal feature information by including an ini-
tial set of 25 morphological difference features, which were
reduced to four features after stepwise feature selection. In
previous studies the temporal feature information was ob-
tained from a simple arithmetic difference between the cor-
responding features extracted from the current and the prior
mammograms.18 In this study we designed a new measure,
	diff, which is based on the exponent of the difference be-
tween the corresponding features. The main motivation be-
hind using such a measure is to transform all difference fea-
tures into the same range which in this case was chosen to be
0–1. Since not all features are expressed in the same units
and therefore tend to have a wide range of values, utilizing
this difference measure serves to standardize the weights of
all features.

One of the key findings in this study is that malignant-
versus-benign classification of the microcalcification clusters
in this data set was improved when temporal information
was included in comparison to using information from the
current mammogram alone. Five out of the six selected fea-
tures contained prior information. Both morphological and
RLS texture features were useful for the design of the tem-
poral classifier. The newly defined morphological features
SUMDIST, SDEVQUADS, and MEAN�DIST were effective
for classification of malignant and benign microcalcification
clusters. The current SUMDIST feature �the sum of the dis-
tances of the calcifications to the centroid of the cluster� was
consistently selected both for the temporal classifier and the
current classifier. The difference between the performance of
the temporal classifier and the current classifier was notable,
and the p value of 0.0014 confirmed that this difference was
statistically significant.

We further validated the robustness of the temporal clas-
sifier by using 0.632 and 0.632+ bootstrap methods.31–33 We
used the six most frequently selected features �Table I� and
performed 1000 bootstrap iterations for both methods. For
the 0.632 bootstrap we obtained a test Az of 0.831 with 95%
confidence interval of �0.779, 0.875�. For the 0.632+ boot-
strap we obtained a test Az of 0.830 with 95% confidence
interval of �0.772, 0.875�. These results show that the esti-
mated performance of the temporal classifier is consistent
using the different resampling methods. The test Az �Az

=0.81� from the leave-one-case-out method, was lower than
the Az obtained by using the bootstrap methods, which shows
that the leave-one-case-out based classifier is the least opti-
mistically biased, if any, among these three commonly used
resampling methods. This result is consistent with the results
from our previous simulation study33 that compared the
leave-one-case-out method with 0.632 and 0.632+ bootstrap
methods.

The failure of the system to detect any clusters on the

prior mammograms of the 15 cases can be attributed in part
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to the subtlety of the clusters in these cases. The average
visibility rating given by the radiologist was 7.6 for the 15
prior clusters, while for the remaining 246 cases, the average
visibility for the prior clusters was 6.0. In four out these 15
cases, the microcalcification clusters on the prior mammo-
grams were rated as very subtle by the radiologist �rating
of 10�.

We also performed a pilot ROC observer study with one
experienced MQSA radiologist different than the one that
marked the cases. The radiologist evaluated the temporal
pairs displayed on a graphical user interface providing the
likelihood of malignancy confidence ratings. The radiolo-
gist’s Az values were 0.72 for both the 261 and the 246
temporal pairs data sets. This indicates that the microcalcifi-
cation clusters in these data sets cannot be easily distin-
guished as malignant or benign even by an experienced ra-
diologist evaluating them on the temporal pairs of
mammograms, consistent with the fact that all clusters had
indeed undergone biopsy.

It is also interesting to note that, just as in the correspon-
dence classification, the input feature space for the temporal
malignant-benign classifier included an exponential differ-
ence similarity measure. It was found that incorporating the
temporal information in this way, as a measure having values
range between 0 and 1, was more effective than simply using
the arithmetic difference.

A potential way to further improve the performance of the
entire system is to improve the accuracy of the microcalcifi-
cation detection program, which will result in more true clus-
ter detections with less FPs and therefore generate less
TP-FP pairs.

Last, there were previous studies related to identification,
detection and characterization of corresponding lesions on
CC and MLO views.34–40 The identification of the lesion in
some of the two-view studies is based on the nipple-to-lesion
distance as well, however, the search region is an arch in-
stead of a fan-shaped region as in the case of temporal pairs
identification, and the arch search area is generally larger
than the fan-shaped region. The two-view information differs
from the temporal pair information in that it provides
complementary information for the lesion based on the addi-
tional projection views at one point in time. The serial mam-
mograms from the same view, on the other hand, contain
information about change in the lesion over time which is
useful for diagnosis. Previously, we performed an observer
study comparing radiologists’ accuracy in characterizing
masses on temporal pairs of mammograms on single and two
views �CC and MLO�.41 We concluded that the use of two-
view information improved the radiologist performance in
characterizing masses on temporal pairs of mammograms. To
investigate the effect of two-view analysis on microcalcifica-
tion classification on temporal pairs, we performed an ex-
periment using a subset of 62 patients who had correspond-
ing temporal pairs for both CC and MLO views. The test Az

for the 124 single-view CC and MLO temporal pairs was
0.82
0.04. When the test scores from the CC and MLO
temporal pairs were combined by averaging for every patient

�62 combined scores� and analyzed, the test Az was
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0.86
0.05. This indicates that the use of two-view informa-
tion has the potential to improve the performance of micro-
calcification characterization in interval change analysis,
similar to our previous results for mass lesions.41 This will be
a topic of interest for future investigation.

V. CONCLUSION

In this study, we have developed an automated system for
detecting and characterizing microcalcification clusters on
serial mammograms. The first stage of the system performed
the registration of corresponding clusters on the temporal
pair of mammograms. Our method for identifying a corre-
sponding local search area on the prior mammogram proved
to be highly effective. The locations of all 261 clusters on the
prior mammograms were enclosed by the fan-shaped search
regions defined in this stage. The correspondence classifier
was effective in eliminating false positive detections while
preserving true positives. An evaluation of the classification
stage showed that an interval change analysis provided a
significant advantage in characterizing the clusters as malig-
nant or benign. A statistically significant improvement �p
=0.0014� in the performance of the computer classifier was
achieved by incorporating the temporal information.
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