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to implement. But these desiderata must remain as secondary considerations–our highest pri-
ority must be on ensuring their validity, that is, guaranteeing they will lead to answers that are
statistically and scientifically defensible. On that note, let me conclude with a New Year toast
to YWH for making a working model actually work!

Acknowledgements

I thank Editor Marc Hallin (and Xuming He) for giving me the opportunity to discuss a topic
for which I have no prior research experience and Joe Blitzstein, Radu Craiu, Alan Garber,
Andrew Gelman, Keli Liu, and Neil Shephard for very helpful comments. I also thank NSF for
partial financial support and my family for full moral support, which made it possible for me to
spend the last quantile of 2015 on quantiles.

References

Cox, D.R. (1972). Regression models and life-tables. J. R. Stat. Soc. Series B Stat. Methodol., 34(2), 187–220.
Hoff, P.D. (2005). Bilinear mixed-effects models for dyadic data. J. Amer. Statist. Assoc., 100(469), 286–295.
Hoff, P.D., Raftery, A.E. & Handcock, M.S. (2002). Latent space approaches to social network analysis. J. Amer.

Statist. Assoc., 97(460), 1090–1098.
Liu, K. & Meng, X.-L. (2016). There is individualized treatment. Why not individualized inference? Annu. Rev. Stat.

Appl., 3, 79–111.
McCullagh, P. (1983). Quasi-likelihood functions. Ann. Stat., 11(2), 59–67.
Meng, X.-L. (2009). Decoding the H-likelihood. Stat. Sci., 24(3), 280–293.
Müller, U.K. (2013). Risk of Bayesian inference in misspecified models and the sandwich covariance matrix.

Econometrica, 81(5), 1805–1849.
Peat, F.D. (2002). From Certainty to Uncertainty: The Story of Science and Ideas in the Twentieth Century.

Washington, DC: Joseph Henry Press.

[Received January 2016, accepted February 2016]

—————————————————————————————————————-
International Statistical Review (2016), 84, 3, 367–370 doi:10.1111/insr.12181

Rejoinder
Yunwen Yang1, Huixia Judy Wang2, Xuming He3

1Google Inc., Seattle, WA, USA
E-mail: yunweny@google.com
2George Washington University, Washington, D.C., USA
E-mail: judywang@gwu.edu
3University of Michigan, Ann Arbor, MI, USA
E-mail: xmhe@umich.edu

1 Can We Trust the Working Model?

Meng is very direct in pointing out that the asymmetric Laplace working likelihood is simply
too artificial; in general, it does not provide a decent approximation to the underlying likelihood.
This sentiment is shared by Smith. In fact, two such working likelihoods at two values of �
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Table 1. Empirical coverage probabilities in 1000 trials for model 2 in section 4.1 of
the main paper: quadratic model at � D 0:75.

n D 200 n D 500

BALadj BAL RQrank RQnid BALadj BAL RQrank RQnid

b0 0.918 0.865 0.865 0.876 0.903 0.852 0.859 0.886
b1 0.930 0.795 0.911 0.908 0.915 0.764 0.896 0.886
b2 0.930 0.885 0.878 0.888 0.918 0.867 0.903 0.879
b3 0.878 0.669 0.891 0.853 0.891 0.668 0.895 0.872
b4 0.933 0.870 0.879 0.841 0.914 0.875 0.882 0.829

would conflict with each other. The fact that we are not using a likelihood that approximates
the data generating mechanism explains the lack of validity of the posterior inference from
such working models. Even though we have shown that an adjustment in the posterior variance
leads to asymptotically valid posterior inference, by no means can we defend the choice of the
likelihood from the modelling point of view. The choice of the asymmetric Laplace likelihood is
mainly motivated by computational convenience. The connection to the ‘Bartlization’ of Meng
(2009) and to the quasi-likelihood approach of Kim (2014) can certainly help understand our
proposed posterior adjustment. Along this line, Meng asked whether a better and more flexible
parametric working model can be identified in the quantile regression setting. The answer to
the question is likely to depend on how much we are willing to assume about the conditional
distributions of the response variable Y given the covariate X . If we assume only a linear
quantile function at a given level � , the semiparametric efficiency result of Newey & Powell
(1990) suggests that properly weighted asymmetric Laplace working likelihood is ‘optimal’.
On the other hand, if �i D Yi � XTi ˇ� are i.i.d., then more choices of the working likelihood
become available. We refer to Gilchrist (2000) for choices of parametric models with quantile
functions. Those models would approximate the likelihood through a parametric family. To take
a semiparametric approach to quantile regression, any reasonable parametric likelihood would
need to incorporate parameters that depend on X, which would lead to a less desirable problem
to solve when X is multivariate.

Is the asymmetric Laplace working likelihood harmful? We hope we have made it clear:
yes it is harmful if one performs posterior inference blindly, but there is a simple remedy.
Wang and Sherwood extended this approach to a more challenging problem: quantile regression
with missing covariates. Once again, the adjusted posterior inference proves to be useful (and
asymptotically justified) in that problem.

2 More About Wald-Type Confidence Intervals

Koenker found it disturbing that the Wald-based ‘nid’ confidence intervals performed poorly
in one of our examples. Furthermore, Koenker demonstrated that if quadratic quantile functions
are used to fit the model, the performance of the Wald intervals in that case would become quite
acceptable. As we know, the Wald-type of intervals are asymptotically valid. The main difficulty
with the Wald-type intervals is the lack of robustness; the results tend to depend quite critically
on how the asymptotic variance–covariance is estimated. We take Koenker’s experiment as
another piece of evidence for the lack of reliability from the ‘nid’ method. To take it further,
we use the same model and examine the performance of the method with the quadratic quantile
models at � D 0:75 instead of � D 0:5; see Table 1 for the results based on 1000 repetitions
where the format of the Table follows that of Koenker’s Table 2. We note that the ‘nid’ method
no longer holds up, resulting in a low coverage for b4.

The proposed method BALadj remains competitive across multiple studies, but we do notice
that the resulting intervals are sometimes conservative, and we cannot claim it is always the best
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Table 2. Empirical coverage probabilities and mean lengths of confidence
intervals with nominal level 90% for the partially linear model (1) at � D 0:5
in 1000 trials.

100� ECP EML

n Method b0.�/ b1.�/ b2.�/ b0.�/ b1.�/ b2.�/

200 BALadj 91 92 92 1.40 0.52 0.50
BAL 84 82 86 1.10 0.39 0.39
RQrank 89 87 90 1.36 0.47 0.46
RQnid 84 86 88 1.29 0.47 0.44

500 BALadj 92 90 92 0.88 0.32 0.30
BAL 87 80 84 0.71 0.25 0.24
RQrank 90 87 90 0.85 0.29 0.29
RQnid 87 86 88 0.83 0.30 0.28

The standard errors for EML are in the range of 0.001 to 0.017 in this table.

performer. For linear quantile models with complete data, several competitive methods exist.
When the response is censored or when a covariate has missing values, the usual asymptotic
variance–covariance becomes even harder to estimate reliably. In those cases, fewer satisfactory
solutions exist, making us believe that the Bayesian methods become more valuable relatively
to the others in the problems with incomplete data.

3 Does the Method Work for More General Models?

Both Smith and Wang and Sherwood raised a good question whether the posterior adjustment
would work well in the presence of a high-dimensional covariate or under a broader class of
models. Obviously, we have no experience yet when the number of covariates p is as large as the
sample size n. The asymptotic theory needs to be carried out properly to address such questions.
Here, we would report one experiment with a partially linear model where the nonparametric
function is approximated by a B-spline function. In this case, we went ahead to treat the problem
as an approximately linear quantile problem, allowing us to examine the performance of the
posterior interval estimates for the linear regression coefficients.

We generate data from the following model:

yi D xi1 C xi2 C 2 sin.2xi3 C 2/C .1C 0:5xi1/ei ; i D 1; : : : ; n; (1)

where xik; k D 1; 2; 3; are independent Uniform variables on .�1; 1/, and ei � N.0; 1/ are
white noise. The � th conditional quantile of Y is

Q� .Y jx1; x2; x3/ D b0.�/C b1.�/x1 C b2.�/x2 Cm.x3/;

where b0.�/ D ˆ�1.�/, b1.�/ D 1 C 0:5ˆ�1.�/, b2.�/ D 1 and m.x3/ D 2 sin.2x3 C 2/.
The nonparametric function m.x3/ is approximated by a quadratic B-spline function with three
internal knots. Table 2 summarises the coverage probabilities and average lengths of 90%
confidence intervals for the parametric coefficients bk.0:5/, k D 0; 1; 2. The results show
that the proposed Bayesian method remains useful for correcting the problem in the unad-
justed BAL intervals. Interval estimates on the nonparametric component of the model would
require a more careful study of the bias-variance trade-off, and we leave the investigation to
future research.
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4 Corrections

We would like to correct two errors that have appeared in our paper. First, the defini-
tion of the quantile loss function �� .�/ just after the display (2.2) in the paper should read
�� .�/ D �¹� � I.� < 0/º. Second, as pointed out by Hobert and Khare in their comments,
we should have said in section 2.2 that “Khare & Hobert (2012) showed that the Markov
chain underlying this three-variable Gibbs sampling algorithm converges at a geometric rate
at the median regression.” We could extrapolate that this property holds for all � 2 .0; 1/,
but there is no proof yet. We are sorry for any possible confusion that our original statements
may have caused.

5 All Models are Wrong, But Some are Harmful

We are grateful to Hobert and Khare for discussing better Bayesian computational algorithms
in their comments. They showed that a sandwich algorithm is superior to the data augmenta-
tion algorithm at any quantiel level. Although we do not have empirical experience with the
sandwich algorithm yet, their work points to a better future for Bayesian inference methods for
quantile regression.

Smith discussed limitations of the asymmetric Laplace working likelihood, and mentioned a
number of other approaches to quantile modelling, especially for more complex problems. If
we perform analysis at multiple quantile levels, we have found in Yang & He (2012) that the
empirical likelihood is theoretically attractive as a working likelihood in the Bayesian frame-
work. The Bayesian empirical likelihood provides valid posterior inference and can improve
efficiency by borrowing strength across quantiles, but it is computationally more difficult.

It is clear from the literature that more and more researchers have turned to Bayesian quantile
regression. We hope that our article can help make the yellow light and the red light more
visible to all the drivers, just to follow Meng’s yellow/red light comment. More importantly, we
believe that the green light will be flashing with possibly better working models and much more
efficient algorithms that work for a wider range of problems than we have discussed so far.
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