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Economic MPC with a contractive constraint for nonlinear systems
Defeng He, Jing Sun, Li Yu

Abstract: In this paper, we consider the stability issue of economic model predictive control (EMPC) for constrained
nonlinear systems and propose a new contractive constraint formulation of nonlinear EMPC schemes. This formulation is one of
Lyapunov-based approaches in which the contractive function chosen a priori can be used as a Lyapunov function. Some
conditions are given to guarantee recursive feasibility and asymptotic stability of the EMPC. Moreover, we analyze the transient
economic performance of the EMPC closed-loop system in some finite-time intervals. The proposed EMPC scheme is applied to
a chemical reactor model to illustrate its utility and benefits.

Index Terms: Nonlinear predictive control, constrained control, economic optimization, stability, transient performance

I. INTRODUCTION

Economie=model predictive control (EMPC) has received much attention because of its ability in integrating
real-timegprocess economic optimization and feedback control into an optimal control framework [1-2]. Unlike
traditional'MIPC, where target-tracking controllers are computed by minimizing positive definite cost functions [3],
EMPC directly. utilizes general economic functions as stage costs to design controllers. Therefore, EMPC can
directly address the operational requirements and hence, significantly improve system performance compared to the
hierarchical control method in which an economically optimal operating point is computed by a real-time optimizer
(RTO) inithe upper layer and a target-tracking MPC in the lower layer is used to drive the system to the designed
operating.point[1,4]. However, in general EMPC cannot guarantee stability of operating points using traditional
MPC techniques since it minimizes a general (not necessarily convex or positive definite) cost function over a finite
prediction horizon [4].

A special=way to address stability of EMPC is to establish economic criterion-based Lyapunov functions by
modifying economic cost functions. For example, in [5] the economic cost function was transformed to the
so-called| rotated cost and then the monotonic decreasing property of the value function of the rotated cost is
established-by:the assumption of strong duality and the terminal equality constraint. In [6], this terminal constraint
was replaced by a terminal inequality constraint and a terminal penalty. Moreover, the assumption of strong duality
was relaxed as a dissipativity condition with some elaborately chosen supply and storage functions, and the
closed-loop ‘stability of the optimal steady state was ensued by the dissipativity condition [4,7-8]. In [9] a
generalizedsterminal equality constraint and a weighted terminal penalty were presented for both EMPC and
target-tracking MPC, however with no stability analysis. The authors in [10-11] presented a stabilizing EMPC
without terminal constraints by imposing controllability conditions and using a sufficiently long prediction horizon.
However;aslong horizon makes the EMPC optimization problem a challenge to solve, thereby causing difficulties
in real-time applications.

Another way to guarantee stability of EMPC is to enforce Lyapunov-based stability constraints to optimization
problems of EMPC. For instance, [12] proposed a Lyapunov-based EMPC scheme which uses two different modes
of operation such that the closed-loop system is ultimately bounded in a small region. In [13], the Lyapunov-based
EMPC [12] was modified as a double-layer stabilizing EMPC structure, where three (economic) MPC controllers
with different prediction horizons were considered and stability of the closed-loop system was guaranteed by a
controllability assumption. As one case of lexicographic multiobjective MPC [14], lately [15] proposed a
Lyapunoy-based EMPC scheme in a double-layer framework in which economic performance and stability were
viewed as two. conflicting objectives. To make a tradeoff for both objectives, a contractive constraint was designed
using an upper-layer tracking-target MPC subject to a terminal equality constraint. Then this constraint imposed to
the lower-layer economic MPC was employed to ensure stability of the EMPC, together with inherent robustness
[16] of the upper-layer MPC. Besides solving two constrained optimization problems at each time, the global
optimality of the upper-layer MPC is not necessarily guaranteed because of the non-convex nature of the
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optimization problem subject to nonlinear equality constraints [17]. In [18], we made use of control Lyapunov
functions and the dual-mode approach to design a Lyapunov-based EMPC with a slight computational demand.

Motivated by the existing work in e.g. [15,11,5], here we present a new stabilizing EMPC scheme with a
contractive constraint for constrained nonlinear systems. Like other Lyapunov-based approaches, this scheme
exploits the traditional terminal region and penalty function [3] to construct a contractive constraint. Sufficient
conditions for guaranteed recursive feasibility and asymptotic stability are established. Moreover, the closed-loop
transient performance evaluated over some finite-time intervals is analyzed under the same conditions. The
proposed scheme has several special features.

(1) It asymptotically stabilizes the optimal steady state without additional strong duality or dissipativity
conditions w.r.t;the economic criterion, the conditions that are satisfied for linear systems with convex constraints
and strictly convex costs, however, might not for other cases [5]. As a result, the proposed scheme can be used to
optimized=based control of plants in general cases.

(2) This scheme makes use of a terminal inequality constraint and the original economic criterion. The notion of
terminal inequality constraints is widely used in traditional MPC [3] and was first extended to EMPC [6] because it
can increase“the size of the feasible set of initial conditions and decrease the differences between predicted and
closed-loop trajectories. However, in these (economic) MPC problems, cost functions are often modified by adding
penalty functions to establish stability of the optimal steady state. Note that the optimal trajectories minimizing the
original cost function are generally different from those minimizing a modified function. Hence, MPC closed-loop
trajectories corresponding to the original and modified cost functions are not expected to be the same.

(3) The controller is computed by solving a single-layer optimization problem with a contractive constraint.
Compared to the double-layer contractive EMPC [15], this scheme does not need the optimality of the contractive
constraintiand.its stability is established only using contraction of the constraint.

(4) Recursive feasibility of this scheme always holds in the context of contractive constraints. It should be noted
that to the best of our knowledge, the idea of imposing contractive constraints to MPC has been proposed for the
first in [19=20] for traditional MPC of continuous-time systems, and in [15] for economic MPC of discrete-time
systems, but with different assumptions, Lyapunov functions and optimization problem frameworks.

These features of the proposed EMPC provide an alternative to stabilizing EMPC design, and will be illustrated
by a comparisen study of an example for a continuous stirred tank reactor (CSTR). The rest of this paper is as
follows. In.Section 2 we describe the problem to be addressed. In Section 3 we propose the new EMPC scheme and
establishisome conditions under which recursive feasibility and asymptotic stability are guaranteed. Furthermore,
we analyze transient economic performance of the proposed EMPC scheme in the same section. In Section 4 the
proposed:EMPEC scheme is applied to a chemical reaction process. We conclude the paper in Section 5.

Il. PROBLEM SETUP

Notation. Let Ry and I, denote the sets of non-negative real and integer numbers, respectively. I, is the set
{iel.: a<i<b} for some acly and bels,. Given two sets S;cR" and S,cR", define S)\S,={xeR" | xeS; & x¢S,}. A
function . R"—>R., is positive definite w.r.t x=s if it is continuous, a(s)=0, and a(x)>0 for all x#s. A continuous
function a: R.;—R is a class-K function if it is strictly increasing and a(0)=0, «(s)>0 for all s>0; it is a class-K,,
function if it is a class-K function and a(s)— as s—c. A continuous function f: RygxRso—>Rs is a class-KL
function if.4(s;'t) is a class-K function in s for each fixed t>0; it is strictly decreasing in t for every fixed s>0 and
B(s,1)—0 as_t—o0. For a given pair of functions a; and a,, a;°02(s) denotes the function a;(ax(s)) and ai(s)=
0100, 71(8) for ke .o, with a,%(s)=s. The symbol “:=" denotes that the left-hand side of an equation is defined as the
right-hand-side”The converse applies to “=:".

Consider therdiscrete-time nonlinear systems of the form

Xea = F(XU), Vkely, 1)
where system state x,eR" and control input u,eR™ at time k, and map f: R"<xR™—R". It is assumed that the system
has an equilibrium point (x,us) such that xs=f(x,Us). The solution of the system for a given sequence of control
inputs u and.initial state X, is denoted as x=g@(k;Xo,u) for ke l.o, where X;=¢(0;Xo,u). The system is subject to the
state andcontrol constraints

X, eX, ueU, Vkel, 2
where XcR" and UcR™ are compact sets, containing the equilibrium point in their interior. We assume that the
states can be measured at each time ke ..
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The economic criterion to be minimized is represented by the stage cost function L.: XxU—R. The optimal
operating point that stabilizes the system (1) is one of the steady-state points of (1), which is computed by

(xs,us):argr(nir)l{Le(x,u)\ x=f(xu), xe X, ueU} ©))

For simplicity, we assume that (X;,us) is unique hereafter; otherwise, let (x;,us) denote any of the steady-state points
satisfying (3).

In target-tracking MPC, L¢(x,u) is often chosen as a positive definite function w.r.t (xs,Us), i.e., Le(X,u)=>0 for all
(x,u)eXxU and L(x,u)=0 if and only if (x,u)=(xs,us). In this case, the optimal operation often leads to closed-loop
stability of X, using the standard MPC stability designs [3]. In EMPC, however, L¢(x,u) is chosen according to some
economic, criteria such as energy saving, production cost and yield, etc. These economic criteria have to be
minimized or maximized in terms of profits and environmental concerns for plants. Hence, in EMPC L¢(x,u) is not
necessarily“positive definite w.r.t (x;,us). Consequently, convergence and stability properties in the optimal
economic operation are in general not guaranteed using the standard MPC stability designs since these designs
depend on the positive definiteness of L.(x,u).

The=control=problem of this paper consists in computing an MPC law by minimizing the economic objective
function evaluated over a prediction horizon 0<N<co,

D LU “)

subject ta the constraints (1) and (2), which guarantees closed-loop asymptotic stability of the optimal operating
point (xs,Us)-"Moreover, we will investigate the transient performance of the closed-loop system

3L =27 L (X iy (%)) ()

for some finite-time interval T e, where uy(x) is the first element of the control sequence minimizing (4) for xo=x.

I11. CONTRACTIVE EMPC SCHEME

Considerthessystem (1) and denote by (Xix, Uix) the state and control input at time k+i, predicted at time k for i< I
Let u={ugy, Uy, ..., Un-1i} b€ @ sequence of N predicted control inputs and X={Xo, X1, ..., Xy} b€ its corresponding
predicted state trajectory according to the model (1). According to the economic criterion L¢(x,u), we define the cost

function to'be'minimized, Jy, as
N

J N (Xk ) U) = Zi; Le (Xi|k ) uilk) (6)
where xgis'thesstate at the current time k and Xop=X.
Let J.: XxU"— R., be an auxiliary cost function and neRxo be a scalar, which will be specified later on. We
propose.asnew contractive EMPC formulation in which the following finite horizon optimal control problem is
solved at each time ke l.:

I (%) =minJ, (x,u) (72)
SE Xy = F (X Uy ), Vieloy (7b)
Xig € X, Uy €U, Viely (7c)
Xok =X € X (7d)
Xyp € X (7€)
Ja (X, u) <7, (7f)

where Jy(x) is the optimal value function of (7) and terminal region X; is a compact subset of X. The constraint (7d)
is called the initial condition and (7e) is the terminal constraint. Here the constraint (7f) will be designed as a
contractive.constraint used to establish closed-loop stability of (xs,us). We denote the (possible local) optimal
solution to the optimization problem as u”(x)={Ugk (%),---,Un_15 (%)} and then Jy" (%) =In(XU" (%))-
Consider the system (1) with the constraint (2). We define the set of admissible (x,u) pairs as

Z, ={(x,u)|pk;x,u)e X, u, €U, o(N;x,u)e X, Vkely ,} 8)
where X“is.an initial state at initial time k=0 and u={uy, ..., Uy_1}. Then the set of admissible initial states, Xy, is
defined as the projection of Z onto X, i.e.,

X, ={xe X |3ueR™ suchthat (x,u)eZ,} 9)

At time ke, for the state x, e Xy the set of admissible control sequences, Uy, is defined as
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Uy (X7 ) ={ue R™ | (x,u)eZy, (71)}- (10)
Clearly, the optimal solution to (7) satisfies u”(X) € Un(Xe 7).
We now construct the function J,(x,u) and scalar 7. To this end, we introduce two auxiliary functions Lj,:

XxU—Ryo and E;: X—>Rsg, Where L, is positive definite w.r.t (xs,us) and E, is positive definite w.r.t x;. We define
Ja(x,u) as follows:

N-1
‘]a(xk ) u) = Ea (XN\k) + Zi:o La (Xi|k ) ui|k) (11)
where Xj=@(k+i;x,u) for ielyng with X=Xk and ueUy(x, 77¢) corresponding to the state x, at time ke ls,. Since

La(x,u) and E,(x) are positive definite w.r.t (Xs,us) and Xs, we have Ja(Xq,u)=La(Xok,Uok)=0 with ueU(xy, 77¢) for any
Xy € Xn.-Stibstituting u”(x,) into (11), we have a value function of J,(x,,u) as follows:

V(%) = B + 20 La O U () (12)
where Xii = @(k#i;Xi, U (%) for ielyy 1. Note that u’(x,) is the optimal control for (7) and not for (11). Clearly, we
have V(xk)zLa(xk,u(),k*(xk))zO for all x,e Xy due to the positive definiteness of L,(x,u) and E,(x). To obtain 7, we need
an assumption on the terminal region X; and the functions L, and E,.

Assumption 1: There exist a compact terminal region X;=X, containing x, in its interior, and a continuous control
law us: X¢—U, with ue(Xs)=us, such that
E.(f (X 44 (X)) - E,(X) < =L, (X, 414 (X)), Vxe Xy (13)
Assumption 1 implies that the region X; is an invariant set of the system (1) in closed-loop with .(x) provided that
X is a subleveliset of E,(x). In the literature, many approaches have been proposed to design u«(x) as well as X and
Ea(x) satisfying this assumption; see, e.g., [21-24].
Let u”(xeq) be the optimal solution to (7) at time k—1 and construct a sequence at time k as
a, :{U;lk-l(xk-l)v‘“nU;-ukq(xk-l)aﬂf (X:Hk—l)}' (14)
Then we define 7 as
M =V (%) + Bl (%, 0,) =V (X,)] (15)
with somesp<dw Since V(x)=0 and Ja(Xx,u)=0 for any x,eXy and ueUn(Xk, 1), it is straightforward to obtain that
n0 for all kel.o. Note that although 7, depends on X1, V(x) is the function on x, due to the receding horizon
control principle.
In MPC; the'control input applied to the plant is the first action of u”(x,), which yields an implicit state feedback
EMPG: lawszy(x) defined as

iy (%) = u;\k (%), Vkely,: (16)
This controller gives rise to the closed-loop system
Xea = F (X a0 (X)), Vkely,. a7

The procedure for implementing the EMPC controller (16) is summarized as Algorithm 1.

Algorithm 1: (Economic MPC with a contractive constraint)

1) (Initialization) Pick N>1, <1 and L(x,u), and compute (Eg, X, ) to satisfy (13); set 5y:=+c0 for a given xoe Xy
and létk=0. Solve the optimization problem (7) and obtain its optimal solution u”(x). Implement the control
action ug=pn(Xo) to the system (1) and let k=1.

2) Compute V(x,_1) and evaluate #, by (14)-(15) with the state xy at time k.

3) Solye the optimization problem (7) and obtain its optimal solution u”(x).

4) Implement the control action u=uy(X) to the system (1).

5) Let k=k+1.and go backto Step 2. m

Note that in"Algorithm 1 the contractive constraint (7f) is inactive at initial time k=0 since 7o:=+c. Hence, the set

Xy defined.as«(9) is identified as the set of admissible initial states of the optimization problem (7).

Lemma 1: Consider Assumption 1 and the parameter 5<1. The optimization problem (7) is recursively feasible

within the invariant set Xy.

Proof: Letti"(x,) be the optimal solution to (7) at time k, with Xop=Xk€Xy. At the next time k+1, we use (14) to

choose’a candidate sequence and a corresponding state sequence as follows:

Uy :{u]jk(Xk)"“!u;—ﬂk(xk)!ﬂf (X;l|k)} (18)
Xy :{lek""lxr*\l\k Xt (19)
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where Xix =@(k+isx, U (X)) eX for ielyy and Xysa=f(Xni (i ))- Due to the terminal constraint (7€) and the
invariance property of X;, we have Xy.1€Xs. Thus, the constraints in (7b)-(7e) are fulfilled.

Now we consider the contractive constraint (7f). Since this constraint is inactive at k=0, we test it for kel,;. In
order to satisfy (7f), we substitute (18)-(19) to (11) and consider the following inequality:

Ja Kins Uha) <700 =V (X)) + B2 (X, Uy) =V (%)) (20)
Let a=1-4>0. Then (20) can be rewritten as
Ja (Kins Opr) 3o Ky, Oyg) + oV (%) = 35 (Xaqs Uy (21)
From Assumption 1, it is known that
V(%) = 30 (Xiears Upa) 2 L (X, 42 (%)) 20 (22)

Hence, the inequality (21) holds if ¢>0 and the equality is always true if a=0. Therefore, the inequality (20) holds
for any p<1. This implies that (18)-(19) satisfy (7f) and the candidate (18) satisfies the overall constraints in (7),
which impliessthat this candidate is a feasible solution to (7) at time k+1. Hence, Un(Xc1,7k+1) iS NOt empty and
X1 =F (X (X)) € Xy for Vxe Xy. This establishes recursive feasibility of (7) with the invariant set Xy. m

Note that similar to the standard MPC B a larger size of X; generally leads to a larger size of Xy due to the
property of the terminal region constraint.

Remark 1: It is possible that V(x)>J,(x,0) since u”(x) is not optimal for J.(x,u) but for Jy(x,u). Moreover, the
optimal path from xg=x; to Xy=Xs is often different from x=x; for all kelyy in the context of EMPC [4].
Consequently;'the function V(x) is not necessarily positive definite w.r.t X, as it is in target-tracking MPC. In other
words, it is possible that V(x,)=0 unless some additional conditions are imposed. Note that (x,u)=(xs,Us) if V(x)=0
due to the positive definiteness of L, and E, w.r.t (xs,Us) and xs, respectively.

Assumption 2: The functions f and L, are continuous on the compact sets XxU, respectively, and there exist some
class-K,, functions o, o, and y, i=1,...,4 such that |[f(x,u)—f(z,v)|[<ex(]|(x,u)—-(ZV)|]), [ILe(X,u)—Le(z,V)|I<en(I(X,u)—
@V)II), Lasu)=7a ([Ix=xs[[) +72(lu-us]]), and ys(lIx—xsl)<Ea(x)<p(lx-xl), ¥(x.u), (z.v)eXxU for some vector norm |||

Since L, and E, are positive definite w.r.t. (xs, Us) and xs, respectively, the class-K., functions , i=1,...,4 exist in
the finite/dimensional case with X and U, and with continuity of L, and E,.

Assumption=3: The optimal solution to (7), u”(x), satisfies that uuk*(xs):us for ielgy ;. Moreover, there exists a
class-K,, function o such Ehat ||ui|k*(x)—ui|k*(xs)||Sau(||x—xs||) for any xeXsand ielgn_;.

Assumption 3 holds if u (x) is continuous on X:. As a candidate solution to (7), the sequence u(x) with ui(x)=u(x)
for ielg.n_; satisfies Assumption 3. Combining Assumptions 1~3, we have the following stability result.

Theorem 1 "Suppose that Assumptions 1-3 hold and the parameter 0<p<1. If (7) is initially feasible, then x is an
asymptotically.stable equilibrium point of the closed-loop system (17) with the region of attraction Xy.

Proof:-By applying Lemma 1 and the assumptions recursively, it is obtained that (7) is feasible for x,e Xy at time
kelyo. Thus, Xy is an invariant region of the closed-loop system.

Let u"(x) and u'(x1) be the optimal solutions to (7) at time k and k+1, respectively. Consider a candidate
Lyapunoy function V(x) given as (12). For all x,e Xy, the constraint (7f) and the definition of V(x) lead to

\ (Xk+l) -V (Xk) < ﬂ[‘]a (Xk+1' LAjkafl) -V (Xk )] < _ﬂLa (Xk v Hy (Xk )) (23)
where Oy.471S'given by (18). Due to the positive definiteness of L,(x,u) w.r.t (Xs,Us), SLa(X,u)=p1(JIx=Xs||) for all (x,u) e
XxU, where p, s a class-K, function. Hence, V(X) is a strictly monotone decreasing function along the trajectories
of (17) and V(x)<V(xo) for all ke 1. Moreover, by (23) we have V(X)=>p:(|[x—Xs||) since V(x)>0 for all xe Xy.

In order to obtain the upper bound of V(x), we separately consider the cases of xe X\X; and xeX;. Let Lyx=max
{L(x,u)lsu)eXxU} and E.,=max{E(x)| xeX}. Then for the state xe X\X;, it holds that V(X)<Eax*+NLmax=:Vmax-

Considering any state xeX; at time k, i.e., x,=x, it is obtained from Assumptions 2 and 3 that
N

V(%) < 7 X =% D+ 0 DX =X 1)+ 7, (g () = ug D]
= 74 (1l F (e Un ) = F O, U D)+ 7l Xy = % ) +
D Ot = O U D+ D g (0) = g (x) 1)
<yioa (1 x=% )+ Ny oa, (1 x=x )+ o (1x—x, )
= p(ll x=x, |I).
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where ap(r)=r and o(r)=ap oi_1(N+ e ay(r) e K, for ielyy. Clearly, p is a class-K,, function. If p(||x—Xs|[)=Vmax for
xeX\Xs, we get V(X)<p(||x—x||) for all xeX. Otherwise, we multiply p(||x—X||) by a constant C such that Cp(||[x—Xs||)=>
Vmax fOr xeX\X;. This operation yields V(X)<p»(||x—X;||) for all xeX, where p,(r):=max{1, C}p(r). Hence, we have
P1(IX=XsNSV(X)<pa(|Ix—xXs||) for all xe Xy, with class-K., functions p; and p,. Combining the inequality (23), V(x) is a
Lyapunov function of the closed-loop system (17) and x, is an asymptotically stable equilibrium point of (17) within
Xn- Since Xy is invariant for (17), it is a region of attraction of the closed-loop system. m

Remark 2: From the proof of Lemma 1 and Theorem 1, one can see that the contractive property of (7f) is crucial
in guaranteeing stability of the optimal steady state of the closed-loop system. Hence, the resulting EMPC (here
referred to as Contractive EMPC) scheme can be viewed as a variant of contractive MPC [19,20,25], but with
several _different features. In traditional contractive MPC [3], a Lyapunov function is chosen a priori as a positive
definite function M(x), e.g., M(x)=x"Px with P>0, to ensure that M(x(k;x,u))<M(x) with k=1,2,...,N. Then a variable
horizon (N™) optimal control problem is solved online, where X; depends on the current state x and M(x). In the
original version of contractive MPC, the whole control sequence u” is applied to plants in an open-loop fashion and
the procedure is repeated at every time interval N*. Under assumptions of feasibility, exponential stability of the
origin is ensured by the contractive constraint. Unlike the traditional contractive MPC, here the Lyapunov function
is defined.as V(x)=Ja(x,u"(x)) and it is not necessarily positive definite w.r.t x, since u”(x) is not optimal for J(x,u)
but for Jy(x,u). Moreover, the optimization (7) is a fixed horizon problem where X; is chosen to satisfy Assumption
1, i.e., X¢is not'related to the current state x and V(x), and recursive feasibility is always guaranteed. The controller
obtained here.follows the standard receding horizon principle, in the sense that only the first control element of the
solution to (7). is applied to (1) at each time. In addition, here the contractive constraint (7f) does not lead to
exponential stability of the closed-loop system (17).

Remark 3:"In the context of EMPC, the idea of imposing a contractive property on the closed-loop behavior is
also presentedsin [15]. In that work, the author regarded stability and economics as two conflicting objectives and
proposed a double-layer lexicographic optimization formulation, i.e.

* . N-1
1 layer: u; () =argmin{J, (x,u) = > L (X Uy )} o
st. (7h)—(7d), Xup = X
u,(x,) =argminJ, (x,,u)
2" layer: {st. (7b)—(7d), Xy = X

Jie (Xk u) < S = J; (Xk) + al.\/tr (ka1) - ‘JIT' (Xk)]

where J,(x,u)is the target-tracking function, Jy(x,u) is the economic function given as (6), J; (X)=Jg(X,us (X)),
Vir(X) 300 (Xsb2-(X)), and some 0<a<1. The last constraint in (25), i.e., J«(x,u)<&, is a contractive constraint, which,
together with inherent robustness of target-tracking MPC, ensures that V,(x) is a Lyapunov function of the system
(1) in closed-loop with this EMPC law specified as the first element of u, (x). Due to the global optimality of u;"(x)
and the positive definiteness of J,; (X) W.r.t X, Vi(x) is positive definite w.r.t x,. Note that this formulation needs to
online solve two non-convex, nonlinear optimization problems, which significantly increases the computational
load of implementing MPC [14]. In particular, non-convexity may lead to non-global solution in both layers and
therefore, no guarantee of feasibility for (25) due to discontinuous Pareto fronts of non-convex multiobjective
optimization[15]. Finally, the terminal equality will reduce the size of feasible set of initial conditions [6].

Note that'the'contractive constraint (7f) can be replaced with some conditions, e.g., [26]

Ja (X, u) =V (%) < —oby (X y iy (X 1)) (26)
for somejoeR.p. In this case, recursive feasibility and stability also hold for o< (0, 1] from the proof of Lemma 1
and Theorem 1. Additionally, since recursive feasibility of (7), which is essential in establishing stability, is ensured
for f< (02T butnot for £>1, stability of (17) cannot be established for the general case of #>1. But on a case by case
it is possible to find conditions for £>1 to establish stability of (17).

Let the balls B, be defined as B,={xeX: ||x—xs|[<r} for some norm ||:|| and r>0, and the level sets of V(x) as S.=
{xeX: V(x)c}or some c>0. Since the system (17) asymptotically converges to (xs,us) while remaining bounded for
all ke Ignfor a small ¢>0 there exists a finite time interval T.el.; such that for all k>T, @ (K;Xo, ) €Sc With xge Xy.
Then from Theorem 1 we have the following corollary on V(x) and the terminal predicted state Xy.

Corollary 1: Consider a small number ¢>0 such that S.—X;. Under the assumptions in Theorem 1, the closed-loop
states of (17) enter S. in such way that V(x) decreases exponentially. Moreover, if the state x,e Xy\Sg, then its optimal

(25)
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predicted state xN|k* satisfies that
Il X = X 1< 0,1 % =%, [l k) (27)

where 6 is a class-KL function.

Proof: Let S be the closure of set X\\S.. We compute the minimal value of La(x,u)/Ja(x,u) for ¥(x,u)(S,U") and
denote it as @, where u is the first element of sequence u. Note that g exists due to Assumptions 1-3 and the positive
definiteness of L,(x,u) and E,(x,u). Clearly, we have 0<a<1. By the inequality (23), we have V(X1)—V(X)<-apV(x).
This implies that V(x)< (1-a@B)“V(xo). Since e®P-s>0 < s*<e®* for vse[0,1) and kelo, we have

V(%) <V (%)e ™, vx, e X \S,- (28)
Since S, is the sublevel set of V(x) and the system (17) is asymptotically stable, V(x) decreases exponentially until
V(x)<c, i.e., XeS,.

By Assumption 2 and the definition of V(x), it is derived that ;/3(||xN|k*—xs||)sEa(xN|k*)sV(xk) for Vx,eXy. Consider

any state e Xy\S¢. Then combining (28), we have
[ X =% 11 75" (o2 (1 % = X, e ) = 6,(1l %o = X, [1, k) (29)
for VxeXn\S, of (17). Since the functions y;, p,€ K., 6, is a class-KL function and thus (27) holds. =

Remark4:Itis observed from (28) that the larger the value of 3, the faster the decaying of V(x). This implies that
a lager value of S speeds up the closed-loop system (17) to approach to the optimal steady-state point. In this sense,
B is named as the contractive factor reflecting the contractive property of the closed-loop behavior.

Now we analyze economic performance of the proposed EMPC scheme. Without loss of generality, here we
assume that L.(x,u)>0 for all xeX and ueU. Given an initial state XxoeXy\S,, from Corollary 1 we can find a finite
time interval T>0 such that ¢(k;Xo,zin(+)) € Xn\S, for ke l.r and o(k;Xo,zn(+)) €S, for ke ls1.q. Moreover, we consider
any admissible. control sequence u and its associated trajectory ¢(k;Xo,u) which satisfies ||o(T;Xo,u)—Xs||<
1T X0, £2n(-))—Xs||<r for some r>0. Then we have the following results on the transient performance (5) evaluated
over the finite time interval T.

Proposition:1: Consider a small number ¢>0 such that S.cX;. Under the assumptions in Theorem 1, the transient
performance (5) evaluated over the finite time interval T satisfies that

32 (%) < 3y (%, U) + (N =Tz 0 9,(0) + NL, (X, u,) + D -6, (1l % — %, 1K) (30)

where ¢lis a class-K,, function and &, is a class-KL function.
Proof: Letthe sequences u (x,) and u (x..1) be the optimal solutions to (7) at time k and k+1, respectively, where
Xk =F (X (X)) Considering the sequence (18), we compute the optimal value functions of Jy as follows:

30 (%) = Lo ttyg () + X0 Lo (X Upe)

* ~ * * N-2 * *
I (Xen) £ Iy (K Upg) = Lo g 225 (X)) + Zi:O Le (i, Ui )

which lead to
In (Xen) =I5 (%) < Le(X:llk s Mg (X*N|k ) — L (X, a0y (%)) - (31)
Adding (31) from k=0 to k=T—-1, it is obtained that
37 (%) < 30 (%) = In (65 )+ 20 o Lo (kg 22 060)) < 35 (%) + Xy o Lo (kg 221 (X)) - (32)

By Assumption 2, for xeX; we have Le(X,24(X))—Le(Xs,Us)<an([IXx—=Xs|[)+ aie oyl |[X—Xs[[)=: on (|[x—x||) with the class-K.,
function ¢@.. Due to (29), we have that

38 (%) < 35 (%) + TL (%, u) + D0 60, (11 % — %, [1.K) (33)

where Gs(lixg=xg], K)= o7 (0a(|Xo—Xs][)e %) and it is a class-KL function.
From the dynamic programming principle, Jy (x) satisfies that

‘]; (%) < UEEREXO){JT (X, u)+J ;l—T (p(T; %, uU))}
Let r=p, *(c). For Tel;..; and u steering (1) to the ball B, within T time steps, we obtain that
JT (Xov u) = ‘]T (Xo’ u) + J;—T ((p(T; Xo» U)) - J;—T ((P(Ti Xos U)) (34)
235 (%) = (N =T)[er (r) + L, (x,, u,)]
Note that for T>N, the non-negativity of L(x,u) implies that the inequality J:(x,u)=Jy (x) holds for all admissible
ueU+(x), implying (34) again. Substituting (34) to (33) leads to
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32 (%0) < 3y (%, u) + (N =T)ar, (1) + NL, (x,u.) + X 6, (1 % — X, [l.k)

for all admissible ueU+(x) steering (1) to B, within T time steps, which is equal to (30). m

It is remarked that from Proposition 1 the transient performance given here does not admit transient optimality in
the sense of [11] because the error term will not vanish as N—oo and ||¢(T;Xo,zan(-))—Xs|| 0. Nevertheless, the
closed-loop system (17) admits the asymptotic time average performance.

Proposition 2: Under the assumptions in Theorem 1, the closed-loop system (17) admits the asymptotic time
average performance, i.e.,

lim inf JZ(X)/K < L, (x,u,) (35)

with thesregion of attraction Xy.

Proof: It is.straightforward to test that the suboptimal controller defined by the sequence (18) can asymptotically
stabilize the system (1) to xs with Xy. Then following the proof of Theorem 7 in [13], one can show the inequality
(35) and hence,:the proof of this claim is omitted. m

Note that since the asymptotic average performance may not be a singleton in the context of economic NMPC, a
lower bound on the asymptotic average performance under the proposed EMPC scheme is considered in (36) from
[4,8,13]. In:addition, the average transient performance over a finite time window is not guaranteed to be better than
Le(Xs,Us) and it.may take any value. Recently [11] established optimal transient performance estimates for the EMPC
without terminal constraint.

Due to theeonstraint (7f), the contractive factor 8 will affect the predicted optimal performance Jy (x). For clarity,
let x=xi, Ix (98):=In (%), 7(B):=7n and Un(x,8):=Un(x,7) for a selected 0<f<1. From Theorem 1, the feasible set
Un(x,8) is.always non-empty for any xeXy.

Proposition 3: Under the assumptions in Theorem 1, the predicted optimal performance satisfies that Jy"(x,81)<
In (x,f,) for any 0<,<f,<1 and xeXy.

Proof: “Fhesproof consists of two parts. We first prove that Uy(x,5,)cUn(X,f1) for 0<4,<8,<1 and any xeXy, and
then prove the proposition by contradiction under the assumptions.

Part 1. From the proof of Lemma 1, it is known that 7(5)>0 for any 0<f<1. For two values 0<f;<f,<1, then we
have 7(55)<n(B1) due to the inequality (22). Consider the sets Uy(x,51) and Uy(x,5), and pick any u(f,) e Un(X,52).
We obtainsthatd,(X,u(5,))<n(82)<n(f1), which leads to u(f,) € Un(x,51). Due to arbitrariness of u(f,) e Un(x,5,), it is
obtained that Uy(X,f2)cUn(x,f1) for 0<f;<f,<1 and any xeXy.

Part 2. By contradiction, it is assumed that Jy (x,81)>Jx (x,52) for any 0<f;<f,<1 and xeXy. Let u”(8;) eUn(x,5)
be the optimal solution corresponding with Jy"(x,4;) for i=1, 2. From Part 1, we have u(5,) € Un(x,81), which implies
that there exiSts:a solution u”(5,) such that Jy (x,82)<Jx (X,81) in Un(x,81). This contradicts the optimality of Jy (x,5.)
in Un(xs1). Hence, this proposition holds. m

Proposition 3 shows that the predicted optimal performance Jy " (x) will be degraded when increasing the value of
S, which, on the other hand, speeds up the decaying of V(x) and hence improves stability of the closed-loop system.
In this sense, the loss of optimality of Jy"(x) can be regarded as a price that one has to pay for ensuring feasibility
and stability-of:the EMPC controller. This mechanism is the so-called Stability Price in [15].

Remark.5: It should be emphasized that Jy'(x) is a measure of open-loop performance and generally
In () (x) due to the receding horizon nature of MPC. Hence, Proposition 3 and Stability Price may not hold for
InY(x). Givensthat two different values of 8 will generate different closed-loop trajectories, even if they start from
the same initialstate xo, it is a great challenge to theoretically establish analogues of both Proposition 3 and Stability
Price for'J,*'(x). Nevertheless, in practice Stability Price can provide guidance to tune the contractive factor 4 and
this will'be illustrated by a numerical example.

IV. NUMERICAL EXAMPLE

To illustrate the performance of the proposed EMPC scheme, we consider the isothermal chemical reactor
system [5]

dca = % (Cain - Ca) - OC:

dt  V, (36)
dcb Qin 2
—=—-(C,,, —C oC

dt VR ( bin b) + a
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where ¢, and c, are the molar concentrations of species ‘a’ and ‘b’, respectively, c,, and cy, are the feed
concentrations of ‘a’ and ‘b’, and Q;, is the flow through the reactor. The volume of the reactor Vg=10 L and the rate
constant o=1.2 L/(mol-min). In this study, the concentrations ¢, and c, are the states x; and x,, respectively, and the
flow Qj, is the control u. The constraints are imposed on the state and control variables by the form of x;[0, 1] for
i=1, 2 and ue[0, 15]. The process economics are defined as the price of product b and a separation cost
L, (x,u) = 0.5u — 2X,u - (37)
The optimal steady-state point for this cost is computed as (xs,Us)=(0.5785, 0.4215, 9.5258). In order to design the
contractive constraint (7f), we define the following positive definite function
L. O u) =l x=xg [l +llu—ug [I5- (38)
Let the system (A, B) be the linearized model of (36) at (xs,Us). From the LQ optimal control approach, solving the

Riccati eguation PA+A"P—PBBP+1=0 leads to a positive definite matrix solution P [0'3448 0'2213} . Then we

0.2213 0.5248

construct_the triplet as En(x)=(x—xs) "P(x—Xs), Xi={xeR% E,(x)<0.0613} and z4(x)=[-0.0052 0.0128](Xx—X)+Us,
which satisfies Assumption 1 of Section Ill. Assumption 2 is also satisfied given the function forms of f and L..
Since it isshardsto directly validate Assumption 3 during numerical optimization, here we imposed the condition
(Ui (X)—Usll< alfx—x|| with 6=2000 for i< lq.n.; and xeX; on the optimization operation to fulfill Assumption 3.

The system (36) is discretized with a sampling time 0.1 min and the Euler’s first-order approximation is
employed forall derivatives. Let the prediction horizon steps N=4 and the simulation time steps be 70. The solution
at time k was*used as an initial guess for solving the optimization problems at k+1. Moreover, all optimization
problems had been solved by the fmincon function with the SQP algorithm in MATLAB V7.1 on the computer of
MS WINDOWS 7.0 Enterprise and an Intel® Core i5 CPU with 2.3 GHz and 4 GB RAM.

250
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Fig. ‘4 Time profiles of V(x) for different values of 5. Left plot: initial state (I); right plot: initial state (I1).
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Fig. 2 Closed-loop state trajectories for different values of . Left plot: initial state (I); right plot: initial state (I1).
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We pick two initial states (1) (0.4, 0.1) and (1) (0.6, 0.6). Figs. 1-2 separately show the time profiles of V(x) and
the state trajectories for different values of the contractive factor g, where the left plot is associated with the initial
state (1) and the right the initial state (11). The profiles depicted in both figures are for f in the interval [0, 1] with
increments of 0.2. It can be seen from both figures that 1) for all 0<f<1, the value functions are strictly decreasing
and thus stability of the closed-loop system is established; 2) for larger values of g, the value functions decay more
quickly, which implies that the closed-loop system approaches to the steady-state point (xs,us) more quickly. It
should be emphasized that the condition of 0<p<1 is sufficient but not necessary to guarantee stability of the
closed-loop system, which can be illustrated by the profile of V(x) corresponding to 5=0 in the left subfigure.

We define a transient time window [0, T] of (36) such that the closed-loop state ¢(T;Xo,za(:)) enters the range of
+5% the steady state x,. Denote by J:°'(1) and J(11) the transient economic performances obtained by applying
Algorithm™1, starting from the initial states (1) and (I1), respectively. Table 1 presents these values for the different
values of'8. As.can be seen, the transient performance obtained by the proposed scheme is a decreasing function on
B. That is, the transient performance will be improved by reducing the value of B. This observation may be
explainedto'some extent by the Stability Price of the predicted performance since the constraint (7f) is relaxed by
reducing’g and hence, the predicted performance can be improved. However, it is seen from Fig. 2 that the
convergence speed of the closed-loop system gets slower as  becomes smaller. In this sense, we can select the
value of #'to make a tradeoff between the economic performance and stability of the closed-loop system.

Table 1. The transient economic performances for different values of  under N=4
p 0.2 0.4 0.6 0.8 1.0

3y  —209.8552 —60.0956 454511  -38.4738  —36.7232
J()  -417.1054 -205.7893 -114.7035 -104.2869  —93.4900

Table 2. The transient economic performances and computational times for different values of N under 5=0.8
N 4 5 10 15 20

3y  -38.4738  -42.0817 -40.3958 -38.3085 -32.0736

3U()  -104.2869 -85.6629  -81.8655 —99.9914  —107.4492
Toax (MS)  446.1 554.4 735.4 957.7 2209
Tova (MS) 295 31.2 51.9 86.3 170.1

Table-2*tabulates the transient economic performances and computational times by applying Algorithm 1 for
different lengths of the prediction horizon N under the fixed =0.8. It is observed that the obtained transient
performance can not be improved by only lengthening or reducing the prediction horizon N. In other words, the
obtained transient performance is not a monotone function on N. However, the computational times for calculating
control actions,.over all sampling times of all simulations, are reduced when we select a shorter N.

In what follows, we consider the initial state (I1) and assess the three controllers applied by the single-layer
contractiyve EMPC proposed here (SC-EMPC), the double-layer contractive EMPC in [15] (DC-EMPC) and the
single-layer.dissipative EMPC in [6] (SD-EMPC). Note that the system (37) is not dissipative w.r.t the economic
criterion (38). Hence the following regularized function followed from [6] is used for SD-EMPC:

L, (x,u) = 0.5u — 2x,u + 0.1(u —u,)? (39)
with a penalty function Vi(x)=E,(x)+[-4.0541 —-9.7533](x—Xs) and the terminal region X;. Moreover, in order to
guarantee-initial feasibility of DC-EMPC, we select the prediction horizon N=15 for all three controllers. It is noted
that initial feasibility of DC-EMPC is ensured only if N>10 but initial feasibility of SC-EMPC and SD-EMPC is
ensured for N=4 due to the terminal inequality constraint.

Table 3. The transient economic performances and computational times for three controllers
SC-EMPC  DC-EMPC SD-EMPC SC-EMPC

(15,0.8) (15,0.2) (15,--) (4,0.6)
})  -99.9914  -109.5727  -109.6129  -114.7035
Toac (MS)  957.7 1254.9 498.8 508.2
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T ova (MS) 86.3 186.1 406 321

Table 3 gives the transient economic performances and computational times obtained by separately applying the
three controllers, respectively, where 5=0.8 for SC-EMPC and a=0.2 for DC-EMPC. From the 1* to 3" column of
Table 3, it is known that the transient economic performance of DC-EMPC is almost equal to that of SD-EMPC,
and both DC-EMPC and SD-EMPC have better transient performances than SC-EMPC. This implies that the
transient performance of SC-EMPC admits no transient optimality in the sense of [11]. However, we known from
Tables 1 and 2 that the transient economic performance of SC-EMPC has no monotonicity w.r.t N but it is a
decreasing function on . Furthermore, it is observed from the three columns that there is significant difference in
the computational time among three controllers. We can select a shorter N and a smaller g, e.g. (N,£)=(4,0.6), to
improve the transient economic performance of SC-EMPC as well as reducing its computational times, as shown in
the last columniof this table.

Figs. 3:and.4 show the time evolutions of the closed-loop states and control inputs by separately applying the
three controllers, where (N,5)=(4,0.6) for SC-EMPC. As expected, the three closed-loop systems are asymptotically
stable at X in the presence of the state and control constraints, but they approach the economic setpoint in different
ways. In particular, comparing the solid lines to the dashed and dotted lines in figs. 3 and 4, it is that both DC-EMPC
and SD-EMPC produce smoother closed-loop state responses and control signals than SC-EMPC. Note that one can
adjust S to mitigate the oscillatory behavior resulted from SC-EMPC (see Fig.2).

0.65 T T
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5 10 15 20 25 30 35 40 45 50

Sampling times (0.1min)
Fig. 3 Time evolutions of the closed-loop states starting from the initial state I1, associated with three controllers.

I
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— — — DC-EMPC
------- SD-EMPC
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Fig. 4 Time profiles of the inputs applied by three controllers, associated with the initial state I1.

V. CONCLUSIONS

This paper proposed a contractive EMPC scheme with guaranteed asymptotic stability for constrained nonlinear
systems. By imposing a special contractive constraint, based on the terminal region and terminal penalty, into the
EMPC optimization problem, we derived the sufficient conditions for guaranteeing recursive feasibility and
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stability of EMPC. Moreover, we analyzed the transient economic performance and established the relation of the
predicted performance to the contractive factor. The example of an isothermal chemical reactor demonstrated the
effectiveness of the EMPC scheme proposed here.
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Table 1. The transient economic performances for different values of  under N=4
p 0.2 0.4 0.6 0.8 1.0

J(l)  —209.8552 —60.0956 454511  -38.4738  —36.7232
J()  -417.1054 -205.7893 -114.7035 —104.2869  —93.4900

Tiable 2,The transient economic performances and computational times for different values of N under 5=0.8
N 4 5 10 15 20

3y 384738  -42.0817 -40.3958 -38.3085 -32.0736

3U(I)  -104.2869 -85.6629  -81.8655  —99.9914  —107.4492
Toax (MS)  446.1 554.4 735.4 957.7 2209
Tova (MS) 295 31.2 51.9 86.3 170.1

Table 3. The transient economic performances and computational times for three controllers
SC-EMPC  DC-EMPC SD-EMPC SC-EMPC

(15,0.8) (15,0.2) (15,--) (4,0.6)
}y  -99.9914 1095727  -109.6129  -114.7035
Toax(Ms)  957.7 1254.9 498.8 508.2
T ava (MS) 86.3 186.1 40.6 32.1

This article is protected by copyright. All rights reserved.



