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Abstract Geomagnetically induced currents (GICs) represent a significant space weather issue for power
grid and pipeline infrastructure, particularly during severe geomagnetic storms. In this study, magnetometer
data collected from around the world are analyzed to investigate the GICs caused by the 2015 St. Patrick’s
Day storm. While significant GIC activity in the high-latitude regions due to storm time substorm activity is
shown for this event, enhanced GIC activity was also measured at two equatorial stations in the American
and Southeast Asian sectors. This equatorial GIC activity is closely examined, and it is shown that it is present
both during the arrival of the interplanetary shock at the storm sudden commencement (SSC) in Southeast
Asia and during the main phase of the storm ∼10 h later in South America. The SSC caused magnetic field
variations at the equator in Southeast Asia that were twice the magnitude of those observed only a few
degrees to the north, strongly indicating that the equatorial electrojet (EEJ) played a significant role. The
large equatorial magnetic field variations measured in South America are also examined, and the coincident
solar wind data are used to investigate the causes of the sudden changes in the EEJ ∼10 h into the storm.
From this analysis it is concluded that sudden magnetopause current increases due to increases in the solar
wind dynamic pressure, and the sudden changes in the resultant magnetospheric and ionospheric current
systems, are the primary drivers of equatorial GICs.

1. Introduction

The 17 March 2015 geomagnetic storm has been the largest in more than 10 years (minimum SYM-H of
−234 nT), and some key aspects of this storm have attracted significant research attention. For example, the
resulting ionospheric storm phases have been thoroughly examined [e.g., Astafyeva et al., 2015; Fagundes et al.,
2016; Zhong et al., 2016], and the response of the equatorial ionosphere to prompt-penetration electric fields
and disturbance dynamos has been investigated [e.g., Ramsingh et al., 2015; Tulasi Ram et al., 2016; Carter et al.,
2016; Huang et al., 2016; Joshi et al., 2016; Zhou et al., 2016; Kakad et al., 2016; Huang et al., 2016].

Geomagnetically induced currents (GICs) represent a significant challenge for society, given our strong depen-
dence on stable electricity supply [e.g., Knipp, 2015; Gaunt, 2016, and references therein]. GICs arise from
induced geoelectric fields that are caused by magnetic field fluctuations in the near-Earth space environment
via Faraday’s law [e.g., Viljanen, 1998; Pirjola, 2000]. GICs are well known to occur during severe geomagnetic
storms, particularly those caused by coronal mass ejections from the Sun.

Reports tasked with providing economic impacts of severe space weather events have generally been focused
on one particular country/region (e.g., NAOS report (U.S. National Academy of Sciences, Severe Space weather
Events Understanding Societal and Economic Impacts, a workshop report, Washington, DC: The National
Academies Press, 2008) and Lloyd’s report (Lloyd’s: Solar Storm risk to the North American grid, available at:
www.lloyds.com, 2013.)). Although, a recent analysis using a global economics model has shown that a 10%
reduction in electricity supply to Earth’s most populated and highly industrialized regions due to a severe
geomagnetic storm can impact the global economy on the same scale as wars and global financial crises
[Schulte in den Bäumen et al., 2014].
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These serious consequences are based on lengthy power supply loss due to the failure of expensive transform-
ers that take a long time to replace (NAOS report). However, some recent results have shown that catastrophic
failures are not necessarily required in order to have a detectable economic impact because of the way that
wholesale electricity markets operate. Forbes and St. Cyr [2008] studied the impact of space weather on 12
geographically disparate locations around the world and demonstrated that real-time market conditions
were statistically related to local magnetic field fluctuations. In another study, Schrijver et al. [2014] found
that insurance claim rates for industrial electrical equipment across North America rose significantly on days
with elevated geomagnetic activity. Therefore, even if power infrastructure hardware is not lost during severe
space weather events, GICs in regional power grids can still have broad flow-on effects throughout the global
economy, which highlights the continuing need for better understanding of the space environment and its
effects on our infrastructure.

Previous research attention has been focused on quantifying and modeling the effects of GICs in the high-
latitude region, which is appropriate given that GICs are known to be the most intense in the auroral regions,
beneath the auroral electrojets [e.g., Pulkkinen et al., 2005, and references therein]. Some recent studies have
shown that the equatorial boundary of the high GIC threat region lies between 50∘ and 60∘ magnetic latitude
[Pulkkinen et al., 2012; Ngwira et al., 2013; Love et al., 2016].

The middle- and low-latitude regions have also received some research attention [e.g., Kappenman, 2003,
2005; Trivedi et al., 2007; Watari et al., 2009; Marshall et al., 2011, 2012; Zhang et al., 2015, 2016] due to the mag-
netic field variations that are observed during sudden impulses (SIs), which are caused by sudden changes
in the solar wind dynamic pressure [e.g., Russell et al., 1994]. When the solar wind dynamic pressure suddenly
increases, the magnetopause current suddenly changes, and this results in a global magnetic field signature
[e.g., Araki, 1977, 1994; Russell et al., 1994; Shinbori et al., 2009]. The magnitude of the resulting magnetic field
fluctuation varies significantly with location on the ground, with generally more pronounced effects between
60∘ and 70∘ magnetic latitude [Fiori et al., 2014] due to the location of the auroral ionospheric currents at the
moment of the SI.

The global magnetic field signature caused by SIs has been the subject of a lot of research. A model for SIs
(also referred to as “sudden commencements (SCs)”) first proposed by Araki [1977, 1994] separated the mag-
netic field signatures measured on the ground into components originating from the magnetosphere (i.e., the
magnetopause current and the field-aligned currents) and the ionosphere. The sudden increase in the magne-
topause current during SIs launches an inward compressional magnetospheric wave that carries a polarization
current on the wave front. As the compressional wave propagates inward, it undergoes a mode conversion
upon reaching a steep gradient in the Alfven speed, and this influences the field-aligned currents flowing in
and out of the ionosphere. Numerical modeling of the magnetosphere has been shown to well replicate these
effects over the few minute time scale that these effects occur [Fujita et al., 2003a, 2003b]. These field-aligned
currents set up positive and negative electric potential on the dusk and dawn sectors, respectively, which
drives a two-cell Hall current system in the high-latitude ionosphere [e.g., Kikuchi and Hashimoto, 2016]. The
equatorial ionosphere is effectively connected to the high-latitude two-cell Hall current system via Pederson
currents at mid latitudes [see Araki et al., 2009, Figure 1]. As a result, the Cowling effect at the magnetic equa-
tor causes a sudden response of the equatorial electrojet (EEJ) to the SI event. Recently, Piersanti and Villante
[2016] developed a technique to extract the magnetospheric (DL) and the ionospheric (DP) origin fields from a
ground signal during a SI. They evaluated the DL field by a comparison between magnetospheric field obser-
vations and Tsyganenko and Sitnov [2005] model predictions. The DP field is extracted by subtracting the
estimated DL field from ground observations.

In the context of GIC research, the EEJ has been suspected to play a significant role in the generation of GICs
at equatorial latitudes during geomagnetic storms, much like the auroral electrojets at high-latitude regions
[Pulkkinen et al., 2012; Ngwira et al., 2013; Moldwin and Tsu, 2016]. Recently, Carter et al. [2015] confirmed that
the EEJ caused enhanced GIC activity during SI events. Importantly, their analysis showed that equatorial GIC
activity was not limited to geomagnetic storms but was also evident for interplanetary shock arrivals that did
not precede geomagnetic activity. While 14 years of SI events were analyzed by Carter et al. [2015], the physical
mechanism connecting SIs to enhanced equatorial GIC activity was not explored in detail.

In this study, an analysis of the magnetic field variations observed on the ground, and the associated GICs,
for the 2015 St. Patrick’s Day storm (17–18 March) is presented. Of particular focus are the magnetic field
variations observed at the magnetic equator in association with perturbations in the EEJ current caused by
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Figure 1. The locations of the INTERMAGNET (blue) and AMBER (orange) magnetometer stations used in this analysis.
The black points indicate the locations of North American stations used in a later analysis. The dashed lines indicate
the magnetic latitudes 0∘ and ±50∘.

the storm. High-resolution magnetometer data collected from all over the world allow an investigation into
the physical connection between SIs and equatorial GICs.

2. Global Magnetometer Observations

Ground-based magnetometer station data are primarily used in this analysis. Several magnetometer networks
exist around the world, and this study uses a subset of them. Due to its global coverage, the International
Real-Time Magnetic Observatory Network (INTERMAGNET) [Love and Chulliat, 2013] magnetometer data are
predominantly used. This data set is supplemented by the data collected from two Southeast Asian stations
in Phuket and Bangkok, which are recent additions to the African Meridian B-Field Education and Research
(AMBER) network [Yizengaw and Moldwin, 2009] to extend its longitudinal coverage. The observations col-
lected at the magnetic equator by the AMBER Phuket station are particularly important in this study.

Figure 1 shows the locations of the stations used in this analysis. The blue triangles show the locations of
the stations from INTERMAGNET, and the orange triangles are the two chosen stations from the AMBER
network. The black dots in the North American region are stations from several networks that include
Athabasca University Time History of Events and Macroscale Interactions (THEMIS) UCLA Magnetometer
Network (AUTUMNX); Canadian Array for Real time Investigations of Magnetic Activity (CARISMA) [Mann et al.,
2008]; Canadian Magnetic Observatory Network (CANMOS); magnetometers in Greenland that are operated
by the Technical University of Denmark; Geophysical Institute Magnetometer Array (GIMA); Magnetometer
Array for Cusp and Cleft Studies (MACCS) [Engebretson et al., 1995]; Mid-continent MAgnetoseismic Chain
(McMAC) [Chi et al., 2013]; the Solar and Terrestrial Physics (STEP) chain; the THEMIS ground magnetometers
[Russell et al., 2009], and U.S. Geological Survey (USGS) stations and are used to produce ionospheric current
strength information. The dashed lines indicate the locations of the 0∘ and±50∘ magnetic latitudes estimated
using Baker and Wing’s [1989] model.
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Figure 2. Geomagnetic activity summary for 17 March 2015 storm, including SYM-H index and the magnetopause
(MP) contribution toward the SYM-H index (blue), the temporal variations in the SYM-H index and the MP contribution,
the solar wind dynamic pressure as calculated using the Wind spacecraft data, the AU (thick) and AL indices and their
temporal variations (blue), and finally the interplanetary electric field also calculated using Wind spacecraft data.
The x axis is in storm time, which commences at 0445 UT on 17 March 2015 (i.e., storm time = UT −4.75).

3. Results and Discussion
3.1. Geomagnetic Activity Summary
Before the analysis of the magnetometer data, a brief overview of the 17–18 March 2015 storm is given.
Figure 2, from the top panel to the bottom, shows the SYM-H index and the contribution of the magnetopause
(MP) current to the SYM-H index (blue); the temporal changes in the SYM-H index and the MP current contri-
bution (blue); the solar wind dynamic pressure measured by the Wind spacecraft, shifted in time to the bow
shock; the AU (thick) and AL (thin) indices and their temporal variations (blue); and finally the interplanetary
electric field (IEF=−V × Bz) calculated from Wind data, which has also been shifted to the bow shock. The
MP current contribution to the SYM-H index has been calculated in the same way as Carter et al. [2015], using
the empirical formula given by Burton et al. [1975] and Gonzalez et al. [1994]. The time axis is storm time taken
from 0445 UT on 17 March 2015, which is when the initial interplanetary shock arrived (i.e., storm time = UT
−4.75). The AU and AL indices use magnetometer data from several auroral-latitude stations to quantify the
eastward and westward auroral electrojet activities, respectively [Kamide and Akasofu, 1983], and are used as
a simple indicator of substorm activity in this study.

At the storm sudden commencement (SSC, 0445 UT on 17 March 2015), there is an abrupt increase in the
SYM-H index that coincides with the initial interplanetary shock in the solar wind dynamic pressure. The
change in the SYM-H index is close to 30 nT/min. For this feature there is a gap in the solar wind data, but
the data shortly after the shock show that the MP current has substantially increased as a result of this
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Figure 3. (a) Maximum dB/dt as a function of magnetic latitude using
1 min magnetometer data, colored according to the number of hours
into the storm when the maximum dB/dt was measured. (b) Same as
Figure 3a but colored according to the local time at the station when
the maximum dB/dt was measured.

shock arrival; the SYM-H increase at SSC
is almost fully accounted for by the MP
current contribution. The storm’s entire
main phase lasted approximately 18 h,
followed by a recovery phase that lasted
at least 25 h.

The SYM-H index and the MP current con-
tribution show several temporal fluctua-
tions during the storm’s main phase, some
of which coincide well with several abrupt
changes in the solar wind dynamic pres-
sure. The AU and AL indices do not become
large until close to 9 h after SSC. Impor-
tantly, it is also during a period of high
substorm activity that the largest varia-
tions in the AL index were observed, some
reaching close to 500 nT/min. Finally, the
IEF data show periods where penetration
electric fields are expected to influence
ionospheric plasma drifts in both high-
latitude and equatorial regions. In par-
ticular, crossings from negative IEF to
positive IEF indicate interplanetary mag-
netic field Bz crossings from northward to
southward, and thus prompt-penetration
electric fields (PPEFs), which are known to
influence equatorial ionospheric plasma
drifts [e.g., Fejer et al., 2008; Tsurutani et al.,
2008; Abdu, 2012].

3.2. Global Magnetic Field
Fluctuations
Figure 3 shows the largest temporal varia-
tion in the magnetic field, dB/dt, as a func-
tion of magnetic latitude for the 17–18
March 2015 storm. In Figure 3a, the points
are colored according to the storm time at

which the plotted dB/dt value was observed during the storm, and in Figure 3b the points are colored accord-
ing to the corresponding local time of the station. First, it is worthwhile to note that the latitudinal distribution
of maximum dB/dt, with substantially larger values at latitudes higher than 50∘, is similar to those reported in
the past for combined storms [e.g., Ngwira et al., 2013; Love et al., 2016], and for individual storms [Pulkkinen
et al., 2012].

Interestingly, the maximum dB/dt values in Figure 3a correspond to three groupings in terms of the storm
time: (1) black points that correspond to the SSC, (2) blue points that correspond to ∼10 h into storm, and (3)
yellow/red points that correspond to ∼40 h into the storm. The middle- and low-latitude stations primarily
compose group (1), whereas the high-latitude and one equatorial station compose group (2). The third group-
ing that corresponds to ∼40 h after SSC consists of stations in the highest latitude locations in the Northern
Hemisphere.

Figure 3b also shows some noteworthy groupings: (1) stations measuring their largest dB/dt during the late
evening/early morning hours, which are predominantly in the high-latitude regions, and (2) stations measur-
ing their maximum dB/dt values during the local daytime hours, which are predominantly located at middle-
to-equatorial latitudes.

Together, Figures 2 and 3 provide indications about which phases of the St. Patrick’s Day storm were the
most favorable for GIC generation. The low- and middle-latitude stations were most vulnerable to GICs at

CARTER ET AL. GICS DURING THE 17 MARCH 2015 STORM 10,500



Journal of Geophysical Research: Space Physics 10.1002/2016JA023344

Figure 4. Similar to Figure 2 but between approximately 8.5 and 11 h after storm commencement. The sixth panel
shows the time series of dBx/dt measured by the equatorial station HUA.

the moment of SSC, whereas both the equatorial latitude and high-latitude locations were most susceptible
during the elevated auroral electrojet/substorm activity some 10 h into the storm. In the context of space
weather prediction for power grid operators, these timings are important and provide a demonstration that
forecasting severe substorms [e.g., Tsurutani et al., 2015] is important for predicting large GIC events. In terms
of the low- and middle-latitude stations, the solar wind data from the Lagrange point L1 are vital for accurately
forecasting the arrival time of the storms’ initial shock (i.e., the SSC), and also, their severity in terms of dB/dt
on the ground, which can be estimated using the solar wind dynamic pressure observations, see Figure 2.

3.3. Equatorial GICs in South America
Given that many studies have investigated the generation mechanisms of severe GICs in high-latitude regions,
we focus our attention to the largest dB/dt values observed in the equatorial region, particularly those
observed by the station at Huancayo, Peru (HUA); the point of dB/dt≃100 nT/min at 0∘ in Figure 3. Figure 4
shows the time series of the geomagnetic summary presented in Figure 2, but between 13 and 16 UT
(between approximately 8 and 11 h storm time). During this interval, HUA observed its largest dB/dt values
predominantly in the x direction (i.e., northward), which are displayed in Figure 4 (sixth panel).

The largest dB/dt value plotted from HUA in Figure 3 corresponds to the negative dBx/dt spike at 10.7 h after
SSC in Figure 4. At this time, unfortunately, there is a gap in the solar wind data, which complicates efforts to
understand what role, if any, the solar wind played in this equatorial dB/dt enhancement. Fortunately, another
large dB/dt perturbation occurred at 9.2 h after SSC; a time when the solar wind data are complete. This dB/dt
spike was largest at 9.2 h after SSC, but it began close to 9.1 h when abrupt increases in both the solar wind
dynamic pressure and the SYM-H index were observed. There is a notable time difference between the SYM-H
increase and the solar wind dynamic pressure increase at 9.1 h, but this difference is most likely due to a
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Figure 5. (a, b) Similar to Figure 3 but using 1 s magnetometer data.
(c) The calculated geoelectric field for each station versus magnetic
latitude.

slight inaccuracy in the propagation
of the solar wind data to the bow
shock. Another indication of a slight
propagation inaccuracy is the fact that
the d(SYM-H)/dt and d(MP)/dt spikes
observed close to 9.1 h are similar
in magnitude, but slightly shifted. A
brief correlation analysis found that the
highest correlation was achieved by
delaying the solar wind data by a fur-
ther 4 min.

Importantly, just before the moment
of the HUA spike at 9.2 h after SSC,
the IEF shifts from negative to positive
and is a prime moment for an eastward
directed PPEF at the equator on the
dayside. When acting alone, such an
electric field would enhance the equa-
torial electrojet in the eastward direc-
tion and E⃗ × B⃗ drift the ionospheric
plasma vertically at the equator on the
dayside [e.g., Fejer et al., 2008; Tsurutani
et al., 2008]. In the magnetometer data,
this would correspond to a sudden
increase in the northward component
of the magnetic field due to an east-
ward enhancement in the EEJ strength
above that location in response to the
PPEF. However, a sudden decrease in
the northward magnetic field is shown
in Figure 4. The increase in the Bx just
prior to the negative excursion may
indeed be due to the PPEF, but the neg-
ative excursion itself is simply in the
wrong direction to be caused by the
PPEF in this instance.

In order to better understand how enhanced dB/dt activity at the magnetic equator can be related to sudden
changes in the solar wind dynamic pressure, we later shift our focus to the SSC at 0445 UT on 17 March,
before other magnetosphere and ionosphere current systems had the chance to develop; such as ring current
and the counterelectrojet current. While some previous studies have researched SSCs with 1 min resolution
data [e.g., Carter et al., 2015], the high-frequency variations during SSCs are much better captured using 1 s
resolution.

3.4. Equatorial GICs at Storm Sudden Commencement
Figures 5a and 5b are the same as Figures 3a and 3b, but 1 s data are used, for the stations where it was
available. Overall, these figures exhibit similar features to Figures 3a and 3b. Stations at higher latitudes than
50∘ exhibit much higher dB/dt than lower latitude stations, and these larger dB/dt variations correspond to
times when significant auroral activity was present, as discussed earlier. Figure 5c shows the geoelectric field
calculated from the 1 s magnetometer data in the same manner as Pulkkinen et al. [2012]. It can be seen that
geoelectric fields got as high as 3.3 V/km in the high-latitude regions and 0.5 V/km in the equatorial region.
The overall latitudinal pattern is similar to the 1 min data presented in Figure 3.

One subtle difference between Figures 5a and 3a is the timing of the equatorial peak, i.e., 10.7 h after SSC in
Figure 3a versus at the moment of SSC in Figure 5a. The peak in Figure 5a actually comes from the equatorial
AMBER station, PUKT (orange triangle on the magnetic equator in Figure 1). It should be noted that HUA did

CARTER ET AL. GICS DURING THE 17 MARCH 2015 STORM 10,502



Journal of Geophysical Research: Space Physics 10.1002/2016JA023344

Figure 6. (a, b) The dBx/dt data for PUKT and BANG stations during the
SSC event on 17 March 2015. The blue lines show the Bx data for each
station. (c) The difference between the Bx measured by PUKT and BANG,
or effectively the EEJ strength, as a function of time. (d) The ionospheric
current magnitudes for four selected locations across North America,
see text for details. (e) The contribution of the ionospheric current to the
H component (northward) measured by several magnetometers located
across Europe and North Africa. (f ) The same as Figure 6e but for the
D component (eastward).

not have 1 s data available for this
event, hence why it is missing from this
plot. This equatorial enhancement at
SSC presents a significant opportunity
to investigate the physical mechanism
behind the enhancement of GIC activ-
ity at the magnetic equator.

Figures 6a and 6b show the time series
of the dBx/dt at the moment of SSC
for the PUKT (equatorial station) and
BANG (off-equatorial station). The Bx

component for each station is over-
plotted. The maximum dBx/dt mea-
sured by PUKT is approximately twice
that measured by BANG. Interestingly,
the PUKT data also show a negative
deviation prior to the main pulse, but
the off-equatorial station BANG only
observed a positive dBx/dt spike. As
shown in Figure 1, these two AMBER
stations are close to each other and
should therefore measure similar mag-
netic field variations, with the obvious
exception of those caused by the
EEJ current, which only PUKT is close
enough to measure. This magnetome-
ter configuration has been used exten-
sively in the past in order to isolate
the magnetic field fluctuations caused
by the EEJ [e.g., Anderson et al., 2002;
Yizengaw et al., 2012, 2014]. The basic
idea is to simply take the difference
in the strength of the Bx component
measured off the equator from the Bx

component measured at the equator,
and the difference is taken to be due
to the EEJ.

Figure 6c shows this difference during
the SSC. Prior to the SSC, the EEJ is
steady at approximately 65 nT. At the
moment of the SSC the EEJ abruptly
drops to near 0 nT and then rises to
almost 100 nT. A small decrease to
∼80 nT then occurs, followed by a gen-
tle increase up toward 100 nT. These

data indicate that the largest dB/dt at the equator originates from the sudden increase in the EEJ strength
following its initial drop to 0 nT.

3.5. Ionospheric Current Response to SSC at High and Equatorial Latitudes
While Carter et al. [2015] connected the interplanetary shock arrivals to increased GIC activity at the equator,
the physical mechanism was not explored in detail. The high-resolution magnetometer data available for the
17 March 2015 storm allows such an exploration in this instance. As mentioned earlier, many previous studies
have investigated the global magnetic field signatures of interplanetary shock arrivals [e.g., Araki, 1977, 1994;
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Figure 7. (a–c) The ionospheric current vector fields across North
America using the spherical elementary current systems method
[Amm and Viljanen, 1999; Weygand et al., 2011] for 0445 UT, 0446 UT,
and 0447 UT on 17 March 2015. The solid line indicates the longitude
of local midnight.

Araki et al., 2009; Shinbori et al., 2009, and
references therein]. The data sets avail-
able for this analysis facilitate a direct
comparison between the high-latitude
ionospheric currents in both dusk and
dawn hemispheres, in addition to the
dayside EEJ.

To investigate how the major ionosphe-
ric current systems responded to the 17
March 2015 SSC, both ionospheric cur-
rent strengths in the North American
and European regions are analyzed.

The major ionospheric currents systems
over North America are calculated using
the spherical elementary current sys-
tems method [Amm and Viljanen, 1999;
Weygand et al., 2011]. This technique
uses singular value decomposition
to invert the ground magnetometer
magnetic field fluctuations and deter-
mine the ionospheric current system.
Figures 7a–7c show the ionospheric
current strength vectors across North
America using this technique at 0445,
0446, and 0447 UT on 17 March 2015,
respectively. These figures show that
there was a reduction in the iono-
spheric current strength from 0445 UT
to 0446 UT, followed by a recovery at
0447 UT. This reduction in ionospheric
current strength is most obvious over
the Alaskan/Western Canadian regions.
Figure 6d shows the time series of
the ionospheric current amplitudes
in the North American (dusk) sector
for four locations; (61.9∘N, 120.3∘W),
(59.0∘N, 120.3∘W), (61.9∘N, 147.9∘W),
and (61.9∘N, 141.0∘W). The eastward

ionospheric current strength significantly decreased and then increased to a stronger eastward current in
response to the SSC. Interestingly, this auroral current variation is similar to, and coincides with, the EEJ
strength above Southeast Asia, see Figure 6c, despite the large distance between these phenomena.

The ionospheric current above the European (dawn) sector is also investigated by the use of the Piersanti and
Villante [2016] technique for the extraction of the DP fields from ground magnetometer observations. The
ionospheric contributions toward the magnetic field in the northward and eastward directions as measured
by the magnetometers across Europe and northern Africa is plotted in Figures 6e and 6f, respectively. Each
color represents a separate station. The first feature worth noting is that the majority of stations measure a
sudden increase in the northward component of the magnetic field, which corresponds to an increase in the
auroral electrojet in the eastward direction at the moment of SSC. A high-latitude station actually observes
the opposite. One more interesting feature is the slight delay between the response observed in the European
sector compared to the Southeast Asian equatorial region and the North American region.

According to Araki, ’s [1977, 1994] model for SSC, a two-cell Hall current system forms in the high-latitude
region; one cell each in the morning and evening sectors. The evening cell effectively connects the auroral
region to the equatorial region, and as such, the changes in the evening auroral electrojet and equatorial
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electrojet currents due to the SSC should have the same polarity. The morning sector cell, which is not con-
nected to the dayside equatorial region, has the opposite polarity and thus has the opposite SSC response.
Overall, the SSC model described by Araki [1977, 1994] appears to be well supported by the observations
reported here. At the moment of SSC the auroral electrojet in the evening sector and the dayside EEJ expe-
rience a sharp westward surge, followed by another abrupt eastward enhancement to above pre-SSC levels.
This observation suggests a conductive link between the evening auroral electrojet and the equatorial elec-
trojet in response to the field-aligned currents generated by the interplanetary shock arrival at SSC. In the
morning sector, however, the opposite is observed; a sudden increase in the eastward auroral electrojet
followed by a return to pre-SSC levels. A more complete picture of the physics in SSCs could be obtained
from global field-aligned current maps, for example, those provided by AMPERE (Active Magnetospheric and
Planetary Electrodynamics Response Experiment) [Anderson et al., 2000]; however, fully capturing the spatial
and temporal variations during SSCs is a significant challenge.

4. Summary and Conclusions

In this study, the GICs caused by the 17–18 March 2015 storm, the largest so far in the current solar cycle, were
examined. The largest magnetic field variations were observed in the high-latitude regions approximately
10 h after the storm’s commencement. At middle and low latitudes, however, the magnetic field variations
were reduced compared to those at high latitudes, but they occurred at the moment of the SSC, predomi-
nantly on the dayside. At equatorial latitudes, enhanced GIC activity was observed both at the moment of
SSC and approximately 10 h into the storm, at similar times to the largest perturbations in the high-latitude
regions. Our analysis of both instances of high GIC activity at the equator suggests that the magnetospheric
and ionospheric current perturbations associated with a sudden increase in solar wind dynamic pressure were
responsible and that prompt-penetration electric fields only played a subsidiary role. A comparison between
the EEJ and auroral electrojet strengths in both the morning and evening sectors supports Araki [1977, 1994]’s
model for SSCs.
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