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Abstract
Rationale, aims and objectives Establishing the relationship between various doses of an
exposure and a response variable is integral to many studies in health care. Linear paramet-
ric models, widely used for estimating dose–response relationships, have several limita-
tions. This paper employs the optimal discriminant analysis (ODA) machine-learning
algorithm to determine the degree to which exposure dose can be distinguished based on
the distribution of the response variable. By framing the dose–response relationship as a
classification problem, machine learning can provide the same functionality as conven-
tional models, but can additionally make individual-level predictions, which may be help-
ful in practical applications like establishing responsiveness to prescribed drug regimens.
Method Using data from a study measuring the responses of blood flow in the forearm to
the intra-arterial administration of isoproterenol (separately for 9 black and 13 white men,
and pooled), we compare the results estimated from a generalized estimating equations
(GEE) model with those estimated using ODA.
Results Generalized estimating equations and ODA both identified many statistically
significant dose–response relationships, separately by race and for pooled data. Post hoc
comparisons between doses indicated ODA (based on exact P values) was consistently
more conservative than GEE (based on estimated P values). Compared with ODA, GEE
produced twice as many instances of paradoxical confounding (findings from analysis of
pooled data that are inconsistent with findings from analyses stratified by race).
Conclusions Given its unique advantages and greater analytic flexibility, maximum-
accuracy machine-learning methods like ODA should be considered as the primary analytic
approach in dose–response applications.

Introduction

Establishing the relationship between various doses of an exposure
and a response variable (i.e. outcome) is integral to many studies
in health care, whether it is for determining safety (e.g. environ-
mental hazards and drug toxicity), efficacy (e.g. a new drug and
multivalued treatments) or adherence/responsiveness (e.g. treat-
ment plan and intervention regimen). Correspondingly, failure to
define dose–response relationships may lead to unacceptable toxic-
ity or adverse-effect rates, marginal evidence of effectiveness and a
lack of information on how to individualize dosing regimens [1].
Linear statistical models, such as analysis of variance, general-

ized estimating equations (GEE) or multilevel models are widely
used for estimating dose–response relationships. As a family, these
parametric models share several drawbacks when used in dose–
response studies. First, they assume a linear relationship exists
between the dose and the response. Given that orderly, linear
relationships rarely exist in health care data, such models may
over-estimate or under-estimate the true dose–response relationship

at various points across the range of doses studied. Second, only a
limited number of doses are typically tested in most dose–response
studies, thus requiring interpolation or extrapolation for any dose not
studied. Third, conventional statistical methods are intended for
estimating treatment effects at the population level, are generally in-
accurate when applied to small samples and are inappropriate when
used for making point predictions concerning the response effect for
individuals. Several innovative modelling approaches and software
have been introduced to account for non-linear relationships be-
tween dose and response (e.g. [2,3]). However, these approaches
are implemented within a parametric framework, and thus many of
the same limitations still apply.
In this paper, we introduce a novel machine-learning approach

to establish dose–response relationships. This methodology em-
ploys an algorithm called optimal discriminant analysis (ODA)
[4,5] to determine if, and to what degree, doses of the exposure
can be distinguished based on the distribution of the response var-
iable. By framing the dose–response relationship as a classification
problem (i.e. how accurately does the response variable classify
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patients into specific dose levels), many of the aforementioned
limitations of conventional statistical models are overcome, while
obtaining several additional benefits. Specific advantages of ODA
as compared with the conventional statistical approach in
assessing dose–response relationships include the ability to handle
a response variable measured using any metric (from categorical to
continuous) and number of doses, insensitivity to skewed data or
outliers and the use of accuracy measures that can be widely
applied to all classification analyses. ODA also offers the unique
ability to ascertain if individuals are likely to be responding to
the dose as prescribed based on optimized (maximum accuracy)
cut-points on the response variable. Moreover, ODA accepts
analytic weights, thereby extending the assessment of a dose–
response relationship to observational studies where weights are
used for covariate adjustment [6]. Finally, ODA provides the
capability to use cross-validation in assessing the generalizability
of the model to other individuals outside of the original study
sample or to identify solutions that cross-generalize with maxi-
mum accuracy when applied across multiple samples.
To illustrate the ODA approach and compare it to a conven-

tional statistical approach (we use a GEE model) for estimating
dose–response relationships, we organized the paper as follows.
In Section 2, we describe our methods including the data source,
an introduction to ODA and the analytic strategy employed in
the study. Section 3 reports the results of each approach and a
comparison between them. Finally, Section 4 discusses the specific
advantages of ODA in assessing dose–response relationships
compared with the conventional approach.

Methods

Data

We use data from Lang et al. [7] that measures the responses of
blood flow in the forearm to the intra-arterial administration of iso-
proterenol (in seven escalating doses: 0, 10, 20, 60, 150, 300 and
400 ngmin�1) in 9 normotensive black men and 13 normotensive
white men. This study found that forearm blood flow responses to
isoproterenol were markedly attenuated in normotensive Blacks,
whereas the responses were approximately linear in white subjects.
It was hypothesized that the mechanisms responsible for blunted
vasodilatation in response to the administration of isoproterenol
may contribute to enhanced vascular reactivity and influence the
pathogenesis of hypertension in Blacks.
These data are ideal for illustrating many of the problems typi-

cally encountered in dose–response studies: small sample size,
limited number of doses, non-linearity in the dose–response rela-
tionship and differential effects by subgroup. The dataset was
accessed as a supplement to the book ‘Statistical Modeling for
Biomedical Researchers’ [8] (found at: http://biostat.mc.vander-
bilt.edu/dupontwd/wddtext/index.html#datasets).

A brief introduction to optimal discriminant analysis

Optimal discriminant analysis is a machine-learning algorithm de-
veloped more than 25 years ago [9,10] that is capable of analysing
data measured on a continuous or interval-level scale, on an or-
dered scale having relatively few levels or on a qualitative scale

with two or more categories [4,5]. As opposed to parametric
statistical models that model a dose–response relationship using
a linear function that maximizes variance explained or the value
of the likelihood function, the ODA algorithm identifies the
cutpoint (or category subset) of the response variable that yields
maximum-predictive accuracy in classifying observations into
their actual dose. Explicitly maximized classification accuracy
may be either the effect strength for sensitivity (ESS) (described
in the next section) or overall percent accuracy in classification
(PAC) depending on whether or not the investigator chooses to
weight the data by prior odds [4,5]. As used herein, for an ordered
or continuous response variable and multiple discrete doses (expo-
sure variable), the ODA model has the following form: if response
variable score< (threshold value1) predict that the observation is
from dose A; if response variable score> (threshold value1)
and ≤ (threshold value2) predict that the observation is from dose
B; or else, if response variable score> (threshold value2) predict
that the observation is from dose C, and so forth.

Assessing statistical significance of optimal discriminant
analysis models

Statistical significance (P value) for ODA models is computed via
Monte Carlo simulation and reported as a permutation probability,
such that no distributional assumptions are required of the data and
P values are exact [5,9]. In study designs involving more than one
test of statistical significance (for example, multiple pairwise
comparisons between doses), a Sidak Bonferroni-type multiple
comparisons methodology is employed to prevent ‘alpha inflation’
and ensure the desired experimentwise P value (here, P< 0.05)
and to inhibit over-fitting [5,11].

How generalized estimating equations and optimal discrim-
inant analysis deal with repeated observations

The statistical model used to evaluate dose–response relationships
must be able to account for autocorrelation when individuals are
subjected to multiple doses of the exposure (e.g. increasing doses
of a drug). Autocorrelation indicates that any variable measured
over time is potentially influenced by previous observations [12].
So in the case of an individual exposed to multiple doses, an indi-
vidual’s current response at the current dose is likely to be corre-
lated with their previous response to the previous dose. This is in
contrast to studies in which individuals are only exposed to a sin-
gle dose, and thus all observations are independent of each other.

If the response score is autocorrelated in a consistent manner
within and between individuals, then estimating a GEE model that
accounts for the within-group correlation structure will increase
the fit of the model for predicting the response when individuals
are tested across multiple doses. This assumes that ‘detecting’
(or failing to detect) autocorrelation is statistically warranted for
ubiquitous small samples (e.g. with respect to statistical power
and to the veracity of assumptions upon which validity depends),
and that autocorrelation-based models retain predictive accuracy
when applied in independent validity and generalizability
assessments.

In its simplest application, the ODA approach may be used to
determine if response scores can be reliably discriminated between
two different levels of a stimulus (e.g. dose), without considering
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the possible existence of autocorrelation in the response score. In
this case, the ODA algorithm identifies the model that maximizes
ESS achieved in testing the non-directional (i.e. exploratory, a
posteriori) alternative hypothesis that response differs between
the two doses. If instead it is hypothesized that there is some spe-
cific direction of influence of autocorrelation (either positive or
negative), then this may be modelled in ODA by testing a direc-
tional (i.e. confirmatory, a priori) hypothesis: for example, that a
greater response will be elicited by a higher dose, or an even more
precise a priori hypothesis specifying the exact thresholds and
decision-making criteria [4,5]. Finally, if instead one is interested
in identifying (vis-à-vis exploratory research) or in evaluating
(vis-à-vis confirmatory research) ODA-based dynamic models,
maximum-predictive-accuracy methods have been developed and
found to be more accurate and parsimonious than alternative
methods in applications involving single-case as well as
multiple-observation time series, and traditionally analysed using
methods such as Markov models, turnover tables, test–retest reli-
ability cross-classification methods and so forth. [4,5,11]

Ecological significance of optimal discriminant analysis
models

The issue of how best to interpret the predictive accuracy achieved
by a statistical model has been extensively discussed, and wide
and broadening consensus asserts that evaluating model perfor-
mance based solely on statistical significant findings (P values)
is inappropriate [4,5]. Instead, it is argued that assessment should
also include the ability of the model to achieve ‘clinically’
[13,14] or otherwise context-relevant ‘ecologically’ meaningful
levels of predictive accuracy [15–18].
Ecological significance of ODA models in particular, and of all

classification methodologies in general, is assessed using the ESS
statistic. ESS is a normed measure of predictive accuracy that is
both chance-corrected (0 = the level of predictive accuracy ex-
pected by chance) and maximum-corrected (100 = perfect pre-
diction) [4–6,19]. The cut-points (or category subsets) identified
by ODA explicitly maximize the ESS obtained by the ODA model
for the total (‘training’) sample. Using ESS, investigators may
directly compare the predictive accuracy of different models
(corrected for chance) – developed using the same and/or different
samples, regardless of structural features such as sample size, skew
or ‘outliers’ [5]. Established via simulation research, ESS <25%
conventionally indicates a relatively weak effect; values >25%
to <50% indicate a moderate effect; values >50% to <75% indi-
cate a relatively strong effect; values >75% to <90% or less indi-
cate a strong effect; and ESS values> 90% indicate a very strong
effect [4].

Assessing generalizability of optimal discriminant analysis
models

Cross-validation in the dose–response context denotes the gene-
ralizability of the model when it is used to classify a sample of
individuals other than those utilized for developing the model –
for example, new patients prescribed the medication [20].
Commonly-used algorithms for estimating model generalizability
include bootstrapping, k-fold cross-validation and leave-one-out
jackknife (LOO) cross-validation [4,19,21,22]. In this paper, we

use ODA to implement the LOO approach – n-fold cross-
validation, where n is the number of observations in the dataset.
Each observation is in turn held out, predicted class membership
(i.e. dose) is obtained for each held-out observation and accuracy
is determined as success or failure in predicting the actual class
membership across held-out observations. The results of all n
predictions are cumulated to calculate LOO (validity) accuracy,
which is then compared with total sample (training model) accu-
racy. An identical ESS value in both the training and LOO analy-
ses suggests that the ODA model may cross-generalize without a
reduction in the predictive accuracy when the model is applied
to classify an independent sample. In contrast, an ESS value that
is lower in the LOO analysis than in the training analysis suggests
that application of the ODA model may yield lower normed
predictive accuracy when used to classify independent samples.

Analytic approach

All analyses were conducted using the data analysed in the original
study [7]. For the conventional statistical approach, we estimated a
GEE model with forearm blood flow (ml/min/dl) treated as the
response (dependent) variable. As in the original analysis, the co-
variates included isoproterenol dose treated as a categorical ordinal
variable with values of 0, 10, 20, 60, 150, 300 and 400 (ngmin�1);
race (Black/White) treated as a binary categorical variable; and an
interaction term between dose and race to allow for comparisons
of the response between race and dose. The GEE model was
estimated using a Gaussian family and identity link with an
exchangeable within-group correlation structure to account for
autocorrelation within subjects across multiple doses, and robust
standard errors [23,24]. All pairwise contrasts (between doses)
were adjusted for multiple comparisons using Sidak’s method [25].
For the ODA analyses, three separate models were generated –

two separately by race and one pooled. All three models used fore-
arm blood flow (attribute) to predict assignment to each dose level
(class variable). Models were directional (i.e. ‘one-sided’), with
the a priori hypothesis that dose would increase with increasing
forearm blood flow. Exact P values were estimated using 25 000
Monte Carlo experiments. We controlled the omnibus Type I error
rate for the effect of multiple tests of statistical hypotheses by
performing a Sidak multiple comparisons procedure to ensure an
experimentwise P< 0.05 [4], and LOO analysis was conducted
to assess the potential cross-generalizability of each ODA model
when used to classify individuals other than those in the original
study sample.
The presence of paradoxical confounding (also called Simpson’s

Paradox) was assessed separately for GEE and ODA analyses.
Paradoxical confounding exists when findings of analyses con-
ducted for pooled data (e.g. P< 0.05 or P> 0.05) are inconsistent
with the findings of analyses conducted separately for any of the
constituent groups [5,26].
Finally, we evaluated the analytic agreement across correspond-

ing comparisons using ODA, with method (GEE versus ODA)
treated as the class variable and finding (experimentwise
P< 0.05 versus P> 0.05) treated as the attribute [5]. That is, we
compared corresponding ODA and GEE statistical conclusion
findings pooled across all 21 multiple comparisons for the
Blacks-only data, for the Whites-only data and for the combined
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(Blacks and Whites) data. If GEE and ODA methods agree on sta-
tistical conclusions regarding inter-dose–response differences, this
indicates cross-analytic-generalizability of the findings. However,
if GEE and ODA methods disagree on the statistical conclusions
regarding inter-dose–response differences, this may indicate that
(1) even though significantly different mean response scores exist
between two doses (GEE), dose is not an accurate predictor of
individual response (ODA); (2) that P values generated by GEE
(which must satisfy distributional assumptions in order to be valid)
are misleading (ODA uses permutation P values that require no
distributional assumptions and are always valid); and/or (3) there
is inadequate statistical power (e.g. due to small sample, class
sample size imbalance and/or sparse data) to warrant analytic
comparison [5].
Stata 14.1 (StataCorp., College Station, TX, USA) was used to

conduct all GEE analyses and the Sidak adjustments for multiple
testing after generating the GEE and ODA models [27]. ODA
analyses were performed using ODA Software [4].

Results
Figure 1 illustrates the means and 95% confidence intervals of the
response variable (forearm blood flow) for each dose, separately
for white and black subjects. Table 1 presents the numeric results
of the GEE-based analysis. As reported by Lang et al. [7], forearm
blood flow increases with escalating dose in the white subjects,
while the dose–response relationship appears blunted in the black
subjects. Examination of confidence interval overlap indicates that
the difference between the black and white cohorts in forearm
blood flow becomes statistically significant commencing at a dose
of 20 ngmin�1. Interestingly, the pooled data show a similarly
strong dose–response relationship to that of the white cohort
(Sidak adjusted P values for the GEE pairwise comparisons be-
tween doses are presented in Appendix Tables A1–A3). In the
white cohort, all pairwise dose–response comparisons are statisti-
cally significant at the experimentwise P< 0.05 level except for
the 0 to 10 ngmin�1 comparison (Appendix Table A2).

Conversely, in the black cohort, only 13 of the 21 pairwise com-
parisons are statistically significant at the experimentwise criterion
(Appendix Table A3). When the data are pooled, all pairwise com-
parisons are statistically significant except for the 300 to
400 ngmin�1 comparison (Appendix Table A1). This clearly indi-
cates the presence of paradoxical confounding [26]. In total, there
were eight instances of confounding in the GEE analyses: a signif-
icant effect for the pooled sample for the 0–10 dose comparison,
but no effect for either cohort; a significant effect for the pooled
and white samples, but not for the black sample, for the 10–20,
10–400, 20–400, 60–150, 60–400 and 150–400 comparisons;
and a significant effect for the white sample, but not for the pooled
or black samples, for the 300–400 comparison.

Table 2 presents the results of the ODA-based analysis, includ-
ing the cut-points (decision thresholds) on the forearm blood flow
variable that are associated with each dose of isoproterenol (these
cut-points explicitly maximize training model ESS), and the corre-
sponding model sensitivity (true positive rate) – the proportion of
individuals that are correctly predicted by the ODA model to be
on each specific dose [28]. To facilitate interpretation of these
values, we use the 20 ngmin�1 dose of the pooled data as an
example. The ODA model predicts that an individual was on a
dose of 20 ngmin�1 if their forearm blood flow was >2.945
(mlmin dl�1) and ≤6.855 (mlmin dl�1). The ODA model correctly
classified 71.43% of individuals at this dose in the training analy-
sis (Table 2). In the LOO analysis, the sensitivity at this dose
remained unchanged, suggesting that the model can predict with
relatively strong accuracy, which among newly tested subjects is
on the 20 ngmin�1 dose.

In the white cohort (Table 2), the sensitivity for the overall
sample ranges between 33.33% at doses of 150 and 300 and
66.67% at a dose of 20 ngmin�1. This corresponds to an ESS
value of 40.28%, indicating a moderate effect [4]. LOO analysis
resulted in a decline in ESS to 27.78%, suggesting moderate
generalizability to subjects outside of the training cohort.

In the black cohort (Table 2), the sensitivity for the overall sam-
ple ranges from 11.11% at the 400 level dose to 100% at the 300
level dose. This corresponds to an ESS value of 40.74%, indicat-
ing a moderate effect. Similar to the white cohort, LOO analysis
in the black cohort also resulted in a decline in ESS (to 29.63%)
suggesting moderate generalizability.

When the data are pooled (Table 2), a different pattern in the
dose–response relationship emerges. Here, sensitivity ranges
from a low of 4.76% at a dose of 60 ngmin�1 to a high of
71.43% at a dose of 20 ngmin�1. This corresponds to a
moderate ESS of 31.75%, which is substantially lower than the
ESS that was obtained when either cohort was evaluated
separately (paradoxical confounding, by definition). As in the
analysis for the separate cohorts of white and black observa-
tions, LOO analysis ESS declined (26.98%) suggesting
moderate generalizability.

All Sidak adjusted P values for the ODA pairwise comparisons
between doses are presented in Appendix Tables A4–A6. In the
white cohort, 13 of the 21 pairwise comparisons are statistically
significant (Appendix Table A5), whereas in the black cohort, only
8 of the 21 pairwise comparisons are statistically significant
(Appendix Table A6). When the data are pooled, 12 of the 21
pairwise comparisons are statistically significant (Appendix
Table A4). In total, there were four instances of paradoxical

Figure 1 Forearm blood flow responses to Isoproterenol in normoten-
sive Blacks (n= 9) and Whites (n = 12), from [7]. Values shown are
means and 95% confidence intervals.
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confounding in the ODA analyses. There was a significant effect
for the pooled sample for the 20–150 dose comparison, but no ef-
fect for either cohort; a significant effect for the white sample, but
not for the pooled or black samples, for the 10–20 comparison; and
a significant effect for the white and the pooled samples, but not
for the black sample, for the 0–20 and 20–400 comparisons.
The final analyses evaluate inter-method agreement across the

multiple inferential paired-comparisons tests performed (Table 3).
Isomorphic results were obtained for statistical conclusion find-
ings obtained in analysis of data for the pooled sample and in
analysis of data for Whites-only. For these samples, only one of
the eight paradoxical findings for the GEE model (the 20–400
paired-comparison) has the same corresponding paradoxical

Table 1 Forearm blood flow responses to isoproterenol in normotensive Blacks (n = 9) and Whites (n= 12), from [7]

Dose of isoproterenol (ngmin�1)

0 10 20 60 150 300 400 P value

All
Mean 2.468 3.057 5.067 10.610 12.529 15.424 16.948 <0.0001
SE 0.253 0.386 0.588 1.638 1.911 1.923 2.404
95% CI 1.971, 2.964 2.300, 3.814 3.914, 6.219 7.399, 13.821 8.784, 16.274 11.656, 19.193 12.237, 21.659

Whites
Mean 2.683 3.417 6.458 14.592 17.250 20.200 23.833 <0.0001
SE 0.411 0.632 0.775 2.170 2.518 2.390 2.501
95% CI 1.877, 3.488 2.178, 4.655 4.940, 7.976 10.338, 18.845 12.315, 22.185 15.515, 24.885 18.932, 28.734

Blacks
Mean 2.181 2.578 3.211 5.302 6.234 9.057 7.768 0.001
SE 0.179 0.238 0.335 0.698 0.720 1.301 1.769
95% LCI 1.829, 2.533 2.112, 3.043 2.555, 3.867 3.934, 6.670 4.822, 7.647 6.506, 11.607 4.300, 11.236

Diff (Blacks
versus Whites) �0.501 �0.839 �3.247 �9.289 �11.016 �11.143 �16.066
SE 0.448 0.675 0.844 2.280 2.619 2.722 3.063
95% CI �1.380, 0.378 �2.162, 0.484 �4.901,�1.593 �13.758,�4.821 �16.148,�5.883 �16.477,�5.809 �22.069,�10.062
P value 0.264 0.214 0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Results are from a generalized estimating equation model in which forearm blood flow was regressed on dose, race and an interaction term of the two.

Table 2 Forearm blood flow responses to isoproterenol in normotensive Blacks (n = 9) and Whites (n= 12), from [7]

Dose of isoproterenol (ngmin�1)
ESS
(%) P value0 10 20 60 150 300 400

All
Cut-points ≤2.53 >2.53 & ≤2.945 >2.945 & ≤6.855 >6.855 & ≤7.355 >7.355 & ≤9.85 >9.85 & ≤21.0 >21.0
Sens-train (%) 66.67 28.57 71.43 4.76 23.81 57.14 38.10 31.75 <0.001
Sens-LOO (%) 66.67 28.57 71.43 0.00 14.29 47.62 33.33 26.98

Whites
Cut-points ≤2.15 >2.15 & ≤3.95 >3.95 & ≤7.3 >7.3 & ≤12.05 >12.05 & ≤17.45 >17.45 & ≤21.2 >21.2
Sens-train (%) 50.00 58.33 66.67 41.67 33.33 33.33 58.33 40.28 <0.001
Sens-LOO (%) 50.00 41.67 58.33 25.00 25.00 25.00 41.67 27.78

Blacks
Cut-points ≤2.53 >2.53 & ≤2.945 >2.945 & ≤3.68 >3.68 & ≤4.085 >4.085 & ≤4.375 >4.375 & ≤18.95 >18.95
Sens-train (%) 77.78 44.44 44.44 33.33 33.33 100.00 11.11 40.74 <0.001
Sens-LOO (%) 66.67 33.33 44.44 33.33 0.00 88.89 11.11 29.63

Results are from an optimal discriminant analysis. Values represent cut-points on the response variable (forearm blood flow).
Sens, sensitivity; LOO, leave-one-out cross-validation; ESS, effect strength for sensitivity.

Table 3 Statistical conclusion agreement between GEE and ODA analy-
ses performed for 21 paired-comparisons

ODA,
P< 0.05

ODA,
P> 0.05 ESS P value

Whites, Pooled 60.0 0.43
GEE, P< 0.05 12 8
GEE, P> 0.05 0 1

Blacks 41.4 0.09
GEE, P< 0.05 7 6
GEE, P> 0.05 1 7

GEE, generalized estimating equation; ODA, optimal discriminant analy-
sis; ESS, effect strength for sensitivity.
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finding for the ODA model. Comparing GEE (Appendix Tables A1
and A4) and ODA (Appendix Tables A2 and A5), statistical con-
clusions across the 21 paired-comparisons yields ESS=60.0,
P< 0.43 (Table 3). Thus, there is no evidence of statistically
significant agreement (i.e. inter-method reliability [5]) of the statis-
tical conclusions reached by GEE and ODA when aggregated over
21 paired-comparisons for pooled or Whites-only data. How-
ever, comparing the 21 GEE and ODA paired-comparisons for
Blacks-only (Appendix Tables A3 and A6) yields ESS = 41.4,
P< 0.09 (Table 3). Thus, there is evidence of marginally reliable
agreement of statistical conclusions reached by GEE and ODA
methods, aggregated over 21 paired-comparisons, for Blacks-
only data.
These inter-method agreement analyses had low statistical

power because of the small number of times that both methods
agreed that a multiple comparison was not statistically significant
(Table 3) [5]. A consistent point of disagreement involved multiple
comparisons for which GEE reported P< 0.05 (accept the alterna-
tive hypothesis) and ODA reported P> 0.05 (reject the alternative
hypothesis). This suggests that, in the present data, ODA (provid-
ing exact P values with unquestioned validity [4,5]) produced
more conservative estimates of statistical significance than GEE
– for which the validity of P depends upon underlying distribu-
tional assumptions being satisfied [8].

Discussion
Classification is the most popular data mining application in
healthcare research, and it has been used to improve diagnostic
accuracy, identify high-risk patients and to extract concepts in un-
structured data, for example [29]. The present paper focuses on the
use of classification for identifying dose–response relationships.
Using a published dataset possessing characteristics exemplifying
many dose–response studies (small sample size, limited number of
doses, non-linearity in the dose–response relationship and differ-
ential effects by subgroup), the present article demonstrates that
ODA can perform the usual functions of conventional linear
models (i.e. testing for statistical significance of the overall model
and post hoc pairwise comparisons between doses) while offering
several key advantages over those models.
First, the ODA algorithm, with its associated measure of classi-

fication performance (ESS) and non-parametric permutation tests,
can be universally applied to any response variable type and
number of doses, and is not affected by skewed (non-linear) data,
or outliers – a concern that may arise in the context of meeting
assumptions underlying the validity of the estimated P value
obtained using the conventional approach. In the current example,
ODA was consistently more conservative than GEE when
comparing between models across the multiple inferential tests
performed.
Second, ODA models explicitly, by mathematical formulation,

maximize the accuracy of point predictions made at the individual
level (this may be compared with the context of the population
level that is assumed by conventional parametric statistical
methods) for the model that maximizes (weighted) ESS [4]. This
feature of ODA has tremendous value for determining whether
patients are adherent, or responding, to their prescribed drug regi-
mens (e.g. [30,31]). Physicians monitoring the level of a patient’s

response variable (i.e. blood or urine levels of a metabolite, etc.)
can cross reference those values to the cutpoint range generated
by ODA to determine the likelihood that the patient is responding
to the prescribed dose. The sensitivity of the ODA model observed
for each dose provides the physician with the level of predictive
accuracy to expect at any particular dose. High model sensitivity
would provide the physician with more confidence that the patient
is actually on the prescribed dose than if the model sensitivity was
low. Likewise, the sensitivity estimates derived from the LOO
analysis allows the physician to further consider the likelihood of
adherence to that dose for new patients, existing patients newly
prescribed the drug or patients with somewhat different character-
istics than those from the original study population. In the current
data, sensitivities for the various doses were of moderate strength
(for training and LOO analyses), suggesting that the models pro-
vide moderately accurate predictions of dose ‘assignment’ based
on the distribution of the response variable.

Third, ODA accepts analytic weights, thereby extending this
individual-level assessment of a dose–response relationship to ob-
servational studies where weights are used for covariate adjust-
ment [32–37]. This feature is particularly valuable, for example,
in after-market drug studies, exposure to environmental hazards
or multivalued interventions in which self-selection is likely to
bias the outcome.

Optimal discriminant analysis clearly offers important advan-
tages and presents greater analytic flexibility than conventional
parametric approaches for estimating dose–response relation-
ships. Nevertheless, ODA and conventional approaches are sub-
ject to two limiting factors relating to data. First, there is the
common limitation of a small sample. Small and highly imbal-
anced sample sizes offer little statistical power for testing a priori
hypotheses and can limit the predictive accuracy of the model –
particularly when applied in cross-generalizability analysis.
Second, the constitution of the training sample, and of any inde-
pendent validation samples, warrants consideration. Combining
data from observations representing two or more strata (e.g. any
possible combination of white and black, young and old, sick
and healthy and men and women) may produce erroneous results
for one or more of the constituent groups. Such paradoxical
confounding occurs in studies involving multiple subjects and
in studies involving single-case longitudinal (time-series) designs.
Sometimes two or more groups simply cannot be combined
without inducing confounding, because of structural differences
among the groups [5].

In summary, this paper introduced a novel approach for model-
ling dose–response relationships that uses a machine-learning al-
gorithm to determine the degree to which doses of the exposure
can be distinguished based on the distribution of the response var-
iable. The methodology offers important advantages and presents
greater analytic flexibility than conventional parametric ap-
proaches, and thus should be considered as an alternative – if not
the preferred approach – in dose–response applications.
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Appendix

Table A1 Sidak adjusted P values for all pairwise comparisons following
generalized estimating equations for pooled data

Dose of isoproterenol (ngmin�1)

0 10 20 60 150 300

0
10 0.047
20 <0.001 <0.001
60 <0.001 <0.001 <0.001
150 <0.001 <0.001 <0.001 <0.001
300 <0.001 <0.001 <0.001 <0.001 <0.001
400 <0.001 <0.001 <0.001 <0.001 <0.001 0.375

Table A2 Sidak adjusted P values for all pairwise comparisons following
generalized estimating equations for Whites only

Dose of isoproterenol (ngmin�1)

0 10 20 60 150 300

0
10 0.278
20 <0.001 <0.001
60 <0.001 <0.001 <0.001
150 <0.001 <0.001 <0.001 0.007
300 <0.001 <0.001 <0.001 <0.001 0.004
400 <0.001 <0.001 <0.001 <0.001 <0.001 0.006

Table A3 Sidak adjusted P values for all pairwise comparisons following
generalized estimating equations for Blacks only

Dose of isoproterenol (ngmin�1)

0 10 20 60 150 300

0
10 0.640
20 0.014 0.336
60 <0.001 0.001 0.027
150 <0.001 <0.001 <0.001 0.161
300 <0.001 <0.001 <0.001 0.01 0.022
400 0.028 0.092 0.178 0.966 0.999 0.896

Table A4 Sidak adjusted P values for all pairwise comparisons following
optimal discriminant analysis for pooled data

Dose of isoproterenol (ngmin�1)

0 10 20 60 150 300

0
10 0.969
20 <0.001 0.057
60 <0.001 <0.001 0.167
150 <0.001 <0.001 0.006 1.000
300 <0.001 <0.001 <0.001 0.641 0.883
400 <0.001 <0.001 <0.001 0.886 0.980 1.000

Table A5 Sidak adjusted P values for all pairwise comparisons following
optimal discriminant analysis for Whites only

Dose of isoproterenol (ngmin�1)

0 10 20 60 150 300

0
10 1.000
20 0.017 0.018
60 <0.001 <0.001 0.076
150 <0.001 <0.001 0.072 1.000
300 <0.001 <0.001 <0.001 0.942 1.000
400 <0.001 <0.001 <0.001 0.662 0.943 1.000

Table A6 Sidak adjusted P values for all pairwise comparisons following
optimal discriminant analysis for Blacks only

Dose of isoproterenol (ngmin�1)

0 10 20 60 150 300

0
10 0.964
20 0.290 0.965
60 0.006 0.052 0.308
150 <0.001 0.012 0.067 1.000
300 <0.001 <0.001 0.009 0.740 0.983
400 0.006 <0.001 0.067 1.000 1.000 1.000
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