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ABSTRACT 

Rationale, aims and objectives: Establishing the relationship between various doses of an 

exposure and a response variable is integral to many studies in health care. Linear parametric 

models, widely used for estimating dose-response relationships, have several limitations. This 

paper employs the optimal discriminant analysis (ODA) machine-learning algorithm to 

determine the degree to which exposure dose can be distinguished based on the distribution of 

the response variable. By framing the dose-response relationship as a classification problem, 

machine learning can provide the same functionality as conventional models, but can 

additionally make individual level predictions, which may be helpful in practical applications 

like establishing responsiveness to prescribed drug regimens. 

Method: Using data from a study measuring the responses of blood flow in the forearm to the 

intra-arterial administration of isoproterenol (separately for 9 black and 13 white men, and 

pooled), we compare the results estimated from a generalized estimating equations (GEE) model 

with those estimated using ODA. 

Results: GEE and ODA both identified many statistically significant dose-response relationships, 

separately by race and for pooled data. Post-hoc comparisons between doses indicated ODA 

(based on exact P values) was consistently more conservative than GEE (based on estimated P 

values). Compared to ODA, GEE produced twice as many instances of paradoxical confounding 

(findings from analysis of pooled data that are inconsistent with findings from analyses stratified 

by race). 
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Conclusions: Given its unique advantages and greater analytic flexibility, maximum-accuracy 

machine learning methods like ODA should be considered as the primary analytic approach in 

dose-response applications. 
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1. INTRODUCTION 

Establishing the relationship between various doses of an exposure and a response variable (i.e. 

outcome) is integral to many studies in health care, whether it is for determining safety (e.g. 

environmental hazards, drug toxicity), efficacy (e.g. a new drug, multivalued treatments), or 

adherence/responsiveness (e.g. treatment plan, intervention regimen). Correspondingly, failure to 

define dose-response relationships may lead to unacceptable toxicity or adverse-effect rates, 

marginal evidence of effectiveness, and a lack of information on how to individualize dosing 

regimens [1]. 

 Linear statistical models, such as analysis of variance (ANOVA), generalized estimating 

equations (GEE), or multilevel models are widely used for estimating dose-response 

relationships. As a family, these parametric models share several drawbacks when used in dose-

response studies. First, they assume a linear relationship exists between the dose and the 

response. Given that orderly, linear relationships rarely exist in health care data, such models 

may over- or under-estimate the true dose-response relationship at various points across the 

range of doses studied. Second, only a limited number of doses are typically tested in most dose-

response studies, thus requiring interpolation or extrapolation for any dose not studied. Third, 

conventional statistical methods are intended for estimating treatment effects at the population 

level, are generally inaccurate when applied to small samples, and are inappropriate when used 

for making point predictions concerning the response effect for individuals. Several innovative 

modeling approaches and software have been introduced to account for non-linear relationships 
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between dose and response (e.g. see [2,3]). However these approaches are implemented within a 

parametric framework, and thus many of the same limitations still apply. 

 In this paper, we introduce a novel machine-learning approach to establish dose-response 

relationships. This methodology employs an algorithm called optimal discriminant analysis 

(ODA) [4,5] to determine if, and to what degree, doses of the exposure can be distinguished 

based on the distribution of the response variable. By framing the dose-response relationship as a 

classification problem (i.e., how accurately does the response variable classify patients into 

specific dose levels), many of the aforementioned limitations of conventional statistical models 

are overcome, while obtaining several additional benefits. Specific advantages of ODA as 

compared to the conventional statistical approach in assessing dose-response relationships 

include the ability to handle a response variable measured using any metric (from categorical to 

continuous) and number of doses, insensitivity to skewed data or outliers, and the use of 

accuracy measures that can be widely applied to all classification analyses. ODA also offers the 

unique ability to ascertain if individuals are likely to be responding to the dose as prescribed 

based on optimized (maximum-accuracy) cut-points on the response variable. Moreover, ODA 

accepts analytic weights, thereby extending the assessment of a dose-response relationship to 

observational studies where weights are used for covariate adjustment [6]. Finally, ODA 

provides the capability to use cross-validation in assessing the generalizability of the model to 

other individuals outside of the original study sample, or to identify solutions that cross-

generalize with maximum accuracy when applied across multiple samples. 
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 To illustrate the ODA approach and compare it to a conventional statistical approach (we 

use a GEE model) for estimating dose-response relationships, we organized the paper as follows. 

In Section 2 we describe our methods including the data source, an introduction to ODA, and the 

analytic strategy employed in the study. Section 3 reports the results of each approach and a 

comparison between them. Finally, Section 4 discusses the specific advantages of ODA in 

assessing dose-response relationships compared to the conventional approach. 

2. METHODS 

2.1 Data 

We use data from Lang et al [7] that measures the responses of blood flow in the forearm to the 

intra-arterial administration of isoproterenol (in seven escalating doses: 0, 10, 20, 60, 150, 300 

and 400 ng/min) in 9 normotensive black men and 13 normotensive white men. This study found 

that forearm blood-flow responses to isoproterenol were markedly attenuated in normotensive 

blacks, whereas the responses were approximately linear in white subjects. It was hypothesized 

that the mechanisms responsible for blunted vasodilatation in response to the administration of 

isoproterenol may contribute to enhanced vascular reactivity and influence the pathogenesis of 

hypertension in blacks.  

 These data are ideal for illustrating many of the problems typically encountered in dose-

response studies: small sample size, limited number of doses, non-linearity in the dose-response 

relationship, and differential effects by subgroup. The dataset was accessed as a supplement to 
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the book “Statistical Modeling for Biomedical Researchers” [8] (found at: 

http://biostat.mc.vanderbilt.edu/dupontwd/wddtext/index.html#datasets). 

2.2 A Brief Introduction to Optimal Discriminant Analysis (ODA) 

ODA is a machine learning algorithm developed more than 25 years ago [9,10] that is capable of 

analyzing data measured on a continuous or interval-level scale, on an ordered scale having 

relatively few levels, or on a qualitative scale with two or more categories [4,5]. As opposed to 

parametric statistical models that model a dose-response relationship using a linear function that 

maximizes variance explained or the value of the likelihood function, the ODA algorithm 

identifies the cutpoint (or category subset) of the response variable that yields maximum 

predictive accuracy in classifying observations into their actual dose. Explicitly maximized 

classification accuracy may be either the effect strength for sensitivity (ESS) (described in the 

next Section), or overall percent accuracy in classification (PAC) depending on whether or not 

the investigator chooses to weight the data by prior odds [4,5]. As used herein, for an ordered or 

continuous response variable and multiple discrete doses (exposure variable), the ODA model 

has the form: if response variable score < (threshold value1) predict that the observation is from 

dose A; if response variable score > (threshold value1) and ≤ (threshold value2) predict that the 

observation is from dose B; or else if response variable score > (threshold value2) predict that the 

observation is from dose C, and so forth.  

2.2.1 Assessing statistical significance of ODA models 

Statistical significance (P value) for ODA models is computed via Monte Carlo simulation and 

reported as a permutation probability, such that no distributional assumptions are required of the 
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data and P values are exact [5,9]. In study designs involving more than one test of statistical 

significance (for example, multiple pairwise comparisons between doses), a Sidak Bonferroni-

type multiple comparisons methodology is employed to prevent “alpha inflation” and ensure the 

desired experimentwise P value (here, P < 0.05), and to inhibit over-fitting [5,11]. 

2.2.2 How GEE and ODA deal with repeated observations  

The statistical model used to evaluate dose-response relationships must be able to account for 

autocorrelation when individuals are subjected to multiple doses of the exposure (e.g. increasing 

doses of a drug). Autocorrelation indicates that any variable measured over time is potentially 

influenced by previous observations [12]. So in the case of an individual exposed to multiple 

doses, an individual’s current response at the current dose is likely to be correlated with their 

previous response to the previous dose. This is contrast to studies in which individuals are only 

exposed to a single dose, and thus all observations are independent of each other.   

 If the response score is autocorrelated in a consistent manner within and between 

individuals, then estimating a GEE model that accounts for the within-group correlation structure 

will increase the fit of the model for predicting the response when individuals are tested across 

multiple doses. This assumes that “detecting” (or failing to detect) autocorrelation is statistically 

warranted for ubiquitous small samples (e.g., with respect to statistical power, and to the veracity 

of assumptions upon which validity depends), and that autocorrelation-based models retain 

predictive accuracy when applied in independent validity and generalizability assessments. 

In its simplest application, the ODA approach may be used to determine if response 

scores can be reliably discriminated between two different levels of a stimulus (e.g., dose), 
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without considering the possible existence of autocorrelation in the response score. In this case 

the ODA algorithm identifies the model that maximizes ESS achieved in testing the non-

directional (i.e., exploratory, a posteriori) alternative hypothesis that response differs between 

the two doses. If instead it is hypothesized that there is some specific direction of influence of 

autocorrelation (either positive or negative), then this may be modeled in ODA by testing a 

directional (i.e., confirmatory, a priori) hypothesis: for example that a greater response will be 

elicited by a higher dose, or an even more precise a priori hypothesis specifying the exact 

thresholds and decision-making criteria [4,5]. Finally, if instead one is interested in identifying 

(vis-à-vis exploratory research) or in evaluating (vis-à-vis confirmatory research) ODA-based 

dynamic models, maximum-predictive-accuracy methods have been developed and found to be 

more accurate and parsimonious than alternative methods in applications involving single-case 

as well as multiple-observation time series, and traditionally analyzed using methods such as 

Markov models, turnover tables, test-retest reliability cross-classification methods, and so forth. 

[4,5,11] 

2.2.3 Ecological significance of ODA models 

The issue of how best to interpret the predictive accuracy achieved by a statistical model has 

been extensively discussed, and wide and broadening consensus asserts that evaluating model 

performance based solely on statistical significant findings (P values) is inappropriate [4,5]. 

Instead, it is argued that assessment should also include the ability of the model to achieve 

“clinically” [13,14] or otherwise context-relevant “ecologically” meaningful levels of predictive 

accuracy [15,16,17,18]. 
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 Ecological significance of ODA models in particular, and of all classification 

methodologies in general, is assessed using the effect strength for sensitivity (ESS) statistic. ESS 

is a normed measure of predictive accuracy that is both chance-corrected (0 = the level of 

predictive accuracy expected by chance), and maximum-corrected (100 = perfect prediction) 

[4,5,6,19]. The cut-points (or category subsets) identified by ODA explicitly maximize the ESS 

obtained by the ODA model for the total (“training”) sample. Using ESS, investigators may 

directly compare the predictive accuracy of different models (corrected for chance) -- developed 

using the same and/or different samples, regardless of structural features such as sample size, 

skew, or “outliers” [5]. Established via simulation research, ESS < 25% conventionally indicates 

a relatively weak effect; values >25% to < 50% indicate a moderate effect; values >50% to < 

75% indicate a relatively strong effect; values >75% to < 90% or less indicate a strong effect; 

and ESS values > 90% indicate a very strong effect [4]. 

2.2.4 Assessing generalizability of ODA models 

Cross-validation in the dose-response context denotes the generalizability of the model when it is 

used to classify a sample of individuals other than those utilized for developing the model -- for 

example new patients prescribed the medication [20]. Commonly-used algorithms for estimating 

model generalizability include bootstrapping, k-fold cross-validation, and leave-one-out 

jackknife (LOO) cross-validation [4,19,21,22]. In this paper, we use ODA to implement the LOO 

approach -- n-fold cross-validation, where n is the number of observations in the dataset. Each 

observation is in turn held out, predicted class membership (i.e., dose) is obtained for each held-

out observation, and accuracy is determined as success or failure in predicting the actual class 
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membership across held-out observations. The results of all n predictions are cumulated to 

calculate LOO (validity) accuracy, which is then compared to total sample (training model) 

accuracy. An identical ESS value in both the training and LOO analyses suggests that the ODA 

model may cross-generalize without a reduction in the predictive accuracy when the model is 

applied to classify an independent sample. In contrast, an ESS value that is lower in the LOO 

analysis than in the training analysis suggests that application of the ODA model may yield 

lower normed predictive accuracy when used to classify independent samples. 

2.3 Analytic approach 

All analyses were conducted using the data analyzed in the original study [7]. For the 

conventional statistical approach, we estimated a GEE model with forearm blood flow 

(ml/min/dl) treated as the response (dependent) variable. As in the original analysis, the 

covariates included Isoproterenol dose treated as a categorical ordinal variable with values of 0, 

10, 20, 60, 150, 300 and 400 (ng/min); race (black/white) treated as a binary categorical variable; 

and an interaction term between dose and race to allow for comparisons of the response between 

race and dose. The GEE model was estimated using a Gaussian family and identity link with an 

exchangeable within-group correlation structure to account for autocorrelation within subjects 

across multiple doses, and robust standard errors [23,24]. All pairwise contrasts (between doses) 

were adjusted for multiple comparisons using Sidak’s method [25].  

 For the ODA analyses, three separate models were generated -- two separately by race, 

and one pooled. All three models used forearm blood flow (attribute) to predict assignment to 

each dose level (class variable). Models were directional (i.e., “one-sided”), with the a priori 
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hypothesis that dose would increase with increasing forearm blood flow. Exact P values were 

estimated using 25,000 Monte Carlo experiments. We controlled the omnibus Type I error rate 

for the effect of multiple tests of statistical hypotheses by performing a Sidak multiple 

comparisons procedure to ensure an experimentwise P < 0.05 [4], and LOO analysis was 

conducted to assess the potential cross-generalizability of each ODA model when used to 

classify individuals other than those in the original study sample.  

The presence of paradoxical confounding (also called Simpson’s Paradox) was assessed 

separately for GEE and ODA analyses. Paradoxical confounding exists when findings of 

analyses conducted for pooled data (e.g., P < 0.05 or P > 0.05) are inconsistent with the findings 

of analyses conducted separately for any of the constituent groups [5,26]. 

Finally, we evaluated the analytic agreement across corresponding comparisons using 

ODA, with method (GEE versus ODA) treated as the class variable, and finding (experimentwise 

P < 0.05 versus P > 0.05) treated as the attribute [5]. That is, we compared corresponding ODA 

and GEE statistical conclusion findings pooled across all 21 multiple comparisons for the blacks-

only data, for the whites-only data, and for the combined (blacks and whites) data. If GEE and 

ODA methods agree on statistical conclusions regarding inter-dose response differences, this 

indicates cross-analytic-generalizability of the findings. However, if GEE and ODA methods 

disagree on the statistical conclusions regarding inter-dose response differences, this may 

indicate that: (1) even though significantly different mean response scores exist between two 

doses (GEE), dose is not an accurate predictor of individual response (ODA); (2) that P values 

generated by GEE (which must satisfy distributional assumptions in order to be valid) are 
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misleading (ODA uses permutation P values that require no distributional assumptions and are 

always valid); and/or (3) there is inadequate statistical power (e.g., due to small sample, class 

sample size imbalance, and/or sparse data) to warrant analytic comparison [5]. 

Stata 14.1 (StataCorp., College Station, TX, USA) was used to conduct all GEE analyses, 

and the Sidak adjustments for multiple testing after generating the GEE and ODA models [27]. 

ODA analyses were performed using ODA Software [4]. 

3. RESULTS 

The Figure illustrates means and 95% confidence intervals of the response variable (forearm 

blood flow) for each dose, separately for white and black subjects. Table 1 presents the numeric 

results of the GEE-based analysis. As reported by Lang et al [7], forearm blood flow increases 

with escalating dose in the white subjects, while the dose-response relationship appears blunted 

in the black subjects. Examination of confidence interval overlap indicates that the difference 

between the black and white cohorts in forearm blood flow becomes statistically significant 

commencing at a dose of 20 ng/min. Interestingly, the pooled data show a similarly strong dose-

response relationship to that of the white cohort (Sidak adjusted P values for the GEE pairwise 

comparisons between doses are presented in Appendix Tables 1-3). In the white cohort, all 

pairwise dose-response comparisons are statistically significant at the experimentwise P < 0.05 

level except for the 0 to 10 ng/min comparison (Appendix Table 2). Conversely, in the black 

cohort, only 13 of the 21 pairwise comparisons are statistically significant at the experimentwise 

criterion (Appendix Table 3). When the data are pooled, all pairwise comparisons are statistically 
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significant except for the 300 to 400 ng/min comparison (Appendix Table 1). This clearly 

indicates the presence of paradoxical confounding [26]. In total, there were eight instances of 

confounding in the GEE analyses: a significant effect for the pooled sample for the 0-10 dose 

comparison, but no effect for either cohort; a significant effect for the pooled and white samples, 

but not for the black sample, for the 10-20, 10-400, 20-400, 60-150, 60-400, and 150-400 

comparisons; and a significant effect for the white sample, but not for the pooled or black 

samples, for the 300-400 comparison. 

 Table 2 presents the results of the ODA-based analysis, including the cut-points (decision 

thresholds) on the forearm blood flow variable that are associated with each dose of 

Isoproterenol (these cutpoints explicitly maximize training model ESS), and the corresponding 

model sensitivity (true positive rate) -- the proportion of individuals that are correctly predicted 

by the ODA model to be on each specific dose [28]. To facilitate interpretation of these values, 

we use the 20 ng/min dose of the pooled data as an example. The ODA model predicts that an 

individual was on a dose of 20 ng/min if their forearm blood flow was > 2.945 (ml/min/dl) and ≤ 

6.855 (ml/min/dl). The ODA model correctly classified 71.43% of individuals at this dose in the 

training analysis (Table 2). In the LOO analysis, the sensitivity at this dose remained unchanged, 

suggesting that the model can predict with relatively strong accuracy, which among newly tested 

subjects is on the 20 ng/min dose.  

 In the white cohort (Table 2), the sensitivity for the overall sample ranges between 

33.33% at doses of 150 and 300, and 66.67% at a dose of 20 ng/min. This corresponds to an ESS 
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value of 40.28%, indicating a moderate effect [4]. LOO analysis resulted in a decline in ESS to 

27.78%, suggesting moderate generalizability to subjects outside of the training cohort. 

 In the black cohort (Table 2), the sensitivity for the overall sample ranges from 11.11% at 

the 400 level dose, to 100% at the 300 level dose. This corresponds to an ESS value of 40.74%, 

indicating a moderate effect. Similar to the white cohort, LOO analysis in the black cohort also 

resulted in a decline in ESS (to 29.63%) suggesting moderate generalizability. 

 When the data are pooled (Table 2), a different pattern in the dose-response relationship 

emerges. Here, sensitivity ranges from a low of 4.76% at a dose of 60 ng/min, to a high of 

71.43% at a dose of 20 ng/min. This corresponds to a moderate ESS of 31.75% -- that is 

substantially lower than the ESS that was obtained when either cohort was evaluated separately 

(paradoxical confounding, by definition). As in the analysis for the separate cohorts of white and 

black observations, LOO analysis ESS declined (26.98%) suggesting moderate generalizability.  

 All Sidak adjusted P values for the ODA pairwise comparisons between doses are 

presented in Appendix Tables 4-6. In the white cohort, 13 of the 21 pairwise comparisons are 

statistically significant (Appendix Table 5), whereas in the black cohort, only 8 of the 21 

pairwise comparisons are statistically significant (Appendix Table 6). When the data are pooled, 

12 of the 21 pairwise comparisons are statistically significant (Appendix Table 4). In total, there 

were four instances of paradoxical confounding in the ODA analyses. There was a significant 

effect for the pooled sample for the 20-150 dose comparison, but no effect for either cohort; a 

significant effect for the white sample, but not for the pooled or black samples, for the 10-20 
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comparison; and a significant effect for the white and the pooled samples, but not for the black 

sample, for the 0-20 and 20-400 comparisons. 

The final analyses evaluate inter-method agreement across the multiple inferential paired-

comparisons tests performed (Table 3). Isomorphic results were obtained for statistical 

conclusion findings obtained in analysis of data for the pooled sample, and in analysis of data for 

whites-only. For these samples only one of the eight paradoxical findings for the GEE model (the 

20-400 paired-comparison) has the same corresponding paradoxical finding for the ODA model. 

Comparing GEE (Appendix Tables 1 and 4) and ODA (Appendix Tables 2 and 5), statistical 

conclusions across the 21 paired-comparisons yields ESS = 60.0, P < 0.43 (Table 3). Thus there 

is no evidence of statistically significant agreement (i.e., inter-method reliability [5]) of the 

statistical conclusions reached by GEE and ODA when aggregated over 21 paired-comparisons 

for pooled or whites-only data. However, comparing the 21 GEE and ODA paired-comparisons 

for blacks-only (Appendix Tables 3 and 6) yields ESS = 41.4, P < 0.09 (Table 3). Thus there is 

evidence of marginally reliable agreement of statistical conclusions reached by GEE and ODA 

methods, aggregated over 21 paired-comparisons, for blacks-only data. 

 These inter-method agreement analyses had low statistical power due to the small number 

of times that both methods agreed that a multiple comparison wasn’t statistically significant 

(Table 3) [5]. A consistent point of disagreement involved multiple comparisons for which GEE 

reported P < 0.05 (accept the alternative hypothesis), and ODA reported P > 0.05 (reject the 

alternative hypothesis). This suggests that, in the present data, ODA (providing exact P values 

with unquestioned validity [4,5]) produced more conservative estimates of statistical significance 
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than GEE -- for which the validity of P depends upon underlying distributional assumptions 

being satisfied [8]. 

4. DISCUSSION 

Classification is the most popular data mining application in healthcare research, and it has been 

used to improve diagnostic accuracy, identify high-risk patients, and to extract concepts in 

unstructured data, for example [29]. The present paper focuses on the use of classification for 

identifying dose-response relationships. Using a published dataset possessing characteristics 

exemplifying many dose-response studies (small sample size, limited number of doses, non-

linearity in the dose-response relationship, differential effects by subgroup), the present article 

demonstrates that ODA can perform the usual functions of conventional linear models (i.e., 

testing for statistical significance of the overall model, post-hoc pairwise comparisons between 

doses), while offering several key advantages over those models.  

First, the ODA algorithm, with its associated measure of classification performance 

(ESS) and non-parametric permutation tests, can be universally applied to any response variable 

type and number of doses, and is not affected by skewed (non-linear) data, or outliers -- a 

concern that may arise in the context of meeting assumptions underlying the validity of the 

estimated P value obtained using the conventional approach. In the current example, ODA was 

consistently more conservative than GEE when comparing between models across the multiple 

inferential tests performed.  
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 Second, ODA models explicitly, by mathematical formulation, maximize the accuracy of 

point predictions made at the individual level (this may be compared to the context of the 

population level that is assumed by conventional parametric statistical methods) for the model 

that maximizes (weighted) ESS [4]. This feature of ODA has tremendous value for determining 

whether patients are adherent, or responding, to their prescribed drug regimens (see for example 

[30,31]). Physicians monitoring the level of a patient’s response variable (i.e., blood or urine 

levels of a metabolite, etc.) can cross reference those values to the cutpoint range generated by 

ODA to determine the likelihood that the patient is responding to the prescribed dose. The 

sensitivity of the ODA model observed for each dose provides the physician with the level of 

predictive accuracy to expect at any particular dose. High model sensitivity would provide the 

physician with more confidence that the patient is actually on the prescribed dose, than if the 

model sensitivity was low. Likewise, the sensitivity estimates derived from the LOO analysis 

allows the physician to further consider the likelihood of adherence to that dose for new patients, 

existing patients newly prescribed the drug, or patients with somewhat different characteristics 

than those from the original study population.  In the current data, sensitivities for the various 

doses were of moderate strength (for training and LOO analyses), suggesting that the models 

provide moderately accurate predictions of dose “assignment” based on the distribution of the 

response variable.   

 Third, ODA accepts analytic weights, thereby extending this individual-level assessment 

of a dose-response relationship to observational studies where weights are used for covariate 

adjustment [32,33,34,35,36,37]. This feature is particularly valuable, for example, in after-
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market drug studies, exposure to environmental hazards, or multivalued interventions in which 

self-selection is likely to bias the outcome. 

 ODA clearly offers important advantages and presents greater analytic flexibility than 

conventional parametric approaches for estimating dose-response relationships. Nevertheless, 

ODA and conventional approaches are subject to two limiting factors relating to data. First, there 

is the common limitation of a small sample. Small and highly imbalanced sample sizes offer 

little statistical power for testing a priori hypotheses, and can limit the predictive accuracy of the 

model -- particularly when applied in cross-generalizability analysis. Second, the constitution of 

the training sample, and of any independent validation samples, warrants consideration. 

Combining data from observations representing two or more strata (e.g., any possible 

combination of white and black, young and old, sick and healthy, men and women) may produce 

erroneous results for one or more of the constituent groups. Such paradoxical confounding 

occurs in studies involving multiple subjects and in studies involving single-case longitudinal 

(time-series) designs. Sometimes two or more groups simply cannot be combined without 

inducing confounding, due to structural differences among the groups [5]. 

 In summary, this paper introduced a novel approach for modelling dose-response 

relationships that uses a machine learning algorithm to determine the degree to which doses of 

the exposure can be distinguished based on the distribution of the response variable. The 

methodology offers important advantages and presents greater analytic flexibility than 

conventional parametric approaches, and thus should be considered as an alternative -- if not the 

preferred approach -- in dose-response applications. 
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Table 1. Forearm blood flow responses to Isoproterenol in normotensive blacks (N=9) and whites (N=12), from [7]. Results are from a 
generalized estimating equation (GEE) model in which forearm blood flow was regressed on dose, race, and an interaction term of the 
two.  
 
  Dose of Isoproterenol (ng/min)   
  0 10 20 60 150 300 400 P value 
All               

 Mean 2.468 3.057 5.067 10.610 12.529 15.424 16.948 <0.0001 
SE 0.253 0.386 0.588 1.638 1.911 1.923 2.404 

 95% CI 1.971, 2.964  2.300, 3.814 3.914, 6.219 7.399, 13.821 8.784, 16.274 11.656, 19.193 12.237, 21.659 
 

         White 
        Mean 2.683 3.417 6.458 14.592 17.250 20.200 23.833 <0.0001 

SE 0.411 0.632 0.775 2.170 2.518 2.390 2.501 
 95% CI 1.877, 3.488 2.178, 4.655 4.940, 7.976 10.338, 18.845 12.315, 22.185 15.515, 24.885 18.932, 28.734 
 

         Black 
        Mean 2.181 2.578 3.211 5.302 6.234 9.057 7.768 0.001 

SE 0.179 0.238 0.335 0.698 0.720 1.301 1.769 
 95% LCI 1.829, 2.533 2.112, 3.043 2.555, 3.867 3.934, 6.670 4.822, 7.647 6.506, 11.607 4.300, 11.236 
 

         Diff (Black vs White) -0.501 -0.839 -3.247 -9.289 -11.016 -11.143 -16.066 
 SE 0.448 0.675 0.844 2.280 2.619 2.722 3.063 
 95% CI -1.380, 0.378 -2.162, 0.484 -4.901, -1.593 -13.758, -4.821 -16.148, -5.883 -16.477, -5.809 -22.069, -10.062 
 P value 0.264 0.214 0.0001 <0.0001 <0.0001 <0.0001 <0.0001   
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Table 2. Forearm blood flow responses to Isoproterenol in normotensive blacks (N=9) and whites (N=12), from [7]. Results are from 
an Optimal Discriminant Analysis (ODA). Values represent cut-points on the response variable (forearm blood flow). 
 
  Dose of Isoproterenol (ng/min)     

  0 10 20 60 150 300 400 
ESS 
(%) P value 

All                   

Cutpoints <= 2.53 > 2.53 & 
<=2.945 

> 2.945 & 
<=6.855 

> 6.855 & 
<=7.355 

> 7.355 & 
<=9.85 

> 9.85 & 
<=21.0 > 21.0   

Sens-train (%)  66.67 28.57 71.43 4.76 23.81 57.14 38.10 31.75 <0.001 
Sens-LOO (%)  66.67 28.57 71.43 0.00 14.29 47.62 33.33 26.98  

          
White          
Cutpoints <= 2.15 > 2.15 & 

<=3.95 
> 3.95 &  

<=7.3 
> 7.3 &  
<=12.05 

> 12.05 & 
<=17.45 

> 17.45 &                      
<=21.2 > 21.2   

Sens-train (%) 50.00 58.33 66.67 41.67 33.33 33.33 58.33 40.28 <0.001 
Sens-LOO (%) 50.00 41.67 58.33 25.00 25.00 25.00 41.67 27.78  

          
Black          
Cutpoints <= 2.53 > 2.53 & 

<=2.945 
> 2.945 & 

<=3.68 
> 3.68 & 
<=4.085 

> 4.085 & 
<=4.375 

> 4.375 & 
<=18.95 > 18.95   

Sens-train (%) 77.78 44.44 44.44 33.33 33.33 100.00 11.11 40.74 <0.001 
Sens-LOO (%) 66.67 33.33 44.44 33.33 0.00 88.89 11.11 29.63  

 
Notes: Sens = sensitivity; LOO = leave one out cross validation; ESS = effect strength for sensitivity 
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Table 3. Statistical conclusion agreement between GEE and ODA analyses performed for 21 
paired-comparisons 
 
 

  ODA, P<0.05 ODA, P>0.05 ESS P Value 
Whites, Pooled     60.0 0.43 
GEE, P<0.05 12 8   
GEE, P>0.05 0 1   
     Blacks   41.4 0.09 
GEE, P<0.05 7 6   
GEE, P>0.05 1 7   
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Figure. Forearm blood flow responses to Isoproterenol in normotensive blacks (N=9) and whites 
(N=12), from [7].  Values shown are means and 95% confidence intervals.  
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APPENDIX 

Table 1: Sidak adjusted P values for all pairwise comparisons following GEE for pooled data 
 
  Dose of Isoproterenol (ng/min) 
  0 10 20 60 150 300 

0 
      10 0.047 

     20 < 0.001 < 0.001 
    60 < 0.001 < 0.001 < 0.001 

   150 < 0.001 < 0.001 < 0.001 < 0.001 
  300 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

 400 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.375 
 
Table 2: Sidak adjusted P values for all pairwise comparisons following GEE for Whites only 
 
  Dose of Isoproterenol (ng/min) 
  0 10 20 60 150 300 

0 
      10 0.278 

     20 < 0.001 < 0.001 
    60 < 0.001 < 0.001 < 0.001 

   150 < 0.001 < 0.001 < 0.001 0.007 
  300 < 0.001 < 0.001 < 0.001 < 0.001 0.004 

 400 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.006 
 
Table 3: Sidak adjusted P values for all pairwise comparisons following GEE for Blacks only 
 
  Dose of Isoproterenol (ng/min) 
  0 10 20 60 150 300 

0 
      10 0.640 

     20 0.014 0.336 
    60 < 0.001 0.001 0.027 

   150 < 0.001 < 0.001 < 0.001 0.161 
  300 < 0.001 < 0.001 < 0.001 0.01 0.022 

 400 0.028 0.092 0.178 0.966 0.999 0.896 
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Table 4: Sidak adjusted P values for all pairwise comparisons following ODA for pooled data 
 
  Dose of Isoproterenol (ng/min) 
  0 10 20 60 150 300 

0             
10 0.969 

     20 < 0.001 0.057 
    60 < 0.001 < 0.001 0.167 

   150 < 0.001 < 0.001 0.006 1.000 
  300 < 0.001 < 0.001 < 0.001 0.641 0.883 

 400 < 0.001 < 0.001 < 0.001 0.886 0.980 1.000 
 
Table 5: Sidak adjusted P values for all pairwise comparisons following ODA for Whites only 
 
  Dose of Isoproterenol (ng/min) 
  0 10 20 60 150 300 

0 
      10 1.000 

     20 0.017 0.018 
    60 < 0.001 < 0.001 0.076 

   150 < 0.001 < 0.001 0.072 1.000 
  300 < 0.001 < 0.001 < 0.001 0.942 1.000 

 400 < 0.001 < 0.001 < 0.001 0.662 0.943 1.000 
 
Table 6: Sidak adjusted P values for all pairwise comparisons following ODA for Blacks only 
 
  Dose of Isoproterenol (ng/min) 
  0 10 20 60 150 300 

0 
      10 0.964 

     20 0.290 0.965 
    60 0.006 0.052 0.308 

   150 < 0.001 0.012 0.067 1.000 
  300 < 0.001 < 0.001 0.009 0.740 0.983 

 400 0.006 < 0.001 0.067 1.000 1.000 1.000 
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