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We are developing an external filter method for equalizing the x-ray exposure in mammography.
Each filter is specially designed to match the shape of the compressed breast border and to prefer-
entially attenuate the x-ray beam in the peripheral region of the breast. To be practical, this method
should require the use of only a limited number of custom built filters. It is hypothesized that this
would be possible if compressed breasts can be classified into a finite number of shapes. A study
was performed to determine the number of shapes. Based on the parabolic appearances of the outer
borders of compressed breasts in mammograms, the borders were fit with the polynomial equations
y=ax?+bx® andy=ax?+bx3+cx*. The goodness-of-fit of these equations was compared. The
a,b and a,b,c coefficients were employed in a K-Means clustering procedure to classify 470
CC-view and 484 MLO-view borders into 2—10 clusters. The mean coefficients of the borders
within a given cluster defined the “filter” shape, and the individual borders were translated and
rotated to best match that filter shape. The average rms differences between the individual borders
and the “filter” were computed as were the standard deviations of those differences. The optimally
shifted and rotated borders were refit with the above polynomial equations, and plotted for visual
evaluation of clustering success. Both polynomial fits were adequate with rms errors of about 2 mm
for the 2-coefficient equation, and about 1 mm for the 3-coefficient equation. Although the fits
to the original borders were superior for the 3-coefficient equation, the matches to the “filter”
borders determined by clustering were not significantly improved. A variety of modified clustering
methods were developed and utilized, but none produced major improvements in clustering. Results
indicate that 3 or 4 filter shapes may be adequate for each mammographic projé&@en

and MLO-view). To account for the wide variations in exposures observed at the peripheral regions
of breasts classified to be of a particular shape, it may be necessary to employ different filters
for thin, medium and thick breasts. Even with this added requirement, it should be possible to
use a small number of filters as desired. 1®98 American Association of Physicists in Medicine.
[S0094-2405(98)00106-0]
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[. INTRODUCTION and signal-to-noise ratiSNR) of mammographic features

are greatly reduced in these regions due to decreased film

Mammographic abnormalities related to early breast CancerSradient. The contrast sensitivity of the human visual system

include clustered microcalcifications, spu_:ulatgd and iregu- o drops rapidly as the film density increa&gsKopand®
lar masses, areas of parenchymal distortion, and ski

0 , .
thickening'? These abnormalities are often subtle and Iowll:Iound that 70% of breast cancers in women with dense

contrast. Therefore, low-energy radiation and high—contraslen?aStS are in the periphery of the mammary parenchyma
screen/film systems are recommended for mammographﬁd]acfant to the s_ub_cutaneous_ fat or retr_omammgry fat. The
imaging in order to increase the contrast between the lesioRC°" Image quality in the peripheral region thus imposes a
and the background tissue. Despite the use of vigorous cons€rious I|m|tat|on on. the sensmvny of cancer detection in
pression during examinatiodsthe low-energy x-ray beam Preasts with dense fibroglandular tissue.

results in a wide dynamic rangthe ratio of the maximumto A variety of exposure equalization methods have been
the minimum x-ray exposure at the detegtor the radiation ~ Proposed to improve mammographic imaging. In one, either
penetrating the breast. This range can be greater thafl 10@ Wwater ba§~** or a solid, elastic, unit density x-ray
On the other hand, high-contrast film provides a narrow lati-attenuatot* is placed between the breast and the compres-
tude which is about 10 for a typical mammographic Sion paddle to make the total breast thickness uniform all the
system?® As a result, thick and glandular regions of the way out to the periphery. This gap-filling method has the
breast are often imaged at the toe of the sigmoid-shapeadvantage of being patient specific. However, it can be dif-
sensitometric curve of the screen/film system; whereas thificult to implement, especially for obliqgue views. Another,
peripheral regions are imaged at the shoulder. The contrastore sophisticated method involves scanning of the breast
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with either single or multiple x-ray beams that are intensity 0
modulated based on x-ray transmission signals obtained from

single or multiple detectorS:*® Such a method can equalize

the exposure throughout the breast rather than just at the =50
periphery. However, the method is complex and requires

much greater heat loading of the x-ray tube than conven- »
tional mammography. Recently, a rotary scanning equaliza- -100 ;
tion method has been developed that reduces, but does not
eliminate the heat loading and complexity issties.

We have proposed a practical and cost-effective exposure
equalization method for reducing the dynamic range of the
mammograms. The method employs a set of x-ray beam in-
tensity shaping filters that are positioned near the collimator
of the mammography system. Each filter is designed to
match the shape of the compressed breast border and to pref- 20 ird A 1
erentlall_y reduce the exposure to the dete_ctor in the periph- 0 50 100 150 200 250
eral region of the breast. It is our hypothesis that compressed
breasts can be classified into a finite number of shapes, antk. 1. Example of automatic versus hand-traced compressed breast borders.
therefore only a finite number of filters will be needed. In The hand-traced border is indicated by the lighter gray curve.
this paper, we report on the results of a study we conducted
to determine the validity of our hypothesis.
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nomials. Therefore, we decided to model the borders with

Il. METHODS the polynomial equationy=ax?>+bx® and y=ax*+bx®
+cx*. These equations have the advantage of producing
only two (a,b) or three(a, b, andc) coefficients which can

1004 clinical mammograms including both craniocaudalbe used in cluster analysis to classify the border shapes.
(CC) and mediolateral obliquaMLO) views were digitized
with a DBA Systems, Inc(Melbourne, Floridamodel Im-  B. The border fitting procedure
ageCIgar M21.00 f|lm d|g|t|;er. This §ystem.has 21 micron The fitting procedure involves either translating and rotat-
resolution, which is much finer than is required for our ap-

- T ing the borders about the- and y-axes or, equivalently,
p:tlcatlon.tr\]/v N oper?tgd tEe dlgétlzgrléq a mOd?f W?ereby t\;\'Otranslating and rotating the axes. We wrote custom software
of every three pixels is skipped, yielding an effective resolu-, | accomplish this task. The method is described below.

tion of 63 microns. The resolution was further reduced to 1 First, small irregularities are removed from the borders by

mm by averaging the pixel values in 1 mm areas. The Iighta IVi :
L . A . o ing run-length averagin@un-length employed#5).
transmission through the films was digitized in 16-bit linear p?\l)(;xt?an initia?best esti%]r;(tge of thegaxis p[()asii/ions is made.

format, and these values were later converted to 12-bit IogaT.he approach that was utilized is illustrated in Fig. 2. In

r_|thm|c }‘ormat tq yield a .f"’?'f'y linear relationship between brief, it determines the’-axis by least-square fitting a line
film optical density and digitized value.

An automated border tracing algorithm was applied to the

A. Border detection and modeling

digitized images® Acceptable borders were obtained in 95% 240

of the mammogram$954 of the 1004), which formed the y'

data set used in our study. The 5% of the mammograms that 200 -

were excluded exhibited problems such @g:a substantial

portion of the breast edge extended outside the imaging area 160 P!
of the film; (2) a significant portion of the breast edge was

obscured by a patient label; af8) numerous artifactée.qg., > 1201

streaks)were present at the breast periphery caused by the

film digitizer. In a separate study, we found the automated 80
border trace routine to be accurate. Comparing the difference
between hand-traced and automatically detected borders in a

random sample of images, we computed an average root- %
mean-square difference of 1.4 mfh.4 pixels)!® An ex- .
ample of the manually traced and automatically detected bor- 0 40 80 120 160 200 240
ders is shown in Fig. 1.
A total of 470 CC-view and 484 MLO-view automatically X

traced borders were analyzed in the present StUdy' In rewev»g—lG. 2. Example of thex’'-y’ starting axes computed with the subroutine

ing these borders, we C_)bserved that _the shapes appear t0 8rraxis. These axes are translated and rotated to find the best fits to the
well characterized by either symmetric or asymmetric poly-borders using the equatiogé=ax’2+bx’% andy’ =ax’2+bx'3+cx’*.
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through the midpoints of line segments drawn between ap- n
propriate points on the right and left sides of the borders. error="\/ >, (Yi—Ys.)/n.
When suitable line segments are drawn, the border will be =1 '
fairly symmetric about the line through the midpoints of the The best fit corresponded to a minimum rms error.
line segments, and this line should be a good starting axis for To improve the efficiency of this process, we first employ
the curve fits. coarse shifts and rotations with increments of 4 mm and 4

The algorithm that was written to locate the initial axes,degrees, respectively. We use sitranslation range of+/
STARTAXIS, first determines the point on the border that has a- 40 mm, ay-translation range of-/—20 mm and rotation
minimumy-value, &,y min). Next, the number of points on angle range of +/—40 degrees. The translation shifts
the border to the left and right ok(y _min) are computed. If  (xq.i«,Vsnir) @and the angle shiftdyx) corresponding to the
either number is less than 25, the topmost point on that sidgest fit are found. After this, finer increments of 1 mm and 1
is selected as a starting point. Otherwise, the derivativegegree are employed within the best “coarse” shift ranges
(dy/dx) of the topmost 25% of the points on each side of+/—4 mm and +/—4 degrees. For each type of fiy
(x,y_-min) are computed. The point at which the derivative =ax?+bx® and y=ax?+bx3+cx?*), the entire fitting and
is a minimum(most negativepn the left side of X,y _min)  shifting iteration process takes abdusecond per border on
is selected as a starting point for the left side. Similarly, thea Digital Equipment CorporatiofDEC) AlphaStation. The
point at which the derivative is a maximufmost positive)  validity of the above chosen ranges is confirmed by the fact
on the right side is selected as the starting point for the righthat the fits within these ranges had average rms errors of
side.(The topmost, light gray line in Fig. 2 connects the left about 2 mm or less and only in very rare instandescases
and right starting points.Next, the number of points be- for CC and 24 for MLO including botka,b anda,b,c fits)
tween the left starting point ancy_min), and the number did the best fit occur at the limits of translation or rotation.
of points between the right starting point andy(_min) are  Furthermore, in the majority of the latter cagesy., 32 of 35
computed. The smaller of these two numbers is divided by %ases), the fit errors were less than 2.5 mm, which is consid-
to create an incremental unit. Using the convention that thered a very good fit.
endpoint of the border on the left is point number 1 and the Finally, to verify that the minima in the rms fit errors were
endpoint on the right is the final point, line segments arenot passed over using coarse followed by fine increments in
determined between points on the border corresponding wittranslation and angulation, the computation was repeated in
the leftmost starting point plus an integer multiple of the 229 cases using only fine increments. The resulting rms fit
incremental unit and the rightmost starting point minus thaterrors were on the average only 0.01 less than those using
same value(See the black lines in Fig,) Finally, the mid-  coarse followed by fine increments, the rms difference be-
point of each line segment is computed. tween the errors was only 0.02, and the maximum rms dif-

The y’-axis is then ascertained by least square fitting &erence was 0.13. Thus in general, the minima were not
line between the midpoints of the line segments. The interpassed over, and greater efficiency was achieved without
section of this line with the border is defined to be the origin,sacrificing accuracy.
and thex’ axis is the line perpendicular to thg-axis pass-
ing through the origin(see Fig. 2). .

D. Cluster analysis
To classify the border shapes, the resulting best fit coef-

C. Determination of best fit by translation and ficients (eithera andb or a, b, andc) for each border were
rotation of axes to find the best fit introduced into a K-Means Cluster Analysis algorithm incor-

The next task of the computer program is the translatiorporated in the SPSS statistical pack&g§eSS Inc., Chicago,
and rotation of the axes to find the best fit of the polynomialll). This clustering method is based upon nearest neighbor
equation to the smoothed border. Equations employed for thgorting, whereby each case is assigned to the cluster for
translation and rotation were: which the distance between the cluster center and the case is
a minimum?® Since the cluster centers are not known ini-
tially, they are iteratively estimated from the data. The coef-
and ficients for the CC-view and MLO-view borders were ana-
lyzed separately. Absolute values of thecoefficients were
used since the curve shapes for positive and negative
where Xs=X—Xgrigint Xshitt»  Ys=Y ~ Yorigint Yshit, @and 6 b-values are mirror images of one another. Thus the same
= (7/180)- (Ostart Osnit) - (Xorigin»Yorigin) @nd s are the  filter could be employed; it would simply have to be flipped
coordinates of the origin and the angle of the starting ab4180 degrees for one of the-value polarities. We used the
scissa(in degrees relative to thr-axis), respectively, and K-Means method to classify the borders into 2, 3, 4, 5, 6, 8,
Xshitt» Yshitt: @nd Ognire are the translation and rotation values. and 10 clusters.

The fit error was defined to be the root-mean-sqiames) In addition, we performed limited studies of various
distance between correspondiggvalues on the smoothed, modifications of traditional K-Means clustering. In one,
automatically detected borders and the fitted borders. Thevhich we termed the “hybrid technique,” the andb pa-
equation utilized was rameters were employdd set to 0 when the fit to a given

x'=Xg COS §+Yyg sin 4

y'=—Xg Sin 6+Yyg COS 6,
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border usingy=ax?+ bx® was better than a threshold value whereN is the total number of clustefe.g., 2, 3, 4, 5, 6, 7,
(e.g., when the rms error was3 mm @3 pixels)). Otherwise, 8 or 10, Py is the number of borders in clustgy rmsy is
the border was refit using=ax?+bx3+cx*, and thea, b, the rms distance between bordeand the filter for clusteg,
and c parameters of that fit were employed. This hybridandT is the total number of bordel(sil.g.,T=Eg:1 Pg). In
method is based on the assumption that if the fit to the 2addition, a figure of meritFOM) was derived to estimate the
parameter equation is sufficient, it is not necessary to use @ptimal number of clusters. The equation employed was
3-parameter fit. It is further assumed that under those circum-
stances, use of the coefficient)(of the fourth order term N L
only adds noise to the data being clustered. FOM=>, (Pg/(rmsj)z)/\/ﬁ,
In a second modification, we used tlHescores of the 9=1
variables(a, b, andc) rather than the variables themselves -
in the cluster analysis. Th&-score is the number of standard wherePy andN are as defined above, anas, is the aver-
deviations that a given variable for a particular border differsage rms error for clustey. The denominator in this equation
from the mean value for all borders. Such a method makeéy/N) is a term that penalizes the use of larger numbers of
the importance of each parameter more equivalent. It comelusters, and the numerator gives greater weight to those
pensates for the wide variations in the magnitudes of thelusters having greater number of borders and smaller rms
parameters. For example, thevalues were about 20 to 200 errors. Finally, the newly rotated and translated borders were
times smaller than the-values, and the-values were about refit with the equationsy=ax?+bx> and y=ax?+bx3
20 to 500 times smaller than thevalues. +cx*. The new coefficients,a,b) and (a,b,c), were plot-
Finally, in a third modification, we first applied K-Means ted to enable visual evaluation of the success of classifica-
Cluster analysis to the entire CC border set to obtain sixion.
clusters. We then fixed the cluster membership for the two
best clusters, eliminated the corresponding borders from the o ] )
data set, and performed K-Means Cluster analysis on thE- Investigation of optical density and exposure
remaining borders. The second stage cluster analysis clas¥{2lues near the filter position
fied the remaining borders into 4, 5, or 6 clusters. The result- The filters that will eventually be built must be custom-
ing total number of clusters was 6, 7, or 8, respectively. Theshaped in the thickness dimension to compensate for the
underlying assumption for this method was that better clusvariations in x-ray transmission at the periphery of the
tering might be obtained in the second stage for the smallesreast. To assess this effect, we computed mean optical den-
set of borders. Thus, the overall clustering would be bettesity and mean exposure profiles along normals to the “filter”
than when the entire set of borders was clustered all at oneontour for one of the highly populated clusters in the clas-
time. sification study of CC-view mammograms. The particular
cluster consisted of 231 of the 470 CC-view borders, and it
was computed by the K-Means technique for the case in
which there was a total of six clusters, and the borders were
fit with the equationy=ax?>+bx®. Twenty-one equally
Once the classification of each border was determined, thepaced normals were derived along the contour of the “fil-
meana and b values or meara, b, andc values for the ter.” Each normal started at a position about 1 cm outside
borders within each class were determined. The border déhe “filter” contour and extended about 2 cm inside the con-
fined by the equation using the mean coefficients defined thtour (into the breagt The pixel values at the points along the
“filter.” A computer routine was written to translate and normals were converted to optical densities using a pixel
rotate each of the individual borders within each class to bestalue to optical density transform derived from the film digi-
match their corresponding “filter.” This routine again uti- tizer calibration curve. The means and standard deviations of
lized coarse and fine increments for translation and rotatiothe optical densities along each normal were computed. To
similar to the increments employed in the original fitting convert the optical densities to x-ray exposures, which would
routine. The translation and rotation values determined witteventually be needed for the filter design, we derived a film
the original fitting routine were employed as starting valuescharacteristic curve using x-ray sensitometry. The curve was
for the matching routine. The rms distance between the indigenerated with a bootstrap method using three mAs values
vidual border and the filter of its class was minimized as a2, 20, and 10§ four focus-to-film distance$23.5, 33.5,
indication of best match. For each filter or class, the mead7.5, and 66.5 ci and three Lucite attenuator thicknesses
and standard deviation of the rms distances were compute(l2, 24, and 36 mm Within each segment, the four dis-
These values were used to quantitatively assess the succégsces were employed at fixed mAs and fixed attenuator
of the border classification. Also, for each type of clustering,thickness. This was done to avoid errors due to reciprocity
the overall mean rms distance for all of the filters was comJaw failure and due to changes in x-ray beam quality. The

E. Determination of filter shapes and refitting of
borders

puted using the equation: curve segments were then bootstrapped together to create a
NPy characteristic curve extending over the entire exposure range.
d= 2 Z rms,/ T, All me_asurements were made at 28 kVp, Whl_ch is typical for
g=1i=1 the wide range of mammograms analyzed in this study. A
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TasLE |. Results of fitting the CC- and MLO-view borders with the equa-
tionsy=ax?+bx® andy=ax?+bx3+cx*.

Mean rms error
between fit and run-
length averaged

941

180

140 1

1001 °

No. of automatically
images View Type of fit tracked bordefmm) >
470 cc ab 2.18 807
470 CcC a,b,c 1.07
484 MLO a.b 1.53 207
484 MLO ab,c 1.07
-20 . . . .
-100 -60 -20 20 60 100
(a) X
Keithley (Cleveland, Ohiomodel 35050A dosimeter with a 180
Keithley model 96035 15-cc ionization chamber was used to _—
measure the exposures at the closest position, and the expo- e yHfitabe
sures at other positions were computed using the inverse 1407
square law.
100 {3
ll. RESULTS T
The average rms errors for the fitting of the original run- /
length averaged borders with the equatigrsax®+ bx® and 20- /
y=ax?>+bx3+cx* are compared in Table I. The data in the -
fourth column of this table demonstrate that both fits are very
good [errors are~2 mm (pixels) or less], and use of 3- '2?100 .60 .20 20 60 100
coefficients ,b,c) reduced the fitting errors by about 30%— (b) N

50%. An example of a fitted curve for which the rms error is
equal to the mean value for all MLO view$.53 mm)jusing  Fic. 4. Example of a case in which a fitted border using the 3-coefficient
thea andb parameters is displayed in Fig. 3, below. Figure(a.b.c) equation is significantly superior to that using the 2-coefficient
4 illustrates a case in which the rms error was 4.03 mm fo a,b) equation. The same MLO-view border was fit using both equations.
. he rms error for the 2-coefficient fiparta) is 4.03 mm and that for the

the two parameterg;b) fit and 1.18 mm for the three pa- 3 . efficient fit(partb) is 1.18 mm.

rameter &,b,c) fit.

Clustering results are listed in Tables Il to IV. The mean

rms distances or errors between individual borders withinye s 4re jfisted in Table IIl. The overall mean rms distances
clusters and their corresponding "filters” for CC-view bor- poyeen the borders and filters for the various clustering pa-
ders are listed in Table Il and those for the MLO-view bor- rameters and methods are listed in Table IV.

Scattergrams displaying the origirmlandb fitting coef-
ficients for the 470 CC-view borders and 484 MLO-view
borders are shown in Fig. 5. These are ¢handb values
that are input into the K-Means Cluster analysis program.
Figure 6 shows examples of tteandb anda, b, andc
values of the second-stage fits to the borders after they were
translated and rotated to best match the cluster “filtéte
curve generated with the mean coefficients for the cluster).

Our clustering figure of merit as a function of number of
clusters is plotted in Fig. 7.

Figure 8 shows an overlay of a “filter” and its associated

100

50

-50 7

-100 1 v i
ey i normals on a mammogram whose automatically traced breast
border was clustered to belong to the filter shape. Examples
-150 . : . ~ of filter shapes for the CC- and MLO-views are illustrated in
-150 -100 -50 0 50 100

Fig. 9(a)and(b), respectively.

X Finally, plots of the mean film optical densities as a func-
Fic. 3. Example of a fit for an MLO-view in which the fitted bordgighter tl(_)n of position anng norm,als tq the “filter ,are shown in
curve)has an rms error of 1.53 mm, which is equal to the mean value for alFig. 10(5‘_)and (b). As described in the Mat§r|a|5 and Meth-
MLO-views obtained using tha- andb-parameter fitting routine. ods section, the mean values were obtained from the 231
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TaBLE II. Mean rms distancesmm) between individual borders and “filters” for CC-view$Standard deviations for each distribution are noted in
parenthesesResults in each row are ordered from the smallest mean rms distance to the largesimber of borders in a particular cluster.

(A). a,b fit Cluster
Total no. of
clusters 1 2 3 4 5 6 7 8 9 10
2 2.7 3.7
(1.4) @.1)
n=314 n=156
3 2.2 2.6 4.1
(1.2) @.2) @.4)
n=139 n=248 n=83
4 2.0 2.4 35 3.6
(1.1) @.1) 4.0) 2.0
n=93 n=235 n=9 n=133
5 2.1 25 3.5 3.7 3.8
(1.2) @2 @.1) @.7) .1)
n=137 n=232 n=9 n=4 n=288
6 2.1 25 3.1 3.7 3.7 3.9
(1.2) @.2) 3.3) @.7) 2.1 6.1)
n=131 n=231 n=>5 n=4 n=95 n=4
6 (2 best from 6 2.1 2.5 3.4 3.5 3.7 3.8
clusters+ (1.2) @.2) 2.1) @.1) @.7) @.1)
recluster n=131 n=231 n=60 n=9 n=4 n=35
remaining into
4 clusters)
7 (2 best from 6 2.1 25 3.4 3.4 35 3.8 3.8
clusters+ (1.2) @.2) 2.1) 2.9) @.1) 2.0 2.9
recluster n=131 n=231 n=60 n=2 n=9 n=35 n=2
remaining into
5 clusters)
8 (2 best from 6 2.1 2.5 3.1 3.4 3.4 3.7 3.8 3.9
clusters+ (1.1) @.2) 3.3) @.2) 2.9) 1.9) 2.9) 6.1)
recluster n=131 n=231 n=5 n=55 n=2 n=40 n=2 n=4
remaining into
6 clusters)
8 1.7 2.0 2.3 3.0 3.1 3.7 3.8 3.9
(0.9) 0.9) @.2) @.7) 3.3) .7 2.3) 6.1)
n=52 n=119 n=144 n=93 n=5 n=4 n=49 n=4
10 0.9 1.7 2.0 2.3 2.8 3.2 3.4 3.8 3.9 3.9
(0) 0.9) 0.9 @.2) @.5) 8.1 2.9 2.9) @.3) 6.1)
n=1 n=52 n=113 n=145 n=289 n=4 n=2 n=2 n=>58 n=4
(B). a,b,c fit Cluster
Total no. of
clusters 1 2 3 4 5 6 7 8 9 10
2 29 3.1
(1.7) 2.0)
n=_82 n=388
3 2.8 3.2 3.2
.7 2.0) @.1)
n=175 n=23 n=272
4 2.7 29 3.2 3.6
(1.8) @.9) .0) 2.2
n=205 n=60 n=199 n=6
5 2.4 2.7 3.0 3.6 3.6
(1.4) a.7) 2.0) 2.4) 2.2)
n=34 n=136 n=202 n=92 n=6
6 1.0 2.4 2.7 29 3.0 3.6
(0.0) a.4) @7 2.2) 2.0 2.4)
n=1 n=34 n=136 n=5 n=204 n=90
6 hybric? 1.7 2.0 2.2 2.3 4.2 4.5
(2.0) 1.1) 0.7) @.9) @.8) 2.8)
n=7 n=157 n=48 n=139 n=280 n=44
6 using 1.0 1.3 1.4 2.6 3.1 4.4
Z-scores (0.0 0.8) ©.0) 1.6) .0) @.1)
n=1 n=2 n=1 n=136 n=2309 n=21
8 1.0 1.3 1.8 2.4 2.7 2.8 3.0 4.0
(0.0) 0.0) @.0) @.5) 1.6) 2.0) 1.8) 2.7
n=1 n=1 n=4 n=28 n=109 n=130 n=145 n=52
8 hybrid® 0.8 1.9 2.0 2.1 2.2 3.7 4.1 4.6
(0.1) 1.8) .1 @.5) 0.6) 2.2) 3.8) 3.0)
n=3 n=4 n=140 n=134 n=44 n=52 n=66 n=27
10 0.7 1.0 1.3 2.1 2.4 2.7 2.8 2.9 3.1 4.2
(0.0) 0.0) 0.0) @.0) @.5) 1.6) 2.0 @.7) 2.0) 2.8)
n=1 n=1 n=1 n=3 n=28 n=103 n=107 n=122 n=72 n=32

aHybrid=usea,b coefficients €=0) when original fit error<3.0 mm, usea,b,c coefficients when original fit error3.0 mm.
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TaBLE lll. Mean rms distancesmm) between individual borders and “filters” for MLO-viewgStandard deviations for each distribution are noted in
parenthesesResults in each row are ordered from the smallest mean rms distance to the largesimber of borders in a particular cluster.

(A). a,b fit
Cluster
Total no. of
clusters 1 2 3 4 5 6 7 8 9 Q
2 2.2 3.2
(1.1) @.9)
n=2306 n=178
3 1.9 2.2 35
(0.9) @.1) .0
n=172 n=227 n=385
4 1.7 1.9 2.9 4.1
(0.7 0.8) @.4) @.9)
n=107 n=219 n=134 n=24
5 1.7 1.8 2.2 3.4 4.0
(0.7) 0.8) @.1) 1.8) 3.1)
n=154 n=>58 n=185 n=83 n=4
6 1.6 1.9 2.1 25 3.3 3.7
(0.7 0.8) 0.7) 1.3) 3.1) @.9)
n=109 n=179 n=18 n=129 n=3 n=46
8 0.6 0.8 1.6 1.8 2.0 3.0 4.0 4.0
(0.0 0.0) 0.7) 0.8) 0.8) 1.4) .0) 3.2)
n=1 n=1 n=142 n=64 n=165 n=87 n=22 n=2
10 0.6 0.8 1.5 15 1.7 1.9 2.1 2.8 3.3 4.8
(0.0 0.0) 0.6) 0.0) 0.7) 0.8) 0.7) 1.4) 1.6) 2.3)
n=1 n=1 n=81 n=1 n=117 n=150 n=17 n=71 n=35 n=10
(B). a,b,c fit
Cluster
Total no. of
clusters 1 2 3 4 5 6 7 8 9 [0]
2 2.9 3.6
(2.2) 2.3)
n=191 n=293
3 2.7 3.1 3.9
(2.3) @.9) @2.4)
n=234 n=81 n=169
4 2.9 2.9 4.0 6.4
(2.2) 2.2) @.5) 1.6)
n=229 n=123 n=130 n=2
5 2.4 3.0 3.2 4.9 6.4
(2.9) 2.3) .2 3.0) 1.6)
n=188 n=81 n=153 n=60 n=2
6 2.3 29 3.3 3.7 4.8 6.4
(2.1) @.8) 2.4) 2.3) 3.3) 1.6)
n=140 n=71 n=147 n=111 n=13 n=2
6 15 2.1 2.4 2.6 3.3 5.5
Hybrid? (0.3) 1.5) 2.4) 1.1) 3.0) @.8)
n=2 n=138 n=152 n=65 n=106 n=21
8 0.3 1.3 2.6 2.6 2.7 3.3 3.7 4.8
(0.0 0.0) 2.0) 1.4) 2.7) 2.3) 2.4) 3.3)
n=1 n=1 n=127 n=53 n=76 n=115 n=98 n=13
10 0.3 1.3 2.4 2.8 2.8 2.8 3.2 3.4 35 4.9
(0.0 ©0.0) 2.4) .0) 1.0) @.5) .0) @.4) 3.2) 3.4)
n=1 n=1 n=78 n=114 n=13 n=28 n=76 n=97 n=7 n=41

aHybrid=usea,b coefficients €=0) when original fit error<3.0 mm, usea,b,c coefficients when original fit error3.0 mm.

mammograms containing compressed breast borders thave x-ray exposures at the film plane as a function of posi-
were classified to belong to a particular cluster. The clustertion along the normals.
ing involved 470 CC-view borders which were classified into

six groups usinga and b parameters. Curves depicting the IV. DISCUSSION
mean+/—1 standard deviation for several of the normals

Even though the original fits are better for three coeffi-

are shown in Fig. 10(c). Figure 10(dgpicts the mean rela- cients(a, b, andc) instead of two(a andb) (see Table)l,
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TasLE IV. Overall mean rms distance between individual borders and “fil- 20
ters.” 3
183 2
Overall mean rms errofmm) 16 :
CC-View CC-View MLO-View MLO-View ] 0
Total no. of clusters ab-fit abc-fit ab-fit abc-fit o 14 ] 1
° . L ]
2 3.02 3.11 2.54 3.34 127
3 2.73 3.05 2.33 3.18 8 *
4 2.68 2.97 2.25 3.24 r 104 -
5 2.67 2.98 2.19 3.11 = 7 R R
6 2.66 2.97 2.18 3.12 % 84 —
8 2.48 2.91 2.12 3.07 Q ] . .
10 2.48 2.89 2.09 3.11 6 - s
1 f. o ®e®
6 hybrid ; 2.69 - 2.68 43 IS
6 usingZ-scores - 2.99 - - . YR AR
6 (2 best from 6 clusters 2.63 - 2 p 2 r
+recluster remaining 0: . lo & el ° e
IntO 4 ClUSter’S LENLIL) LENLIL LENLIL LENLIL LENLIL
7 (2 best from 6 clusters  2.63 - - - 0 2 4 6 8 10 12 14 16
+recluster remaining (a) a*1000
into 5 clusters 16
8 (2 best from 6 clusters 2.62 - - - J
+ recluster remaining ]
into 6 clusters 14 1* py
8 hybrid - 3.03 - - E
12 =
S 1a 1 :
S 104+— s
there is either only slight improvemels.g., for 6 clusters in 8 ] * * .
. - L] (]
the CC casdTable Il A, B)] or no improvementfor the *;3 8 J. -
MLO case (Table Il A, B)] in the clustering success as 2 64 A
measured by the mean rms distances between the individual § ] . ! ',-e v
borders within a class and the mean border or “filter.” In 4] oJo” N
fact, the overall mean rms error results listed in Table IV ] .t - .,"
indicate that, in general, better matches between the indi- 2] :°' ¥ -
. X . ! 1 g
vidual borders and the filters are achieved when the filters are . : '.‘-( S ".. ol
. .. . L]
based upon tha,b clustering. Therefore, the 2-coefficient fit 04—+ ey
is preferred. (b) 0 5 10 15 20 25
The number of filters to be employed in our exposure a*1000

equalization ,methOd mPSt, be a comprqmlse betw_eellgle. 5. Plots ofa andb values of originaly =ax?+ bx? fits to borders ofa)

goodness-of-fit and practicality. The results in Table IV in- 470 CC-view andb) 484 MLO-view mammograms. Absolute valuestof

dicate the goodness-of-fit, as represented by the overall meare piotted since the shapes of the curves for positive and negatiakies

rms distance error, generally improves as the number of clugre mirror images of one another.

ters increases. However, this improvement is not very great

beyond three or four clusters. The individual cluster results

in Tables Il and IIl also exhibit this trend, and the figures ofan initial cluster analysis followed by reclustering the re-

merit that were derive(see Fig. 7)peak at about three clus- maining borders into 4, 5, or 6 groups was an insignificant

ters. Therefore, three or four filter shapes for each view ap{~1.2%—-1.5%) improvement.

pear to be optimum. Figure 10(c)provides an example of the variability in the
The hybrid approach of usirgandb values withc setto  optical densities near the periphery of the breast that might

zero when the original fit to the automatically traced borderbe expected for a set of compressed breasts classified to be of

is less than or equal to a threshold value and uainly, and  a particular shape. The standard deviations of the optical

¢ values otherwise improves the clustering relative to use oflensities range from about 0.2 to 0.6 OD. This translates to a

the conventionala, b, and c values in some case®.g., fairly wide range of exposure values, especially in the high

Table Ill B), but degrades clustering in oth€esg., Table Il density region just outside the breast border. Our calculations

B). However, for all of the hybrid cases shown in the tablesshow that, in this region, the mean exposure to the film mi-

the corresponding clustering that is obtained using the sameus 1 standard deviation is about half the mean exposure

total number of clusters and only tlkeandb parameters of value. The mean exposure to the film plus 1 standard devia-

the fit equationy =ax?+ bx® yields superior results. tion could not be determined just outside the breast because
Use of theZ-scores of the, b, andc values rather than these exposures are in the shoulder region of the film char-
the values themselves did not improve clusterfiigble Il  acteristic curve, where there are large uncertainties in the

B). The effect of employing the two best clusters of six from optical density to relative exposure conversion. Also, the op-
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7 a1 60
6 = ¢ a2 MLO-View
=3 A a3
S 57 50 4
] . -
S 44 5
I, =
27 : s 40
8 2] i o
® 4] Dl 2
B = W (TS
] r E 30 1
0 2 4 6 8 10 12 14
(a) a*1000
20 T T T T T
0 2 4 6 8 10 12
a-1
T | a-2 -outlier No. of Clusters
R N v e FiG. 7. Plots o clustering figure of merit as a function of number of clusters
k| a3 lots of clustering figure of merit as a function of number of cl
T Q * a4 for the CC- and MLO-views. Both exhibit maximum figure of merits at
1wy about three clusters.
0 9
05
20 regions and some can be attributed to variations in photo-
— timer response, techniqu&Vp), and film processor condi-
tions.
It is possible that up to three filters of different degrees of
8 equalization will be necessary for the dense, mixed dense
] N - and fatty, and fatty breasts or for the thick, medium, and thin
& e a2 breasts in the same breast shape class. We plan to conduct
g s- 4 a3 further studies to determine the acceptable range of variation
g. 5] " in the primary exposure profiles for each filter subclass. Once
= the filter subclass criteria are set and the breast images are
1‘3 ] Ala s o grouped into the subclasses, the average primary exposure
& 3 E 1 » profile of the breast images in a given filter subclass will be
CES i
] ] Al 4
4 J: SN SN NS LN S LN S S
0 2 4 6 8 10 12 14 16
© a*1000

Fic. 6. Pictorial representations of clustering. The borders that are classified
into each cluster are translated and rotated to best match the average border
(filter) for that cluster, and they are then re-fit with the equatiprsax®

+bx® andy=ax?+bx3+cx*. The resultinga,b, ora,b, andc coefficients

are plotted. Parta) shows thea,b coefficients, and paitb) shows thea,b,

andc coefficients that are generated when the 470 CC-view borders were
clustered into 3-groups fa,b and 4-groups fom,b,c. (The outlier in the
second group for tha,b,c clustering had(a* 1000, b* 100,000, c* 10°)
coordinates of(5.1, 93.4,—71.7) and was not plotted so the other data
points could be better visualizedPart (c) shows thea,b coefficients that

are generated when the 484 MLO-view borders were clustered into three
groups. The particular sets shown represent the better clustering results
based on the figure of merit criteria farb clustering, and a close to mini-
mum overall mean rms error far,b,c clustering(see Fig. 7 and Table IV

tical densities in this region could not be digitized to good
accuracy with our film digitizer. A review of Fig. 16) also

shows that the optical density ranges within the breast arBc. 8. Example showing overlay of “filter” contour and normals to that

about as variable as those outside the breast for the mammgﬁntour on one of the mammograms that is classified to belong to the filter
Shape. The mammogram was histogram equalized using NIH Image to bet-

grams in_ this ClUSte.r- Some Of_ this variability can be at_trib'ter visualize the breast tissue out to the periphery. The rms distance error to
uted to differences in breast thickness and composition in theéae average “filter” shape is 3.19 mm for this case.
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200 of cancers in mixed and dense breasts and increase the effi-
(4)\/ cacy of mammography as a screening and diagnostic tool for
160 7 breast cancers.

In this work, we assumed that an rms fitting error between
1207 the filter contour and a particular breast border of 2 or 3 mm
would be acceptable. We based this assumption on the fact
that the filter will be smoothly shaped in the thickness di-
mension as well, which should result in a smooth exposure
gradient rather than a step function. Therefore, small gaps
between the breast and filter borders should be smoothed out
in exposure space.

Mismatches between the filter exposure compensation
profiles and the breast attenuation profiles can in practice
result in artifacts. For example, if a portion of the filter ex-
tends too far toward the inside of the breast, the exposure in
this region will be reduced too much, resulting in a liglotv
optical density)area in the mammogram. Such overcompen-
sation is likely to occur in the MLO-view in the pectoral
region where the filters, in general, do not match the breast
shapes as well. The filters may have to be designed to have
more gradual compensation in these regions to reduce arti-
facts. To better understand the potential for artifact produc-
tion and the acceptable rms fitting errors, we are performing
7 a simulation study in which exposure profiles generated in
20 60 100 the present study are employed to construct simulated filters

(b) X (mm) which are then applied to images belonging to particular

compressed breast shape classes. The results of that study
Fic. 9. Examples of “filter” shapes(a) represents the “filter” shapes de- il be presented in a future publication.

rived when the 470 CC-view borders were clustered into 4 groups using the Finallv it should be mentioned that our plans for the
y=ax2+bx: fitting equation(b) represents the “filter shapes derived when ! y_’ ! u ; : S ur p .

the 484 MLO-view borders were clustered into six groups usingythe €ventual implementation of the equalization technique do not
=ax*+bx’ fitting equation. The number of borders that are classified asrequire the use of a pre-exposure x-ray mammogram of the
being the same shape as the filterganare: 235 for filter #1, 93 for filter : : : : :

#2, 133 for filter #3, and 9 for filter #4. The number of borders that arepatlem for filter selection. _Rather’ the filter \.NIH ,be selected
classified as being the same shape as the filtefis)iare 129 for filter #1, 3 Pased on the measured thickness of the patient’s compressed
for filter #2, 109 for filter #3, 179 for filter #4, 18 for filter #5, and 46 for breast, the breast contour as determined from a visible light
filter #6. image of the compressed breast recorded by a TV camera
that is interfaced to a computer, and the clustering results
gained from a large database of digitized mammograms with
corresponding compressed breast thickness information as
described in this study. Fabrication of individual filters for a
unctional system could be accomplished with either a com-

6{)uterized milling machine or stereolithography. Plastics

base of about 500 mammograms in each view, the result%oloed with metals such as aluminum and copper might be

support our hypothesis that a small number of pre—fabricatesmpl_oyg(i_las t?ﬁ If(||ter m‘:j‘rt:”af‘,ll n e|therk;:abse to reduc;e Itlhe
filters will be sufficient to allow selection of a nearly patient- required filter thickness. The filters would be automatically

specific filter for each breast being examined. This is thé?ositioned by a microprocessor controlied stage that trans-
basis of our approach to exposure equalization in mammdates ar_1d rotatgs the approprlate_fllter to a location such that
graphic imaging. With this technique, the dynamic range ofthe projected ﬂlter exposure profile matche; the compre;sed
the x-ray intensities incident on the recording system will bePreast border derived from the TV camera image. The filter
reduced and the entire image can be recorded in the higppsitioner would be located close to the x-ray tube to mini-
contrast region of the film. The improved image quality canMize X-ray scatter to the breast and minimize artifact produc-
be achieved without additional radiation dose to the patiention. The individual filters could be placed in the positioner
Furthermore, a very high-contrast mammographic techniquganually, or an automated filter wheel could be developed.
may be developed in combination with exposure equalizatioh.astly, the entire filter selection/positioning process should
to further improve the signal-to-noise rati®NR) of the take place in only a few seconds to minimize patient discom-
subtle lesions in the entire breast. We expect that the optifort from any additional time the breast must remain com-
mized technique will significantly improve the detectability pressed.

y (mm)

(a)

200

y (mm)

estimated by averaging the primary exposure profiles ob
tained from the individual mammograms in that subclass
The thickness profile of a filter for this subclass can then b
derived for a given filter material.

The significance of this study is that, using a large dat
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Fic. 10. (a) Mean optical density as a function of position along normals to the filter when the filter is aligned with the automatically detected borders in
mammograms classified to belong to the filter shape. For the particular case shown, 231 CC-view borders were classified to match the filter. Pixel #11 along
each normal corresponds with the filter edge. Pixels less than 11 are outside the breast, and those greater than 11 are inside the breast. Normal #11 is the
middle normal(for a symmetric breast, it is closest to the nipple posjtidb) Magnified view showing the details of the high optical density region in plot

(a). (c) Mean optical density+-/—1 standard deviation for selected norméat. Mean exposures corresponding to the optical densitiga)in
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