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We are developing an external filter method for equalizing the x-ray exposure in mammography.
Each filter is specially designed to match the shape of the compressed breast border and to prefer-
entially attenuate the x-ray beam in the peripheral region of the breast. To be practical, this method
should require the use of only a limited number of custom built filters. It is hypothesized that this
would be possible if compressed breasts can be classified into a finite number of shapes. A study
was performed to determine the number of shapes. Based on the parabolic appearances of the outer
borders of compressed breasts in mammograms, the borders were fit with the polynomial equations
y5ax21bx3 andy5ax21bx31cx4. The goodness-of-fit of these equations was compared. The
a,b and a,b,c coefficients were employed in a K-Means clustering procedure to classify 470
CC-view and 484 MLO-view borders into 2–10 clusters. The mean coefficients of the borders
within a given cluster defined the ‘‘filter’’ shape, and the individual borders were translated and
rotated to best match that filter shape. The average rms differences between the individual borders
and the ‘‘filter’’ were computed as were the standard deviations of those differences. The optimally
shifted and rotated borders were refit with the above polynomial equations, and plotted for visual
evaluation of clustering success. Both polynomial fits were adequate with rms errors of about 2 mm
for the 2-coefficient equation, and about 1 mm for the 3-coefficient equation. Although the fits
to the original borders were superior for the 3-coefficient equation, the matches to the ‘‘filter’’
borders determined by clustering were not significantly improved. A variety of modified clustering
methods were developed and utilized, but none produced major improvements in clustering. Results
indicate that 3 or 4 filter shapes may be adequate for each mammographic projection~CC-
and MLO-view!. To account for the wide variations in exposures observed at the peripheral regions
of breasts classified to be of a particular shape, it may be necessary to employ different filters
for thin, medium and thick breasts. Even with this added requirement, it should be possible to
use a small number of filters as desired. ©1998 American Association of Physicists in Medicine.
@S0094-2405~98!00106-0#
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I. INTRODUCTION

Mammographic abnormalities related to early breast can
include clustered microcalcifications, spiculated and irre
lar masses, areas of parenchymal distortion, and
thickening.1,2 These abnormalities are often subtle and l
contrast. Therefore, low-energy radiation and high-cont
screen/film systems are recommended for mammogra
imaging in order to increase the contrast between the le
and the background tissue. Despite the use of vigorous c
pression during examinations,3 the low-energy x-ray beam
results in a wide dynamic range~the ratio of the maximum to
the minimum x-ray exposure at the detector! for the radiation
penetrating the breast. This range can be greater than 14

On the other hand, high-contrast film provides a narrow l
tude which is about 10 for a typical mammograph
system.5,6 As a result, thick and glandular regions of th
breast are often imaged at the toe of the sigmoid-sha
sensitometric curve of the screen/film system; whereas
peripheral regions are imaged at the shoulder. The con
937 Med. Phys. 25 „6…, June 1998 0094-2405/98/25„6…
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and signal-to-noise ratio~SNR! of mammographic feature
are greatly reduced in these regions due to decreased
gradient. The contrast sensitivity of the human visual syst
also drops rapidly as the film density increases.7–9 Kopans10

found that 70% of breast cancers in women with den
breasts are in the periphery of the mammary parenchy
adjacent to the subcutaneous fat or retromammary fat.
poor image quality in the peripheral region thus impose
serious limitation on the sensitivity of cancer detection
breasts with dense fibroglandular tissue.

A variety of exposure equalization methods have be
proposed to improve mammographic imaging. In one, eit
a water bag11–13 or a solid, elastic, unit density x-ra
attenuator14 is placed between the breast and the compr
sion paddle to make the total breast thickness uniform all
way out to the periphery. This gap-filling method has t
advantage of being patient specific. However, it can be
ficult to implement, especially for oblique views. Anothe
more sophisticated method involves scanning of the bre
937/937/12/$10.00 © 1998 Am. Assoc. Phys. Med.
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938 Goodsitt et al. : Design of equalization filters 938
with either single or multiple x-ray beams that are intens
modulated based on x-ray transmission signals obtained f
single or multiple detectors.15,16 Such a method can equaliz
the exposure throughout the breast rather than just at
periphery. However, the method is complex and requ
much greater heat loading of the x-ray tube than conv
tional mammography. Recently, a rotary scanning equal
tion method has been developed that reduces, but does
eliminate the heat loading and complexity issues.17

We have proposed a practical and cost-effective expo
equalization method for reducing the dynamic range of
mammograms. The method employs a set of x-ray beam
tensity shaping filters that are positioned near the collima
of the mammography system. Each filter is designed
match the shape of the compressed breast border and to
erentially reduce the exposure to the detector in the per
eral region of the breast. It is our hypothesis that compres
breasts can be classified into a finite number of shapes,
therefore only a finite number of filters will be needed.
this paper, we report on the results of a study we conduc
to determine the validity of our hypothesis.

II. METHODS

A. Border detection and modeling

1004 clinical mammograms including both craniocau
~CC! and mediolateral oblique~MLO! views were digitized
with a DBA Systems, Inc.~Melbourne, Florida!model Im-
ageClear M2100 film digitizer. This system has 21 micr
resolution, which is much finer than is required for our a
plication. We operated the digitizer in a mode whereby t
of every three pixels is skipped, yielding an effective reso
tion of 63 microns. The resolution was further reduced to
mm by averaging the pixel values in 1 mm areas. The li
transmission through the films was digitized in 16-bit line
format, and these values were later converted to 12-bit lo
rithmic format to yield a fairly linear relationship betwee
film optical density and digitized value.

An automated border tracing algorithm was applied to
digitized images.18 Acceptable borders were obtained in 95
of the mammograms~954 of the 1004!, which formed th
data set used in our study. The 5% of the mammograms
were excluded exhibited problems such as:~1! a substantial
portion of the breast edge extended outside the imaging
of the film; ~2! a significant portion of the breast edge w
obscured by a patient label; and~3! numerous artifacts~e.g.,
streaks!were present at the breast periphery caused by
film digitizer. In a separate study, we found the automa
border trace routine to be accurate. Comparing the differe
between hand-traced and automatically detected borders
random sample of images, we computed an average r
mean-square difference of 1.4 mm~1.4 pixels!.19 An ex-
ample of the manually traced and automatically detected
ders is shown in Fig. 1.

A total of 470 CC-view and 484 MLO-view automaticall
traced borders were analyzed in the present study. In rev
ing these borders, we observed that the shapes appear
well characterized by either symmetric or asymmetric po
Medical Physics, Vol. 25, No. 6, June 1998
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nomials. Therefore, we decided to model the borders w
the polynomial equationsy5ax21bx3 and y5ax21bx3

1cx4. These equations have the advantage of produc
only two (a,b) or three~a, b, andc! coefficients which can
be used in cluster analysis to classify the border shapes

B. The border fitting procedure

The fitting procedure involves either translating and rot
ing the borders about thex- and y-axes or, equivalently,
translating and rotating the axes. We wrote custom softw
to accomplish this task. The method is described below.

First, small irregularities are removed from the borders
applying run-length averaging~run-length employed515!.

Next, an initial best estimate of the axis positions is ma
The approach that was utilized is illustrated in Fig. 2.
brief, it determines they8-axis by least-square fitting a lin

FIG. 1. Example of automatic versus hand-traced compressed breast bo
The hand-traced border is indicated by the lighter gray curve.

FIG. 2. Example of thex8-y8 starting axes computed with the subroutin
STARTAXIS. These axes are translated and rotated to find the best fits to
borders using the equationsy85ax821bx83 andy85ax821bx831cx84.
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939 Goodsitt et al. : Design of equalization filters 939
through the midpoints of line segments drawn between
propriate points on the right and left sides of the borde
When suitable line segments are drawn, the border will
fairly symmetric about the line through the midpoints of t
line segments, and this line should be a good starting axis
the curve fits.

The algorithm that was written to locate the initial axe
STARTAXIS, first determines the point on the border that ha
minimumy-value, (x,y2min). Next, the number of points o
the border to the left and right of (x,y2min) are computed. If
either number is less than 25, the topmost point on that
is selected as a starting point. Otherwise, the derivat
(dy/dx) of the topmost 25% of the points on each side
(x,y2min) are computed. The point at which the derivati
is a minimum~most negative!on the left side of (x,y2min)
is selected as a starting point for the left side. Similarly,
point at which the derivative is a maximum~most positive!
on the right side is selected as the starting point for the r
side.~The topmost, light gray line in Fig. 2 connects the le
and right starting points.! Next, the number of points be
tween the left starting point and (x,y2min), and the number
of points between the right starting point and (x,y2min) are
computed. The smaller of these two numbers is divided b
to create an incremental unit. Using the convention that
endpoint of the border on the left is point number 1 and
endpoint on the right is the final point, line segments
determined between points on the border corresponding
the leftmost starting point plus an integer multiple of t
incremental unit and the rightmost starting point minus t
same value.~See the black lines in Fig. 2! Finally, the mid-
point of each line segment is computed.

The y8-axis is then ascertained by least square fitting
line between the midpoints of the line segments. The in
section of this line with the border is defined to be the orig
and thex8 axis is the line perpendicular to they8-axis pass-
ing through the origin~see Fig. 2!.

C. Determination of best fit by translation and
rotation of axes to find the best fit

The next task of the computer program is the translat
and rotation of the axes to find the best fit of the polynom
equation to the smoothed border. Equations employed for
translation and rotation were:

x85xS cosu1yS sin u

and

y852xS sin u1yS cosu,

where xS5x2xorigin1xshift , yS5y2yorigin1yshift , and u
5(p/180)•(uStart1ushift). (xorigin ,yorigin) and uStart are the
coordinates of the origin and the angle of the starting
scissa~in degrees relative to thex-axis!, respectively, and
xshift , yshift , andushift are the translation and rotation value

The fit error was defined to be the root-mean-square~rms!
distance between correspondingy-values on the smoothed
automatically detected borders and the fitted borders.
equation utilized was
Medical Physics, Vol. 25, No. 6, June 1998
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The best fit corresponded to a minimum rms error.
To improve the efficiency of this process, we first empl

coarse shifts and rotations with increments of 4 mm an
degrees, respectively. We use anx-translation range of1/
240 mm, ay-translation range of1/220 mm and rotation
angle range of 1/240 degrees. The translation shif
(xshift ,yshift! and the angle shift (ushift) corresponding to the
best fit are found. After this, finer increments of 1 mm and
degree are employed within the best ‘‘coarse’’ shift rang
1/24 mm and 1/24 degrees. For each type of fit~y
5ax21bx3 and y5ax21bx31cx4!, the entire fitting and
shifting iteration process takes about1

2 second per border on
a Digital Equipment Corporation~DEC! AlphaStation. The
validity of the above chosen ranges is confirmed by the f
that the fits within these ranges had average rms error
about 2 mm or less and only in very rare instances~11 cases
for CC and 24 for MLO including botha,b anda,b,c fits!
did the best fit occur at the limits of translation or rotatio
Furthermore, in the majority of the latter cases~e.g., 32 of 35
cases!, the fit errors were less than 2.5 mm, which is con
ered a very good fit.

Finally, to verify that the minima in the rms fit errors wer
not passed over using coarse followed by fine increment
translation and angulation, the computation was repeate
229 cases using only fine increments. The resulting rms
errors were on the average only 0.01 less than those u
coarse followed by fine increments, the rms difference
tween the errors was only 0.02, and the maximum rms
ference was 0.13. Thus in general, the minima were
passed over, and greater efficiency was achieved with
sacrificing accuracy.

D. Cluster analysis

To classify the border shapes, the resulting best fit co
ficients~eithera andb or a, b, andc! for each border were
introduced into a K-Means Cluster Analysis algorithm inco
porated in the SPSS statistical package~SPSS Inc., Chicago
Il!. This clustering method is based upon nearest neigh
sorting, whereby each case is assigned to the cluster
which the distance between the cluster center and the ca
a minimum.20 Since the cluster centers are not known in
tially, they are iteratively estimated from the data. The co
ficients for the CC-view and MLO-view borders were an
lyzed separately. Absolute values of theb-coefficients were
used since the curve shapes for positive and nega
b-values are mirror images of one another. Thus the sa
filter could be employed; it would simply have to be flippe
180 degrees for one of theb-value polarities. We used th
K-Means method to classify the borders into 2, 3, 4, 5, 6
and 10 clusters.

In addition, we performed limited studies of variou
modifications of traditional K-Means clustering. In on
which we termed the ‘‘hybrid technique,’’ thea and b pa-
rameters were employed~c set to 0! when the fit to a given
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940 Goodsitt et al. : Design of equalization filters 940
border usingy5ax21bx3 was better than a threshold valu
~e.g., when the rms error was<3 mm ~3 pixels!!. Otherwise,
the border was refit usingy5ax21bx31cx4, and thea, b,
and c parameters of that fit were employed. This hyb
method is based on the assumption that if the fit to the
parameter equation is sufficient, it is not necessary to u
3-parameter fit. It is further assumed that under those circ
stances, use of the coefficient (c) of the fourth order term
only adds noise to the data being clustered.

In a second modification, we used theZ-scores of the
variables~a, b, andc! rather than the variables themselv
in the cluster analysis. TheZ-score is the number of standa
deviations that a given variable for a particular border diff
from the mean value for all borders. Such a method ma
the importance of each parameter more equivalent. It c
pensates for the wide variations in the magnitudes of
parameters. For example, theb-values were about 20 to 20
times smaller than thea-values, and thec-values were abou
20 to 500 times smaller than theb-values.

Finally, in a third modification, we first applied K-Mean
Cluster analysis to the entire CC border set to obtain
clusters. We then fixed the cluster membership for the
best clusters, eliminated the corresponding borders from
data set, and performed K-Means Cluster analysis on
remaining borders. The second stage cluster analysis cl
fied the remaining borders into 4, 5, or 6 clusters. The res
ing total number of clusters was 6, 7, or 8, respectively. T
underlying assumption for this method was that better c
tering might be obtained in the second stage for the sma
set of borders. Thus, the overall clustering would be be
than when the entire set of borders was clustered all at
time.

E. Determination of filter shapes and refitting of
borders

Once the classification of each border was determined
meana and b values or meana, b, and c values for the
borders within each class were determined. The border
fined by the equation using the mean coefficients defined
‘‘filter.’’ A computer routine was written to translate an
rotate each of the individual borders within each class to b
match their corresponding ‘‘filter.’’ This routine again ut
lized coarse and fine increments for translation and rota
similar to the increments employed in the original fittin
routine. The translation and rotation values determined w
the original fitting routine were employed as starting valu
for the matching routine. The rms distance between the in
vidual border and the filter of its class was minimized as
indication of best match. For each filter or class, the m
and standard deviation of the rms distances were compu
These values were used to quantitatively assess the su
of the border classification. Also, for each type of clusterin
the overall mean rms distance for all of the filters was co
puted using the equation:

d̄5 (
g51

N

(
i 51

Pg

rmsig/T,
Medical Physics, Vol. 25, No. 6, June 1998
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whereN is the total number of clusters~e.g., 2, 3, 4, 5, 6, 7,
8 or 10!, Pg is the number of borders in clusterg, rmsig is
the rms distance between borderi and the filter for clusterg,
andT is the total number of borders~e.g.,T5(g51

N Pg!. In
addition, a figure of merit~FOM! was derived to estimate th
optimal number of clusters. The equation employed was

FOM5(
g51

N

~Pg /~rmsg!2!/AN,

wherePg andN are as defined above, andrmsg is the aver-
age rms error for clusterg. The denominator in this equatio
(AN) is a term that penalizes the use of larger numbers
clusters, and the numerator gives greater weight to th
clusters having greater number of borders and smaller
errors. Finally, the newly rotated and translated borders w
refit with the equationsy5ax21bx3 and y5ax21bx3

1cx4. The new coefficients, (a,b) and (a,b,c), were plot-
ted to enable visual evaluation of the success of classifi
tion.

F. Investigation of optical density and exposure
values near the filter position

The filters that will eventually be built must be custom
shaped in the thickness dimension to compensate for
variations in x-ray transmission at the periphery of t
breast. To assess this effect, we computed mean optical
sity and mean exposure profiles along normals to the ‘‘filte
contour for one of the highly populated clusters in the cl
sification study of CC-view mammograms. The particu
cluster consisted of 231 of the 470 CC-view borders, an
was computed by the K-Means technique for the case
which there was a total of six clusters, and the borders w
fit with the equation y5ax21bx3. Twenty-one equally
spaced normals were derived along the contour of the ‘
ter.’’ Each normal started at a position about 1 cm outs
the ‘‘filter’’ contour and extended about 2 cm inside the co
tour ~into the breast!. The pixel values at the points along th
normals were converted to optical densities using a p
value to optical density transform derived from the film dig
tizer calibration curve. The means and standard deviation
the optical densities along each normal were computed.
convert the optical densities to x-ray exposures, which wo
eventually be needed for the filter design, we derived a fi
characteristic curve using x-ray sensitometry. The curve w
generated with a bootstrap method using three mAs va
~2, 20, and 100!, four focus-to-film distances~23.5, 33.5,
47.5, and 66.5 cm!, and three Lucite attenuator thickness
~12, 24, and 36 mm!. Within each segment, the four dis
tances were employed at fixed mAs and fixed attenua
thickness. This was done to avoid errors due to recipro
law failure and due to changes in x-ray beam quality. T
curve segments were then bootstrapped together to cre
characteristic curve extending over the entire exposure ra
All measurements were made at 28 kVp, which is typical
the wide range of mammograms analyzed in this study
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941 Goodsitt et al. : Design of equalization filters 941
Keithley ~Cleveland, Ohio!model 35050A dosimeter with a
Keithley model 96035 15-cc ionization chamber was used
measure the exposures at the closest position, and the e
sures at other positions were computed using the inv
square law.

III. RESULTS

The average rms errors for the fitting of the original ru
length averaged borders with the equationsy5ax21bx3 and
y5ax21bx31cx4 are compared in Table I. The data in th
fourth column of this table demonstrate that both fits are v
good @errors are;2 mm ~pixels! or less#, and use of 3
coefficients (a,b,c) reduced the fitting errors by about 30%
50%. An example of a fitted curve for which the rms error
equal to the mean value for all MLO views~1.53 mm!using
the a andb parameters is displayed in Fig. 3, below. Figu
4 illustrates a case in which the rms error was 4.03 mm
the two parameter (a,b) fit and 1.18 mm for the three pa
rameter (a,b,c) fit.

Clustering results are listed in Tables II to IV. The me
rms distances or errors between individual borders wit
clusters and their corresponding ‘‘filters’’ for CC-view bo
ders are listed in Table II and those for the MLO-view bo

TABLE I. Results of fitting the CC- and MLO-view borders with the equ
tions y5ax21bx3 andy5ax21bx31cx4.

No. of
images View Type of fit

Mean rms error
between fit and run-

length averaged
automatically

tracked border~mm!

470 CC a,b 2.18

470 CC a,b,c 1.07

484 MLO a,b 1.53

484 MLO a,b,c 1.07

FIG. 3. Example of a fit for an MLO-view in which the fitted border~lighter
curve!has an rms error of 1.53 mm, which is equal to the mean value fo
MLO-views obtained using thea- andb-parameter fitting routine.
Medical Physics, Vol. 25, No. 6, June 1998
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nders are listed in Table III. The overall mean rms distan
between the borders and filters for the various clustering
rameters and methods are listed in Table IV.

Scattergrams displaying the originala andb fitting coef-
ficients for the 470 CC-view borders and 484 MLO-vie
borders are shown in Fig. 5. These are thea and b values
that are input into the K-Means Cluster analysis progra
Figure 6 shows examples of thea and b and a, b, and c
values of the second-stage fits to the borders after they w
translated and rotated to best match the cluster ‘‘filter’’~the
curve generated with the mean coefficients for the cluste

Our clustering figure of merit as a function of number
clusters is plotted in Fig. 7.

Figure 8 shows an overlay of a ‘‘filter’’ and its associate
normals on a mammogram whose automatically traced br
border was clustered to belong to the filter shape. Exam
of filter shapes for the CC- and MLO-views are illustrated
Fig. 9~a!and ~b!, respectively.

Finally, plots of the mean film optical densities as a fun
tion of position along normals to the ‘‘filter’’ are shown i
Fig. 10~a!and ~b!. As described in the Materials and Meth
ods section, the mean values were obtained from the

ll

FIG. 4. Example of a case in which a fitted border using the 3-coeffici
(a,b,c) equation is significantly superior to that using the 2-coefficie
(a,b) equation. The same MLO-view border was fit using both equatio
The rms error for the 2-coefficient fit~part a! is 4.03 mm and that for the
3-coefficient fit~part b! is 1.18 mm.
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TABLE II. Mean rms distances~mm! between individual borders and ‘‘filters’’ for CC-views.~Standard deviations for each distribution are noted
parentheses.!Results in each row are ordered from the smallest mean rms distance to the largest.n5number of borders in a particular cluster.

~A!. a,b fit
Total no. of

clusters

Cluster

1 2 3 4 5 6 7 8 9 10

2 2.7 3.7
~1.4! ~2.1!
n5314 n5156

3 2.2 2.6 4.1
~1.2! ~1.2! ~2.4!
n5139 n5248 n583

4 2.0 2.4 3.5 3.6
~1.1! ~1.1! ~4.0! ~2.0!
n593 n5235 n59 n5133

5 2.1 2.5 3.5 3.7 3.8
~1.1! ~1.2! ~4.1! ~2.7! ~2.1!
n5137 n5232 n59 n54 n588

6 2.1 2.5 3.1 3.7 3.7 3.9
~1.1! ~1.2! ~3.3! ~2.7! ~2.1! ~6.1!
n5131 n5231 n55 n54 n595 n54

6 ~2 best from 6 2.1 2.5 3.4 3.5 3.7 3.8
clusters1 ~1.1! ~1.2! ~2.1! ~4.1! ~2.7! ~2.1!
recluster n5131 n5231 n560 n59 n54 n535
remaining into
4 clusters!
7 ~2 best from 6 2.1 2.5 3.4 3.4 3.5 3.8 3.8
clusters1 ~1.1! ~1.2! ~2.1! ~2.9! ~4.1! ~2.0! ~2.9!
recluster n5131 n5231 n560 n52 n59 n535 n52
remaining into
5 clusters!
8 ~2 best from 6 2.1 2.5 3.1 3.4 3.4 3.7 3.8 3.9
clusters1 ~1.1! ~1.2! ~3.3! ~2.2! ~2.9! ~1.9! ~2.9! ~6.1!
recluster n5131 n5231 n55 n555 n52 n540 n52 n54
remaining into
6 clusters!
8 1.7 2.0 2.3 3.0 3.1 3.7 3.8 3.9

~0.9! ~0.9! ~1.2! ~1.7! ~3.3! ~2.7! ~2.3! ~6.1!
n552 n5119 n5144 n593 n55 n54 n549 n54

10 0.9 1.7 2.0 2.3 2.8 3.2 3.4 3.8 3.9 3.9
~0! ~0.9! ~0.9! ~1.2! ~1.5! ~3.1! ~2.9! ~2.9! ~2.3! ~6.1!
n51 n552 n5113 n5145 n589 n54 n52 n52 n558 n54

~B!. a,b,c fit
Total no. of

clusters

Cluster

1 2 3 4 5 6 7 8 9 10

2 2.9 3.1
~1.7! ~2.0!
n582 n5388

3 2.8 3.2 3.2
~1.7! ~2.0! ~2.1!
n5175 n523 n5272

4 2.7 2.9 3.2 3.6
~1.8! ~1.9! ~2.0! ~2.2!
n5205 n560 n5199 n56

5 2.4 2.7 3.0 3.6 3.6
~1.4! ~1.7! ~2.0! ~2.4! ~2.2!
n534 n5136 n5202 n592 n56

6 1.0 2.4 2.7 2.9 3.0 3.6
~0.0! ~1.4! ~1.7! ~2.2! ~2.0! ~2.4!
n51 n534 n5136 n55 n5204 n590

6 hybrida 1.7 2.0 2.2 2.3 4.2 4.5
~2.0! ~1.1! ~0.7! ~1.9! ~2.8! ~2.8!
n57 n5157 n548 n5139 n580 n544

6 using 1.0 1.3 1.4 2.6 3.1 4.4
Z-scores ~0.0! ~0.8! ~0.0! ~1.6! ~2.0! ~4.1!

n51 n52 n51 n5136 n5309 n521
8 1.0 1.3 1.8 2.4 2.7 2.8 3.0 4.0

~0.0! ~0.0! ~1.0! ~1.5! ~1.6! ~2.0! ~1.8! ~2.7!
n51 n51 n54 n528 n5109 n5130 n5145 n552

8 hybrida 0.8 1.9 2.0 2.1 2.2 3.7 4.1 4.6
~0.1! ~1.8! ~1.1! ~1.5! ~0.6! ~2.2! ~3.8! ~3.0!
n53 n54 n5140 n5134 n544 n552 n566 n527

10 0.7 1.0 1.3 2.1 2.4 2.7 2.8 2.9 3.1 4.2
~0.0! ~0.0! ~0.0! ~1.0! ~1.5! ~1.6! ~2.0! ~1.7! ~2.0! ~2.8!
n51 n51 n51 n53 n528 n5103 n5107 n5122 n572 n532

aHybrid5usea,b coefficients (c50) when original fit error<3.0 mm, usea,b,c coefficients when original fit error.3.0 mm.
Medical Physics, Vol. 25, No. 6, June 1998
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TABLE III. Mean rms distances~mm! between individual borders and ‘‘filters’’ for MLO-views.~Standard deviations for each distribution are noted
parentheses.!Results in each row are ordered from the smallest mean rms distance to the largest.n5number of borders in a particular cluster.

~A!. a,b fit

Total no. of
clusters

Cluster

1 2 3 4 5 6 7 8 9 10

2 2.2 3.2
~1.1! ~1.9!
n5306 n5178

3 1.9 2.2 3.5
~0.9! ~1.1! ~2.0!
n5172 n5227 n585

4 1.7 1.9 2.9 4.1
~0.7! ~0.8! ~1.4! ~1.9!
n5107 n5219 n5134 n524

5 1.7 1.8 2.2 3.4 4.0
~0.7! ~0.8! ~1.1! ~1.8! ~3.1!
n5154 n558 n5185 n583 n54

6 1.6 1.9 2.1 2.5 3.3 3.7
~0.7! ~0.8! ~0.7! ~1.3! ~3.1! ~1.9!
n5109 n5179 n518 n5129 n53 n546

8 0.6 0.8 1.6 1.8 2.0 3.0 4.0 4.0
~0.0! ~0.0! ~0.7! ~0.8! ~0.8! ~1.4! ~2.0! ~3.2!
n51 n51 n5142 n564 n5165 n587 n522 n52

10 0.6 0.8 1.5 1.5 1.7 1.9 2.1 2.8 3.3 4.8
~0.0! ~0.0! ~0.6! ~0.0! ~0.7! ~0.8! ~0.7! ~1.4! ~1.6! ~2.3!
n51 n51 n581 n51 n5117 n5150 n517 n571 n535 n510

~B!. a,b,c fit

Total no. of
clusters

Cluster

1 2 3 4 5 6 7 8 9 10

2 2.9 3.6
~2.2! ~2.3!
n5191 n5293

3 2.7 3.1 3.9
~2.3! ~1.9! ~2.4!
n5234 n581 n5169

4 2.9 2.9 4.0 6.4
~2.2! ~2.2! ~2.5! ~1.6!
n5229 n5123 n5130 n52

5 2.4 3.0 3.2 4.9 6.4
~1.9! ~2.3! ~2.2! ~3.0! ~1.6!
n5188 n581 n5153 n560 n52

6 2.3 2.9 3.3 3.7 4.8 6.4
~2.1! ~1.8! ~2.4! ~2.3! ~3.3! ~1.6!
n5140 n571 n5147 n5111 n513 n52

6 1.5 2.1 2.4 2.6 3.3 5.5
Hybrida ~0.3! ~1.5! ~2.4! ~1.1! ~3.0! ~4.8!

n52 n5138 n5152 n565 n5106 n521
8 0.3 1.3 2.6 2.6 2.7 3.3 3.7 4.8

~0.0! ~0.0! ~2.0! ~1.4! ~2.7! ~2.3! ~2.4! ~3.3!
n51 n51 n5127 n553 n576 n5115 n598 n513

10 0.3 1.3 2.4 2.8 2.8 2.8 3.2 3.4 3.5 4.9
~0.0! ~0.0! ~2.4! ~2.0! ~1.0! ~1.5! ~2.0! ~2.4! ~3.2! ~3.4!
n51 n51 n578 n5114 n513 n528 n576 n597 n57 n541

aHybrid5usea,b coefficients (c50) when original fit error<3.0 mm, usea,b,c coefficients when original fit error.3.0 mm.
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mammograms containing compressed breast borders
were classified to belong to a particular cluster. The clus
ing involved 470 CC-view borders which were classified in
six groups usinga and b parameters. Curves depicting th
mean1/21 standard deviation for several of the norma
are shown in Fig. 10~c!. Figure 10~d!depicts the mean rela
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at
r-
tive x-ray exposures at the film plane as a function of po
tion along the normals.

IV. DISCUSSION

Even though the original fits are better for three coe
cients~a, b, andc! instead of two~a andb! ~see Table I!,
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there is either only slight improvement@e.g., for 6 clusters in
the CC case~Table II A, B!# or no improvement@for the
MLO case ~Table III A, B!# in the clustering success a
measured by the mean rms distances between the indiv
borders within a class and the mean border or ‘‘filter.’’
fact, the overall mean rms error results listed in Table
indicate that, in general, better matches between the i
vidual borders and the filters are achieved when the filters
based upon thea,b clustering. Therefore, the 2-coefficient fi
is preferred.

The number of filters to be employed in our exposu
equalization method must be a compromise betw
goodness-of-fit and practicality. The results in Table IV
dicate the goodness-of-fit, as represented by the overall m
rms distance error, generally improves as the number of c
ters increases. However, this improvement is not very g
beyond three or four clusters. The individual cluster resu
in Tables II and III also exhibit this trend, and the figures
merit that were derived~see Fig. 7!peak at about three clus
ters. Therefore, three or four filter shapes for each view
pear to be optimum.

The hybrid approach of usinga andb values withc set to
zero when the original fit to the automatically traced bord
is less than or equal to a threshold value and usinga, b, and
c values otherwise improves the clustering relative to use
the conventionala, b, and c values in some cases~e.g.,
Table III B!, but degrades clustering in others~e.g., Table II
B!. However, for all of the hybrid cases shown in the tabl
the corresponding clustering that is obtained using the s
total number of clusters and only thea andb parameters of
the fit equationy5ax21bx3 yields superior results.

Use of theZ-scores of thea, b, andc values rather than
the values themselves did not improve clustering~Table II
B!. The effect of employing the two best clusters of six fro

TABLE IV. Overall mean rms distance between individual borders and ‘‘
ters.’’

Total no. of clusters

Overall mean rms error~mm!

CC-View
ab-fit

CC-View
abc-fit

MLO-View
ab-fit

MLO-View
abc-fit

2 3.02 3.11 2.54 3.34
3 2.73 3.05 2.33 3.18
4 2.68 2.97 2.25 3.24
5 2.67 2.98 2.19 3.11
6 2.66 2.97 2.18 3.12
8 2.48 2.91 2.12 3.07
10 2.48 2.89 2.09 3.11

6 hybrid - 2.69 - 2.68
6 usingZ-scores - 2.99 - -
6 ~2 best from 6 clusters
1recluster remaining
into 4 clusters!

2.63 - - -

7 ~2 best from 6 clusters
1recluster remaining
into 5 clusters!

2.63 - - -

8 ~2 best from 6 clusters
1recluster remaining
into 6 clusters!

2.62 - - -

8 hybrid - 3.03 - -
Medical Physics, Vol. 25, No. 6, June 1998
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an initial cluster analysis followed by reclustering the r
maining borders into 4, 5, or 6 groups was an insignific
(;1.2% – 1.5%) improvement.

Figure 10~c!provides an example of the variability in th
optical densities near the periphery of the breast that m
be expected for a set of compressed breasts classified to
a particular shape. The standard deviations of the opt
densities range from about 0.2 to 0.6 OD. This translates
fairly wide range of exposure values, especially in the h
density region just outside the breast border. Our calculati
show that, in this region, the mean exposure to the film
nus 1 standard deviation is about half the mean expos
value. The mean exposure to the film plus 1 standard de
tion could not be determined just outside the breast beca
these exposures are in the shoulder region of the film c
acteristic curve, where there are large uncertainties in
optical density to relative exposure conversion. Also, the

FIG. 5. Plots ofa andb values of originaly5ax21bx3 fits to borders of~a!
470 CC-view and~b! 484 MLO-view mammograms. Absolute values ofb
are plotted since the shapes of the curves for positive and negativeb-values
are mirror images of one another.
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tical densities in this region could not be digitized to go
accuracy with our film digitizer. A review of Fig. 10~c! also
shows that the optical density ranges within the breast
about as variable as those outside the breast for the mam
grams in this cluster. Some of this variability can be attr
uted to differences in breast thickness and composition in

FIG. 6. Pictorial representations of clustering. The borders that are class
into each cluster are translated and rotated to best match the average
~filter! for that cluster, and they are then re-fit with the equationsy5ax2

1bx3 andy5ax21bx31cx4. The resultinga,b, or a,b, andc coefficients
are plotted. Part~a! shows thea,b coefficients, and part~b! shows thea,b,
and c coefficients that are generated when the 470 CC-view borders w
clustered into 3-groups fora,b and 4-groups fora,b,c. ~The outlier in the
second group for thea,b,c clustering had~a* 1000, b* 100,000,c* 107!
coordinates of~5.1, 93.4,271.7! and was not plotted so the other da
points could be better visualized.! Part ~c! shows thea,b coefficients that
are generated when the 484 MLO-view borders were clustered into t
groups. The particular sets shown represent the better clustering re
based on the figure of merit criteria fora,b clustering, and a close to mini
mum overall mean rms error fora,b,c clustering~see Fig. 7 and Table IV!.
Medical Physics, Vol. 25, No. 6, June 1998
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regions and some can be attributed to variations in pho
timer response, technique~kVp!, and film processor condi
tions.

It is possible that up to three filters of different degrees
equalization will be necessary for the dense, mixed de
and fatty, and fatty breasts or for the thick, medium, and t
breasts in the same breast shape class. We plan to con
further studies to determine the acceptable range of varia
in the primary exposure profiles for each filter subclass. O
the filter subclass criteria are set and the breast images
grouped into the subclasses, the average primary expo
profile of the breast images in a given filter subclass will
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rder
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FIG. 7. Plots of clustering figure of merit as a function of number of clust
for the CC- and MLO-views. Both exhibit maximum figure of merits
about three clusters.

FIG. 8. Example showing overlay of ‘‘filter’’ contour and normals to th
contour on one of the mammograms that is classified to belong to the
shape. The mammogram was histogram equalized using NIH Image to
ter visualize the breast tissue out to the periphery. The rms distance err
the average ‘‘filter’’ shape is 3.19 mm for this case.
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946 Goodsitt et al. : Design of equalization filters 946
estimated by averaging the primary exposure profiles
tained from the individual mammograms in that subcla
The thickness profile of a filter for this subclass can then
derived for a given filter material.

The significance of this study is that, using a large d
base of about 500 mammograms in each view, the res
support our hypothesis that a small number of pre-fabrica
filters will be sufficient to allow selection of a nearly patien
specific filter for each breast being examined. This is
basis of our approach to exposure equalization in mam
graphic imaging. With this technique, the dynamic range
the x-ray intensities incident on the recording system will
reduced and the entire image can be recorded in the
contrast region of the film. The improved image quality c
be achieved without additional radiation dose to the patie
Furthermore, a very high-contrast mammographic techni
may be developed in combination with exposure equaliza
to further improve the signal-to-noise ratio~SNR! of the
subtle lesions in the entire breast. We expect that the o
mized technique will significantly improve the detectabili

FIG. 9. Examples of ‘‘filter’’ shapes.~a! represents the ‘‘filter’’ shapes de
rived when the 470 CC-view borders were clustered into 4 groups using
y5ax21bx3 fitting equation.~b! represents the ‘‘filter shapes derived whe
the 484 MLO-view borders were clustered into six groups using thy
5ax21bx3 fitting equation. The number of borders that are classified
being the same shape as the filters in~a! are: 235 for filter #1, 93 for filter
#2, 133 for filter #3, and 9 for filter #4. The number of borders that
classified as being the same shape as the filters in~b! are 129 for filter #1, 3
for filter #2, 109 for filter #3, 179 for filter #4, 18 for filter #5, and 46 fo
filter #6.
Medical Physics, Vol. 25, No. 6, June 1998
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of cancers in mixed and dense breasts and increase the
cacy of mammography as a screening and diagnostic too
breast cancers.

In this work, we assumed that an rms fitting error betwe
the filter contour and a particular breast border of 2 or 3 m
would be acceptable. We based this assumption on the
that the filter will be smoothly shaped in the thickness
mension as well, which should result in a smooth expos
gradient rather than a step function. Therefore, small g
between the breast and filter borders should be smoothed
in exposure space.

Mismatches between the filter exposure compensa
profiles and the breast attenuation profiles can in prac
result in artifacts. For example, if a portion of the filter e
tends too far toward the inside of the breast, the exposur
this region will be reduced too much, resulting in a light~low
optical density!area in the mammogram. Such overcompe
sation is likely to occur in the MLO-view in the pectora
region where the filters, in general, do not match the bre
shapes as well. The filters may have to be designed to h
more gradual compensation in these regions to reduce
facts. To better understand the potential for artifact prod
tion and the acceptable rms fitting errors, we are perform
a simulation study in which exposure profiles generated
the present study are employed to construct simulated fil
which are then applied to images belonging to particu
compressed breast shape classes. The results of that
will be presented in a future publication.

Finally, it should be mentioned that our plans for th
eventual implementation of the equalization technique do
require the use of a pre-exposure x-ray mammogram of
patient for filter selection. Rather, the filter will be select
based on the measured thickness of the patient’s compre
breast, the breast contour as determined from a visible l
image of the compressed breast recorded by a TV cam
that is interfaced to a computer, and the clustering res
gained from a large database of digitized mammograms w
corresponding compressed breast thickness information
described in this study. Fabrication of individual filters for
functional system could be accomplished with either a co
puterized milling machine or stereolithography. Plast
doped with metals such as aluminum and copper might
employed as the filter material in either case to reduce
required filter thickness. The filters would be automatica
positioned by a microprocessor controlled stage that tra
lates and rotates the appropriate filter to a location such
the projected filter exposure profile matches the compres
breast border derived from the TV camera image. The fi
positioner would be located close to the x-ray tube to mi
mize x-ray scatter to the breast and minimize artifact prod
tion. The individual filters could be placed in the position
manually, or an automated filter wheel could be develop
Lastly, the entire filter selection/positioning process sho
take place in only a few seconds to minimize patient disco
fort from any additional time the breast must remain co
pressed.
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FIG. 10. ~a! Mean optical density as a function of position along normals to the filter when the filter is aligned with the automatically detected bo
mammograms classified to belong to the filter shape. For the particular case shown, 231 CC-view borders were classified to match the filter. Pixe
each normal corresponds with the filter edge. Pixels less than 11 are outside the breast, and those greater than 11 are inside the breast. Norm
middle normal~for a symmetric breast, it is closest to the nipple position!. ~b! Magnified view showing the details of the high optical density region in p
~a!. ~c! Mean optical density1/21 standard deviation for selected normals.~d! Mean exposures corresponding to the optical densities in~a!.
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