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Purpose: A first-arrival travel-time sound speed algorithm presented by Tarantola1

is adapted to the medical ultrasonics setting. Through specification of a covariance

matrix for the object model, the algorithm allows for natural inclusion of physical a

priori information of the object. The algorithm’s ability to accurately and robustly

reconstruct a complex sound speed distribution is demonstrated on simulation and10

experimental data using a limited aperture.

Methods: The algorithm is first demonstrated generally in simulation with a

numerical breast phantom imaged in different geometries. As this work is motivated

by our limited aperture dual sided ultrasound breast imaging system, experimental15

data is acquired with a Verasonics system with dual, 128 element, linear L7-4 arrays.

The transducers are automatically calibrated for usage in the eikonal forward model.

A priori information such as knowledge of correlated regions within the object is

obtained via segmentation of B-mode images generated from synthetic aperture

imaging.20

Results: As one illustration of the algorithm’s facility for inclusion of a priori

information, physically-grounded regularization is demonstrated in simulation. The

algorithm’s practicality is then demonstrated through experimental realization in

limited aperture cases. Reconstructions of sound speed distributions of various25

complexity are improved through inclusion of a priori information. The sound speed

maps are generally reconstructed with accuracy within a few m/s.

Conclusions: This paper demonstrates the ability to form sound speed images

using two opposed commercial linear arrays to mimic ultrasound image acquisition30

in the compressed mammographic geometry. The ability to create reasonably good

speed of sound images in the compressed mammographic geometry allows images to

be readily co-registered to tomosynthesis image volumes for breast cancer detection

and characterization studies.
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I. INTRODUCTION35

Speed of sound information when added to B-mode ultrasound images and other modali-

ties improves detection of breast cancer lesions2–4, with a recent study detecting 100% of the

46 cancer lesions included in the study5. Malignant breast cancer lesions have been shown

to have an elevated speed of sound of greater than 1500 m/s in comparison to breast fat

tissue6, with some overlap with other breast tissues. Some lipozarcomas, <0.01% incidence,40

may be rare exceptions3,7.

Speed of sound imaging of the breast has been pursued in a number of geometries, e.g.

ring arrays2,6 and rotating opposed arrays3,4. Several reconstruction algorithms have been

devised, from low-order first-arrival flight time2,6, diffraction tomography methods8 through45

higher-order iterative Born approximation9, and full-wave inverse scattering methods3. The

main limitations of high order algorithms utilizing the full wave acoustic equation is the

ability to characterize the ultrasound transducers to sufficient accuracy in order to properly

model the transducers, which remains an active field of research10–14. Low order algorithms

such as first-arrival methods require only time of flight extraction and minimal data pro-50

cessing, making their practical realization readily possible as illustrated by systems2,6 in

existence presently.

Flight-time algorithms sometimes rely on ad hoc tuning of heuristic regularizations and

has difficulty producing accurate reconstructions when tomographic angles are limited15–17.55

A more flexible first-arrival flight-time algorithm presented by Tarantola1 is adapted to the

medical ultrasonics setting in this paper. Through specification of a covariance matrix for

the object model, the algorithm allows for natural inclusion of physical a priori information

of the object. The details of the inverse method will be delineated and results will be shown,

first using simulated data in various aperture configurations.60

As it was motivation for our work, particular emphasis is placed on the algorithm’s poten-

tial use in limited angle tomography. Specifically, we are studying imaging employing a pair

of opposed arrays in our Breast Light and Ultrasound Combined Imaging (BLUCI) system18.

This device operates in the compressed breast geometry employed in mammography to allow65
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more accurate comparison of ultrasound and either mammographic or x-ray tomosynthesis

images. The various steps necessary to implement the algorithm experimentally is described

using an opposed array setup with various sound speed phantoms, including automatic

position calibration of the transducers and forward model considerations.

70

This paper serves as a proof on concept as it has only been applied to phantoms and will

need additional research for practical use in a clinical setting. Many approaches have been

taken to compensate for very limited information available in limited angle tomography19,20.

However, the improvement in that direction from employing the axial resolution of pulse echo

ultrasound holds promise for dramatic, practical improvements in limited angle tomography.75

II. METHODS

II.A. Theory

The method’s mechanics are briefly described below. The reader is referred to Tarantola1

for additional background.80

The eikonal equation was chosen as the forward model:

|∇τ(x⃗)| = n(x⃗) (1)

. . . where τ denotes the eikonal, n a propagation time-cost, and x⃗ a point in the propagation

domain. In the acoustic context the time-cost n is the slowness (inverse speed) s and the

eikonal is the shortest time required to travel from a set sources to a given point within the

propagation domain. Validity of the model requires that the characteristic scale of variation

of the slowness be much greater than the characteristic wavelength.85

The eikonal equation has two primary advantages as a forward model: 1) it may be

solved efficiently with multistencil fast marching methods (MSFM); and 2) requires only

knowledge of the spatial distribution of sources, allowing the complexity of a complete

source characterization to be avoided.90
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An estimate of the slowness contrast profile m⃗ is obtained via minimization of the cost

function:

2S(m⃗) =
∥∥∥g⃗(m⃗)− d⃗

∥∥∥2
D
+ ∥m⃗− m⃗a∥2M (2)

. . . where g⃗ represents the forward operator which, acting on the slowness (inverse velocity)

profile, m⃗, (g⃗(m⃗)) yields predicted flight-time data, d⃗ represents the measured or simulated

flight-time data, and m⃗a is an a priori expectation of the profile m⃗. The weighted norms

∥·∥2D and ∥·∥2M are defined:

∥a⃗∥2D = a⃗tC−1
D a⃗, ∥a⃗∥2M = a⃗tC−1

M a⃗, (3)

. . . where CD and CM are the data and profile covariance matrices respectively and a⃗t denotes

the transpose of a⃗. Written explicitly the cost function takes the form:

2S(m⃗) =
(
g⃗(m⃗)− d⃗

)t
C−1

D

(
g⃗(m⃗)− d⃗

)
+ (m⃗− m⃗a)

t C−1
M (m⃗− m⃗a)

(4)

The predicted data g⃗(m⃗) and model parameter m⃗ can be interpreted as jointly Gaussian

random variables with means d⃗ and m⃗a, respectively. Our application deviates slightly from

Tarantola as a slowness contrast function is applied for m⃗ instead, obtained by subtracting

background slowness, and m⃗a is set to 0. g⃗(m⃗) will be computed accordingly given the95

contrast and background slowness.

The cost function is comprised of a weighted data and model space, each with a covari-

ance matrix that allows for inclusion of a priori information in the reconstruction. The

data covariance matrix (CD) consists of observed variances of respective flight times (mea-100

surement error), while the model covariance matrix (CM) adjusts for expected sound speed

values. Further discussion of the model and data covariance matrices is found in §B2.

The cost function is minimized via nonlinear conjugate gradient updates. The iterations

stop when the problem reaches convergence, whose criterion is based on the sum of squared105

residuals between measured and predicted flight-time data from our forward model for all

transmit-receive pairs. For this problem, the stopping criterion is triggered when the frac-

tion of residual error |rn|
|r0| reaches a specified tolerance, where rn is the residual error at the
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Fig. 1: Schematic of inverse problem algorithm is shown. The iteration starts with an

initial guess using a homogeneous medium, and ends when the problem has converged

when the misfit error satisfies a chosen criterion.

nth iteration.

110

High accuracy of the forward eikonal solver and precise knowledge of transmitter and

receiver locations to within fractions of a wavelength in a practical setting is essential for

convergence. Calibration methods using two commercial transducers mounted in an op-

posed array geometry will be demonstrated. These methods have been sufficiently accurate

to ensure convergence in our inverse problem.115

The reconstruction algorithm is summarized below and schematically in Fig. 1. The algo-

rithm is iterative and proceeds through the following series of steps until the convergence

criterion is met:

1. Compute flight-time map by solving the eikonal equation using current slowness map.120

Initially, m⃗ = m⃗a, the a priori expectation of the model.

2. Extract flight-time data at receivers and construct a linearized forward model for use

in optimization of cost function.

3. Estimate the slowness contrast by minimizing cost function with appropriate con-

straints.125

4. Repeat steps until convergence.

II.B. Application

II.B.1. Eikonal Forward Model

To compute the eikonal equation, a 2D multi-stencil fast marching algorithm is implemented21,22.

Given a source location and a speed map, the model outputs a time-of-flight map from the130

given source to locations in physical grid space. As receiver location does not always coincide
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with the chosen grid, bilinear interpolation of four adjacent nodes is performed to extract

the flight-time at the receivers.

To compute the path length matrix for the linearized forward model, the path is first135

traced in physical space following the gradient of the flight-time map from the receiver

(which provides a direction vector onto which to traverse) until it reached the source. The

path length matrix is then constructed with an appropriate ray thickness to avoid overfitting

of the inverse problem on the desired reconstructed grid.

II.B.2. Choice of Covariance Matrices140

The primary advantage of the chosen cost function is regularization. The model co-

variance matrix (CM) and a priori expectation of the model (m⃗a) allow for inclusion of

a priori information in the reconstruction: elements of the model m⃗ may be, e.g., con-

strained about particular values through appropriate selection of expectation values (m⃗a)

and variances (diagonal of CM) or correlated with other elements through specification of145

their covariance (CM). Beyond providing for natural, physically-motivated regularization

through specification of a priori model variances, when additional a priori information is

available, significant improvement in image quality can be achieved, especially in limited

aperture configurations. Construction of the covariance matrices is examined in detail below.

150

To construct the covariance matrix, the values are denoted as follows:

C =



ρ11σ1σ1 ρ12σ1σ2 ρ13σ1σ3 ..

ρ21σ2σ1 ρ22σ2σ2 ρ23σ2σ3 ..

ρ31σ3σ1 ρ32σ3σ2 ρ33σ3σ3 ..

.. .. .. ..


(5)

where ρij is the correlation coefficient between the ith and jth vector element, and σi is

the standard deviation set for the ith element. Note that the correlation coefficients on the

diagonal will always be equal to 1.

A simple 9-pixel image is shown in Fig. 2 to illustrate construction of the covariance

matrix. Assuming correlation coefficients of 1 between pixels 4, 7, and 8 and standard
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Fig. 2: (Left) Example 9-pixel image to illustrate covariance matrix construction. (Right)

A 2D map of the covariance matrix when pixels 4, 7, and 8 are correlated with a coefficient

of 1.

deviations of 1 for every pixel, the covariance matrix will resemble a 9 by 9 matrix of:

C =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 1 1 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 1 1 0

0 0 0 1 0 0 1 1 0

0 0 0 0 0 0 0 0 1



(6)

Throughout the paper, selecting probable contiguous regions will be used to improve image155

reconstructions by applying a correlation coefficient to the proper pixels within the covari-

ance matrix.

The data covariance matrix CD encompasses experimental noise. As the noise is usually

independent from acquisition to acquisition, CD is comprised of a diagonal matrix with160

elements of σ, the amount of noise expected from our data acquisition.

The model covariance matrix CM controls the extent to which the model function varies.

Each pixel in the image is treated as a Gaussian random variable with a corresponding mean,

m⃗a, and standard deviation. Note that if each pixel is deemed independent and allowed to

vary identically, CM is reduced to a constant diagonal and the problem is simplified into

Tikhonov regularization. However, since classic Tikhonov algorithms are typically applied

in unweighted spaces, the tuning parameter must be frequently optimized to accommodate

different experimental setup and reconstruction parameters. Incorporating covariance matri-

ces in weighted spaces eliminates the need for adjusting this tuning parameter, but rather,
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allows regularization based on physical expected values for any given experimental setup

and domain. Furthermore, CM enables spatial regularization via correlation coefficients ρij

between image pixels. In the context of this problem, the variances in CM were chosen as

follows:

σ = max (|sminimum − sbackground|, |smaximum − sbackground|) (7)

Where sbackground is the slowness of the background, and sminimum and smaximum are the

minimum and maximum slowness the model function is expected to attain.

165

Although the size of the covariance matrices is large (N2 x N2), with N being the number

of pixels in the image, they are in fact sparse and symmetric. The inverse covariance

matrices are estimated using the LSQR method in the context of the equation without

direct, prohibitive computation.

II.B.3. Time-of-flight Picker170

There are several approaches to time-of-flight extraction, with robust correlation meth-

ods given correct windowing23 and first arrival methods such as the Akaike Information

Criterion (AIC)16 stemming from seismology. A combination of both methods are used to

extract time-of-flight information from our experimental data.

175

An empirical matched filter is first constructed using a water shot dataset for calibration.

Using the weighted AIC criterion16, the window of each receive pulse is extracted by deter-

mining the time that the pulse arrives, and as the criterion works symmetrically, the time

the pulse finishes as well. The pulses are then averaged to produce a mean receive pulse

over all transmit-receive pairs. The transmit pulse in the beginning of each trace is averaged180

across all traces to obtain an averaged transmit. The mean receive pulse is correlated to this

transmit section to obtain the system lag, that is, the delay before the transducer actually

begins transmitting pulses. The mean receive pulse is padded with the measured offset to

generate the empirical matched filter.

185

To extract time-of-flight information from experimental data, the first break in the sig-

nal is first detected using the AIC picker. A correlation based method with interpolated

9



RF traces is then implemented using a tight window centered at the detected AIC break.

This approach yields a time-of-flight matrix with excellent accuracy when tested with the

watershot dataset, with average error ranging from 0.02-0.05 µs, well within the resolution190

of the sampling rate of the Verasonics ultrasound system.

II.C. Image Reconstruction

II.C.1. Simulations

The algorithm is first demonstrated in a simulated ring aperture configuration. 128195

transmitters and receivers are placed in a 6 cm diameter ring with elements equidistant to

each adjacent element. Simulated time-of-flight data is obtained via the forward eikonal

solver given different speed of sound maps. The imaged object is a numerical breast phan-

tom derived from a breast phantom at Karmanos Cancer Institute, as depicted in Fig. 3,

containing a non-uniform skin layer and fat spheres of 1470 m/s, glandular tissue at 1515200

m/s, tumor nodules at 1550 m/s, and a background of 1500 m/s. This phantom is scaled

slightly smaller than a traditional breast phantom to allow comparison to later linear aper-

ture simulations, and also to facilitate faster computation. The values lie within the ±7%

now being reported in breast tissue with a range from 1410 for fat tissue to 1610 m/s for

cancers3. Random noise with a standard deviation of 0.02 µs is added to the generated205

time-of-flight dataset.

To begin the iterations, the initial guess for the forward model is set to a homogeneous

medium coinciding with the background of 1500 m/s. To aid the inversion, the covariance

matrix is constructed to include a priori information on expected sound speed values and210

data measurement error. Since sound speed values in breast tissue reside in the 1400-1600

m/s regime, we set the bounds and compute σm accordingly via Eq. 7.

σd is set to 0.05 to reflect practical data measurement error as found in calibration. A

first reconstruction is done solely with this available a priori information without additional215

regularization parameters; we shall refer to this as basic regularization throughout the pa-

10



Numerical Breast Phantom

Lateral [cm]

A
xi

al
 [c

m
]

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 3: (Left) Numerical breast phantom used for simulated reconstructions. The lesions

include two high speed tumor nodules, one irregularly shaped, at 1550 m/s, and two fat

nodules at 1470 m/s. An irregular skin layer surrounds the phantom with a speed of sound

value of 1470 m/s. The entire phantom is placed in a simulated water background of 1500

m/s. (Right) The phantom is manually segmented into contiguous regions to obtain

correlated regions for a priori information.

per. This regularization is primarily driven by expected values of the model function and

independent of reconstruction domain and setup. Correlation coefficients between all pixels

are set to 0.

220

To further improve the image, additional a priori information can be introduced to the

problem such as location of contiguous structure locations and known sound speed regions

such as that of homogeneous water background. Manual segmentation of each region is

shown in Fig. 3. With this information, the background corresponding to water is con-

strained to minimal variation by setting the standard deviation of these pixels to a σm225

reflecting 1 m/s variations. The pixels encompassing homogeneous regions are correlated,

that is, the correlation coefficient ρij were set to a non-zero value of 0.003 when the ith and

jth pixels are within a region considered homogeneous. Image reconstruction using data
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acquired with a ring aperture with basic and additional a priori information are depicted

in Fig. 6.230

The effect of noise on the proposed reconstruction method is examined to demonstrate the

robustness of the algorithm. Two primary sources of noise are tested: noise in time-of-flight

measurements and location of transmit and receive elements. Images are reconstructed us-

ing time-of-flight measurements injected with a Gaussian noise distribution with a standard235

deviation of 0.1 µs, corresponding to approximately half a waveform cycle operating at 5

MHz. Noise is also introduced in transducer location by varying element locations with

a deviation of 0.1 mm from its actual location, corresponding to a λ/3 discrepancy. The

resulting reconstructions are shown in Fig. 7.

240

As our data acquisition setup in the BLUCI system uses a limited aperture, the rest of

the paper will focus on investigating the algorithm in a limited aperture geometry. The

same phantom is imaged in this geometry to demonstrate the smearing artifact highly ubiq-

uitous in such acquisitions. To simulate two linear array transducers, 128 transmitters and

receivers are placed on opposite sides at a distance of 6 cm at a spacing of 300 µm. The245

reconstruction with basic and additional a priori regularization are demonstrated in Fig. 8.

As the choice of correlation coefficient affects the improvement of the reconstruction, using

different correlation values is investigated in Fig. 9 using this limited aperture.

II.C.2. Experiments

Two ATL L7-4 linear arrays (ATL/Phillips, Bothell, WA) are mounted opposing each250

other in a water tank. These probes are connected to the Verasonics ultrasound system

which allow for independent channel and element control for speed of sound data acquisi-

tions (Fig. 4). The arrays are comprised of 128, 300 µm elements, which at a distance of 5-6

cm provided approximately an angular range of 30o. The exact locations of the transducer

elements are determined via careful water-shot calibration.255

Data is acquired at a frequency of 3.75 MHz. Although the frequency is slightly below

the bandwidth of the transducer, the pulses look well-formed without signal-to-noise ra-
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Fig. 4: Experimental setup with two L7-4 linear arrays. The distance between both

transducers was approximately 5 cm apart, which is the average thickness of a compressed

breast. A worm rubber contrast is placed in the center and the tank is filled with water for

experimental data collection.

(a) Crescent (b) Dual stranded

Fig. 5: Close up pictures of worm rubber phantoms used.

tio complications. A lower frequency is desirable to ease computation time as the grid is

constructed based on the wavelength. Each element on the transmitter is fired once and260

recorded on all 128 elements of the receiving transducer for a full RF dataset of 128 x 128

traces.

For each reconstruction, two data acquisitions are obtained: a water shot for system

calibration, and an object shot. A 12.5 mm diameter cylindrical phantom made of rubber265

used for fishing worms (MF Plastics, Ft. Worth, TX) measured to have a speed of sound

of 1406 m/s is imaged, along with a crescent shaped and a dual stranded worm rubber

phantom separated by approximately 5 mm (Fig. 5).

The reconstruction of the cylinder was initially performed with basic regularization270

(Fig. 10). Each ray is modeled as a generalized normal distribution where points within the

main ray thickness of 300 µm are weighted heavily with a rapid falloff for points located

approximately 50 µm beyond the ray thickness specified by a β of 0.7. The ray thickness was

chosen to be 300 µm to mirror the element spacing, and is important to prevent over-fitting

of the problem solution. The chosen wavelength necessitates a finer grid for proper eikonal275

computation; thus, adopting a pencil ray (thin line) will result in many untraversed pixels

in the image, and consequently, the corresponding pixels may not be updated properly.

Distributions specified by various β parameters were examined, but variations showed only

minor changes in the image. It is only important that there is slight spatial overlap between

adjacent rays to minimize over-fitting.280
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To introduce additional a priori information, a grayscale image was obtained using a

synthetic aperture focusing technique. Via manual segmentation of this image, local pixels

were correlated within the cylinder for an improved reconstruction. The resulting image is

shown in Fig. 11.285

To investigate the sensitivity of a priori information accuracy, the chosen region was

intentionally offset in two scenarios: a correlated region was placed largely outside the

cylinder to mimic segmenting a non-elevated sound speed region, and a region overlapping

both the cylinder and the water background was examined, mimicking an improperly seg-290

mented tumor. The reconstructed images resembles that of the reconstruction with basic

regularization as depicted in Fig. 12.

The allowed tolerance for deviation of segmented a priori regions was further examined,

as segmentation may not be very precise in a clinical setting. The correlated region was295

offset between 0.3 to 6 mm in both the axial and lateral directions, and the corresponding

average sound speed was calculated using a circular region with half the diameter of the

cylinder in Fig. 13. This smaller region was used to avoid errors due to inclusion of water

background pixels near the edge of the cylinder.

300

As the precise shape of the a priori region may be difficult to acquire in patient data,

an ellipsoid with different aspect ratios, that is the ratio of the major to the minor axis,

was entered as the correlated region to test the effects of shape deviation. Lateral to axial

aspect ratios from 0.5 to 2 in increments of 0.1 were examined. The average sound speed

was computed similarly to the previous simulation.305

Several different phantoms were imaged, including a crescent shaped and dual strand

phantom of the same material. For a more complex object, a breast mimicking phantom

(Madsen, Madison, WI) with different speed of sound materials ranging from 1412 m/s

to 1539 m/s was also examined. Experimental, limited angle transmission data from this310

phantom with beam aberrating ripples in subcutaneous fat and challenging long lines of high

contrast borders nearly bisecting the lesions was reconstructed with the inclusion of a priori
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information, shown in Fig. 15.

III. RESULTS

III.A. Simulations315

In the ring aperture simulations, although slightly noisy, the problem converges and yields

the expected speed of sound image with basic regularization in all cases, including those

with errors in element location and flight-time in Fig. 7. Regularization with additional

a priori information provides a more refined image (Fig. 6).

320

For the linear aperture simulations in Fig. 8, reconstruction with basic regularization

yields a very poor image, as expected, due to the limited availability of angles for recon-

struction. The discerned lesions are elongated, with the high speed of sound lesions barely

visible. The speed of sound values within the distinguishable legions are also not accurate

as energy is disseminated along the axial direction. Because a limited aperture is employed325

in this geometry, elongation and spread ray artifacts similar to those found in other limited

angle acquisitions such as in X-ray tomosynthesis were expected. The resolution in the

lateral direction is decent but suffers greatly in the axial direction24.

To improve the reconstructed image using a priori knowledge of homogeneous regions,330

such as that obtainable from pulse echo imaging, the approximate pixels in regions are

correlated to further constrain the minimization problem. The resulting image contains

highly suppressed artifacts and now resembles the numerical phantom, with speed of sound

values deviating a few m/s from the actual value.

335

The choice of correlation coefficient also affects the improvement of the reconstruction.

Reconstructions with different correlation values are demonstrated in Fig. 9 using this

limited aperture. Higher correlation coefficients produce a greater improvement in the re-

constructed image, although the highest value chosen was only 0.01.

340
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Fig. 6: (Left) Reconstructed image of the numerical breast simulation with ring aperture

acquisition using regularization based on information on data and model space, including

expected speed of sound range and errors in data measurements. The major landmarks of

the phantom are reconstructed and discernible in the image. (Right) Reconstructed image

with simulated ring aperture acquisition including a priori information, utilizing

correlation between assumed homogeneous pixels. The resulting image has improved

contrast and sharper edges as expected.

III.B. Experiments

When a priori information was applied to the algorithm, the reconstructed cylinder

showed sound speed values of much better accuracy, with values in the object dipping to

approximately 1400 m/s compared to 1440 m/s (Fig. 11). When the region was wrongly

segmented, the resulting image shows little improvement over the original image in Fig. 10,345

with additional artifacts corresponding to the edge of the correlated region within the cylin-

der (Fig. 12). This result implies that having proper a priori information is necessary to

facilitate an improved image.

The accuracy of a priori information was examined by offsetting the segmented region350

in both the axial and lateral direction as shown in Fig. 13. There is a small tolerance of

1 - 1.5 mm of error in region segmentation in this controlled experimental setup before

the reconstructed image starts to degrade towards that of no a priori information. When

the offset is large, the error in sound speed values in the axial direction becomes larger

compared to a similar offset in the lateral direction. The results imply that axial accuracy355
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Fig. 7: Simulations to examine the effect of noisy measurements on the proposed

algorithm. (Left) Reconstructed image of the numerical breast phantom with ring aperture

acquisition using noisy time-of-flight data, with a 0.1 µs standard deviation. (Right)

Reconstructed image using noisy element location, with a deviation of 0.1 mm.
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Fig. 8: (Left) Image reconstructed using simulated limited aperture acquisition with

regularization based on a priori information on data and model space. Diamond shaped

lesions are noted in the approximate expected locations. Image quality however, is very

poor due to limited angle views. (Right) Images reconstructed using simulated limited

aperture acquisition with regularization via correlation between assumed homogeneous

pixels. The phantom is recovered with suppressed limited aperture artifacts.
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ρ=0.00001 ρ=0.0001

ρ=0.001 ρ=0.01

Fig. 9: Images reconstructed from simulation of a single cylindrical object using different

correlation coefficient values over the homogeneous region. As the value increased, the

smearing artifact due to a limited aperture is diminished. The speed of sound value

obtained in the object monotonically approaches the correct value as the correlation

coefficient increased.

of the applied a priori information can be detrimental if not chosen carefully; fortunately, if

extracting information from pulse echo ultrasound, the axial resolution is reasonably good

within this tolerance threshold.

The effect of an improper shape was simulated by modifying the correlated region to360

ellipsoids with different lateral to axial aspect ratios. The errors in sound speed values

were much less than those observed when using a wrongly located region, with an average

of <0.5% error. This result suggests that determining the exact boundary is less likely to

dramatically skew the sound speed values provided that the region is in the correct location.
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Fig. 10: Experimental data is taken with 128 transmitters and 128 receivers placed in an

opposed array geometry with a cylinder of 1406 m/s placed in the center. The object is

recovered, and the diamond shaped point spread function is noticeable. The speed of

sound within the contrasting cylinder dips to approximately 1440 m/s due to the smearing

artifact.

365

Further reconstruction examples were investigated, each introducing a priori information

extracted from segmenting the accompanying B-mode image. Both the crescent object and

the dual strands were recovered with minimal artifacts (Fig. 14). For the breast-mimicking

phantom, the calculated speed of sound value for the fat and glandular regions closely

matched the actual values, with deviations of a few m/s as shown in Fig. 15. The hypoe-370

choic lesion exhibited a large speed of sound contrast with values around 1515 m/s relative

to the central background of 1457 and fats of high and low speeds of sound on the left

and right, respectively, of 1445 and 1415 m/s, which was less than the expected 1539 m/s.

This occurred possibly because the lesion resided near the edge of the image, and thus had

an even more limited number of angled views in that region and was susceptible to large375

smearing artifacts. This result demonstrates the importance of positioning the desirable

ROI well within the transducer’s field of view to minimize the effects of using a limited

aperture.
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Fig. 11: Pixels in the homogeneous region are correlated to aid the inversion of the

experimental dataset. The reconstructed speed of sound value reaches approximately 1400

m/s, which is more accurate than the inversion without regularization using correlated

pixels.
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Fig. 12: Pixel correlation of wrongly selected regions, depicted with a dotted outline, show

that there is little improvement compared to the original image. When the correlated

region encompasses both the cylinder and the background, there are small additional

artifacts introduced into the reconstruction.

IV. DISCUSSION380

The advantage of this algorithm over other similar algorithms is the ability to define

regularization parameters directly based on the physical information of the problem and
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Fig. 13: The segmented region of correlation was offset in the axial and lateral direction

between 0.3 and 6 mm to investigate necessary accuracy of a priori information to improve

image reconstruction. The results suggest an error tolerance within a few mm is still

acceptable. Investigating an improper shape for the correlated region by using ellipsoids

with different lateral to axial aspect ratios shows that sound speed errors lie typically

within 6-7 m/s. The red dotted line represents the true sound speed value of the cylinder.

incorporate spatial a priori information. The efficacy of the algorithm is first demonstrated

generally in simulation using a traditional numerical breast phantom in two aperture ge-

ometries: the common ring aperture, and the opposed array geometry as utilized in our385

BLUCI system.

Using the ring aperture, the speed of sound image is improved by correlating homoge-

neous regions within the phantom; the edges are not only sharpened but also the speed of

sound values are slightly more accurate in comparison. For instance, the large fat nodule390

goes from a value of approximately 1461 m/s to 1469 m/s, while the tumor nodule improves

from 1549 m/s to 1550 m/s.

While this algorithm is useful generally with various aperture configurations, this algo-

rithm is especially useful in improving image quality when tomographic angles are limited.395

The motivation to explore the algorithm in the dual opposed array geometry was to syn-

ergize with our BLUCI system. In the compressed breast geometry, there is no freedom
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Fig. 14: Reconstructed image of crescent shaped and dual strand phantom with a priori

information using a limited aperture.

(a) Grayscale

A
xi

al
 [c

m
]

Lateral [cm]

Breast Phantom

 

 

−2 −1 0 1 2

1

2

3

4

5

6

7

8 1380

1400

1420

1440

1460

1480

1500

(b) Speed of sound

Fig. 15: a) B-mode grayscale image of a breast mimicking phantom. The phantom is

comprised of different speed of sound tissue mimicking materials including fat, glandular

tissue, and hypoechoic lesions. b) Reconstructed speed of sound map of phantom.

of rotation to obtain angles from the side of the breast. Even if transducers were placed

accordingly to acquire the missing angles, the acoustic path length would be quite long,

subject to high attenuation and complex beam paths. However, some advantages of the400

opposed array configuration include traveling through a smaller thickness of the breast,

averaging 6 cm instead of approximately 12-15 cm through the coronal breast, allowing use
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of a higher central carrier frequency without increased signal attenuation.

Various reconstruction algorithms employ total variation (TV) regularization20,25, which405

is highly effective in reducing noise while preserving edges. However, with a limited aper-

ture acquisition, the fundamental image includes phantom edges in the axial direction that

are inconsistent with the true object, such as that shown in our cylinder reconstruction in

Fig. 10. TV regularization by itself would be ineffective given our data acquisition setup, as

the total variation of the image “noise” will exacerbate the gradual smearing artifact.410

This paper’s algorithm avoids using a full wave nonlinear model because such algo-

rithms are difficult to implement due to large computational cost and hardware memory

limitations3,4. Furthermore, the use of a commercial ultrasound transducer with an eleva-

tional focusing lens will have to be characterized13,14 with high accuracy to obtain a proper415

forward model. Coupled with the inherent problems of limited tomographic angles, these

algorithms may not converge due to the ill-posedness of the problem.

For experimental data, obtaining a precise forward model of the problem is crucial for

a working algorithm. As commercial transducer arrays are used, a matching lens layer is420

placed in the forward solver grid for more accurate results. Setting the values that corre-

spond to the pixels that encompass the entirety of the lens is trivial–at the edges, where

the lens does not occupy the complete pixel, a mean sound speed is calculated based on the

proportion of the pixel the lens occupied.

425

In order to achieve the level of accuracy necessary for speed of sound reconstructions,

grid spacing must be sub-wavelength in size. However, the grid must not be too fine be-

cause memory storage and computation complexity increases with O(N2), with N being the

number of pixels. To find the optimal grid cell size, the error found with different cell sizes

is compared with analytical truth based on Fermat’s principle. Given our linear array setup430

with focusing lenses, a grid cell size of λ/6 is ideal to achieve sufficient accuracy. Increasing

the precision of the grid past that level depicts little increase in accuracy at a large cost of

memory and computation.
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An automatic position characterization of the opposed arrays is performed to obtain435

the locations of each transmit and receive element. Assuming that the transducers do

not move once mounted, an inverse problem is solved as follows. The transmit transducer

is first set to a fixed location. The algorithm searches for a vector that delineates the

location of the receive transducer in terms of axial and lateral distance with respect to

the transmit transducer, along with rotation of the transducer where the axis of rotation440

is perpendicular to the face of the transducer. A minimization problem is solved with an

initial crude guess of the axial distance between the transducers and the lateral distance and

rotation initialized to 0. In essence, the position of the receiving transmitter is adjusted to

minimize the misfit in the cost function defined as the residual sum of squares between com-

puted time-of-flight via the forward model and measured time-of-flight using watershot data.445

Note that this minimization problem assumes that the transducers were lined up eleva-

tionally because the technique cannot differentiate the difference in time-of-flight when the

receiving transducer is in plane with the transmitting transducer, or within the arc of the

same distance. The position inversion algorithm is computationally expensive but simply450

parallel. The inversion is performed by enabling shared memory access within the operating

system and taking advantage of a multiple core CPU, readily available within the MATLAB

file exchange26. This library was also used for parallel computations required in the speed

of sound inversion algorithm as well.

455

The reconstructions were performed on a twelve-core i7 processor machine with each

iteration taking approximately three minutes. The number of iterations required for con-

vergence depends on the complexity of the imaged object, with the cylinder taking five

iterations and the more complex breast phantom taking approximately sixteen. To speed

up reconstructions, future rendition of the code can be ported to languages more suitable460

for scientific computing such as Fortran or C, and can also take advantage of multi-core

GPU processors as well.

The proposed algorithm allows physically-driven regularization of the problem via inclu-

sion of a priori information. A priori information includes, but is not limited to, knowledge465

of expected speed of sound values, data measurement error, location of background regions
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(water or gel interfaces), and structure information. In a practical setting, this a priori infor-

mation can be obtainable from fat vs. high water content or connective tissue segmentation

of pulse echo images of the object, which can be generated from the same RF dataset used

to construct speed of sound images. Information from other modalities such as a previous470

breast or chest MR or CT exam could also be used. Segmentation and registration meth-

ods for proper a priori information may be investigated for this application in a future study.

With our BLUCI system, current studies include imaging the breast from both sides,

photoacoustic tomography of the breast in the same geometry27, and registration of BLUCI475

images with combined ultrasound and tomosynthesis images obtained in a different system28.

The ability to create reasonably good speed of sound images in the compressed mammo-

graphic geometry will yield manifold benefits in our system, as they may be more readily

co-registered to tomosynthesis image volumes than can pulse echo ultrasound for breast

cancer detection and characterization studies. Our work with two sided pulse echo imaging480

in the lightly compressed breast18 should allow visualization of the distal side of a breast

cancer which is often obscured in a single sided ultrasound image. The same linear arrays

employed for pulse echo could be used for this limited angle sound speed imaging.

The a priori information regarding the object may be imperfect. Successful reconstruc-485

tion of the breast mimicking phantom shows promise as it was designed with layers of

fat, glandular tissue, and lesions with largely varying sound speeds to produce a distorted

ultrasound image. Preliminary investigations in Fig. 12 and 13 show that the output image

will not force a value into correlated regions if the observed data does not support a sound

speed change within the region; that is, if the wrong location of pixels is correlated or an490

incorrectly sized region is selected, the object is still approximately reconstructed in the

correct location with slight degradation in image quality. Deviation of boundary selection

and location of the correlated region showed improved sound speed reconstructions as long

as the offset is reasonably small. Starting with segmentation of isolated objects in SOS

images may allow centering of corresponding ROIs in the pulse echo images for improved495

results. A further refined algorithm could also incorporate the correlation region within the

cost function and choose the best fit given the initial chosen region.

25



Since the tested phantoms consist of well-defined contiguous regions, proper segmenta-

tions were not difficult to obtain. Additional research will be needed to properly segment500

more difficult, B-mode breast images into homogeneous regions where shadowing and speckle

can degrade edges and contrast. It would also be worthwhile to analyze the algorithm when

a only few homogeneous regions can be identified on complex breast tissue.

While additional a priori information is not always necessary for convergence as shown in505

simulation and experiment, the reconstructed image is usually improved when incorporated

into the inversion algorithm. As shown in Fig. 9, using stronger correlation coefficients

smooths and improves the accuracy of the contrasting cylinder in the reconstructed image.

Using a higher correlation coefficient also accelerates convergence, as in the number of it-

erations needed to obtain the reconstructed image. In our reconstructions, the correlation510

coefficient was set to be 0.003 since the simulations demonstrated subjectively adequate

cleanup of extraneous streaks at this value. Ideally, a very low correlation coefficient should

be introduced to guide the inversion towards the correct answer without largely changing

the overall cost function. More experience with a variety of phantoms as well as in vivo

cases will be needed to determine if fixed thresholds will suffice or whether this process can515

be automated.

The algorithm can be readily generalized to 3D with a high expense in computational

complexity. The largest bottleneck with current computer architecture is the limit of avail-

able memory to store the Lmatrices. To transition to 3D, the problem moves from a problem520

of O(N2) to O(N3), with N being the number of reconstructed pixels. Even though our im-

plementation takes advantage of matrix sparsity, only storing the indices and corresponding

values of each occupied element, the algorithm still requires a large amount of memory. An

optimization that would make a 3D volumetric inversion more practical may be to switch

to a coarser grid, thereby lowering the resolution, or to implement a non-uniform grid over525

regions with little variation.

The inversion algorithm can also be readily extended to simultaneous inversion for atten-

uation algorithms. It would only require a modification of the cost function and introduction

of additional model functions in their respective model spaces.530
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V. CONCLUSION

In this paper, a sound speed reconstruction algorithm allowing inclusion of a priori infor-

mation to improve image reconstruction of phantoms is demonstrated. The ability to form

sound speed images using two opposed linear arrays to mimic ultrasound image acquisition535

in the compressed mammographic geometry is investigated in simulation and experiment.

Limited angle tomography is usually plagued by artifacts along the depth of the image

when using traditional algorithms. The formulation of this cost function offers elegant

regularization driven by physical known values of the problem itself such as the dimensions

of high contrast objects and their estimated acoustic properties, which can help improve540

image quality of limited aperture reconstructions.

A priori information may be garnered from major breast structures noted in ultrasound

B-mode, MRI, or X-ray CT images. Depending on the modality, image registration and

proper segmentation will be needed to generate usable a priori information. The advantage545

of combining our dual sided ultrasound approach with another modality such as SPECT or

DBT (digital breast tomosynthesis) is that breast motion can be constrained, fairly precise

borders on both axial sides of a lesion can be delineated with the ultrasound, and the dif-

ferent modality images will already be co-registered as data will be obtained in concurrent

patient sessions, though careful calibration will be essential for quality a priori information.550

Even if systems are not combined, the challenging problem of registering ultrasound to

mammography or tomosynthesis can be more readily tackled since data is acquired in a

similar orientation. The choice of covariance matrices based on this a priori information

strongly impacts the image quality of limited angle acquisitions. In this separate system

approach, current registration algorithms might be adequate for a single, isolated lesion,555

but probably not for more complex registration over a large region of the breast. Additional

investigation on optimal a priori information will be necessary for practical application in

a clinical setting; determining the optimal covariance matrix to reconstruct in vivo images

may be investigated thoroughly in a future paper.

560
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