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Segmentation of human prostate from ultrasound~US! images is a crucial step in radiation therapy,
especially in real-time planning for US image-guided prostate seed implant. This step is critical to
determine the radioactive seed placement and to ensure the adequate dose coverage of prostate.
However, due to the low contrast of prostate and very low signal-to-noise ratio in US images, this
task remains as an obstacle. The manual segmentation of this object is time consuming and highly
subjective. In this work, we have proposed a three-dimensional~3D! deformable surface model for
automatic segmentation of prostate. The model has a discrete structure made from a set of vertices
in the 3D space that form triangle facets. The model converges from an initial shape to its equilib-
rium iteratively, by a weighted sum of the internal and external forces. Internal forces are based on
the local curvature of the surface and external forces are extracted from the volumetric image data
by applying an appropriate edge filter. We have also developed a method for initialization of the
model from a few initial contours that are drawn on different slices. During the deformation, a
resampling procedure is used to maintain the resolution of the model. The entire model is applied
in a multiscale scheme, which increases the robustness and speed, and guarantees a better conver-
gence. The model is tested on real clinical data and initial results are very promising. ©2001
American Association of Physicists in Medicine.@DOI: 10.1118/1.1388221#
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I. INTRODUCTION

Prostate boundaries form the basis of many diagno
treatment procedures for prostate diseases. Prostate im
is a common procedure in radiation therapy, which requ
outlining the prostate boundaries. However, there is a la
intraoperator variation in manual contouring, and it is n
reproducible. Also the time needed for contouring prostat
not desirable for a real-time prostate implant procedure.
goal of this research was to develop a technique to sem
tomatically and consistently segment prostate in ultraso
images, and to improve the efficiency of a real-time prost
implant procedure.

There have been a number of works so far on autom
segmentation of prostate from ultrasound~US! images.
Pathaket al.1 used an edge-based technique for outlining
prostate and statistically showed that automatic or semia
matic segmentation of the prostate indeed leads to a b
consistency of the results. The segmentation techniqu
Ladak et al.2 is based on a deformable model that chan
shape to fit the boundary of an object. They used anato
data and cubic interpolation to interpolate between points
their model, gradient direction information is used duri
deformation to push the model toward the boundaries. H
ever, the success of their approach is dependent on the
2147 Med. Phys. 28 „10…, October 2001 0094-2405 Õ2001Õ28
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ful initialization of the contour, which requires the user
select points on the prostate boundary.

Knoll et al.3–5 have considered the problem of deformab
contour initialization and modeling for segmentation of t
human prostate in medical images. They proposed a te
nique for elastic deformation restriction to particular obje
shapes of closed planar curve using localized multiscale c
tour parametrization based on the one-dimensional dya
wavelet transform~WT!. For this purpose, they define inte
nal curve deformation forces as a result of multiscale pa
metrical contour analysis. Their contour deformation meth
is integrated into a coarse-to-fine segmentation frame ba
on a multiscale image edge representation using the l
modulus maxima of the dyadic WT. The form restricted co
tour deformation and its initialization by template matchi
are performed in a coarse to fine segmentation process b
on a multiscale image edge representation containing the
portant edges of the image at various scales.

Chenet al.6,7 have presented an algorithm to reconstru
the three-dimensional~3D!-shading image of the prostat
from a series of ultrasound cross-sectional images of the
gan. In their proposed method, first the image is smoothed
low pass filtering. The center of the prostate is estimated
then a search process in radial directions from the estim
2147„10…Õ2147Õ7Õ$18.00 © 2001 Am. Assoc. Phys. Med.
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center is performed to locate the prostate boundary
matched filtering. Then they use edge linking to obtain
two-dimensional ~2D! contour. The Hermite-surface ap
proach is used to interpolate the spatial data to recons
the 3D object’s surface from a series of 2D contours.

Richardet al.8 have segmented 2D images of the prost
gland into prostate and nonprostate regions for forming a
image of the prostate from a set of parallel 2D images. T
texture-based segmentation method they presented is a
classifier based on four texture energy measures assoc
with each pixel in the image. A clustering procedure is us
to label each pixel in the image with the label of its mo
probable class.

Prateret al.9 described a method for segmenting transr
tal ultrasound images of the prostate using feed-forward n
ral networks. They presented three neural network archi
tures for this purpose. Each of these networks was trai
using a small portion of a training image segmented by
expert sonographer.

Englmeier10 suggested a method that with the aid of co
puter enables the user to obtain data on volume and we
by segmentation and integration of pictures of sections of
gland. The authors described the methods used to extrac
required data from the ultrasonic images and evaluate
results obtained.

In our approach, we use a 3D discrete deformable sur
for accurate outlining of prostate. After acquiring the 2
ultrasound images, we use bilinear interpolation to crea
3D volumetric image. The operator draws a few initial co
tours on some~typically 40%–70%!of the slices. These ini-
tial contours, which are outlined as polygons, do not have
be accurate and can have as low as four to five points.
model creates a closed initial surface from the conto
drawn. Starting from the initial surface, the model defor
by movement of its vertices under defined force terms
internal and external forces. Calculated from the local su
face curvature, internal forces try to maximize the mo
smoothness, while external forces pull the model toward
prostate boundaries. We have applied the proposed mod
real clinical cases and compared the results with manual
lining. In the following, we first give a brief description o
the model and then we discuss the results.

II. METHODS AND MATERIALS

A. Model structure

This section briefly describes the model geometry. T
reader is referred to Refs. 11 and 12 for more details.
model structure consists of a set of vertices and edges
form a closed surface defined by connected triangle fa
~see Fig. 1!. The position of vertexi, Vi , in the Cartesian
space is represented by vectorpi . Each vertex, likei, is
directly connected to three or more vertices by edges.
kth neighboring vertex ofVi is shown by v( i ,k) ~0<k
<Mi21, whereMi is the number of the neighboring vert
ces forVi!. Looking to Vi from outside of the volume per
Medical Physics, Vol. 28, No. 10, October 2001
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pendicular to the surface, the indexk in v( i ,k) increases in
the clockwise direction. The edge betweeni and v( i ,k) is
shown byDi ,k :

Di ,k5pv~ i ,k!2pi . ~1!

We usedi ,k to show the unit vector alongDi ,k andr i to show
the unit vector normal to the model surface atVi .

B. Model deformation

The model deforms under the influence of the internal a
external forces. The external forces are extracted from
image features. In this work, external forces are defined
make the model converge to the object boundaries. The
ternal forces maintain the smoothness of the model by m
mizing the surface curvature as described in Sec. II B 1.

1. Internal forces

The internal forces are based on the local curvature of
surface. In this work, we use a least-squares error estima
to the Dupin indicatrix for estimating the curvature and t
surface normal.13 The method is robust and relatively inse
sitive to the model resolution, number of points used
estimation, and choice of the coordinate system. After ca
lating the principal curvatures~maximum and minimum cur-
vatures!for each vertex,k1 and k2 , we consider the mean
curvature,Ci , as the numerical value for the curvature
that vertex:

Ci5~k11k2!/2. ~2!

Internal force at vertexi, f in,i , is computed from the loca
curvature value,Ci , and the curvatures of the neighborin
vertices,Cv( i ,k) , as

f in,i5H Ci2
1

Mi
(
k50

Mi21

Cv~ i ,k!J r i . ~3!

FIG. 1. A simple example of the model structure with ten vertices and fi
patches. The relative indices of some of the neighbors ofVi have been
shown.r i is the unit radial~normal! vector at vertexi and di ,0 is the unit
vector along the edge betweenVi andv( i ,0).
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FIG. 2. The histogram of a typical prostate ultrasoun
image. The pixels that are too bright~with gray levels
larger than 90% of the maximum image gray level! or
too dark ~with gray levels smaller than 10% of the
maximum image gray level! are not considered for cal-
culation of the image energies,Eim .
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The above-given definition sets the direction off in,i along the
radial vector. Whenf in is the only acting force, the above
mentioned internal forces push the initial shape towar
maximally smooth and closed surface, which has a gen
spherical shape. In practical situations, there are also exte
forces acting on the model, and the final shape depend
the relative weight of the two forces and will also be affect
by the image data.

2. External forces

External forces push the model toward the minimum of
external energy, which is defined from the volume data us
an appropriate operator. We use a step expansion matc
and restoration~SEF! filter which has been introduced b
Raoet al.14 It is an edge detector that uses expansion ma
ing and restoration. It is optimal in the sense of a spe
figure of merit named discriminative signal-to-noise ratio14

Assuming the noise in the image can be modeled with w
noise and the edge model is a step function, the impu
response of SEF filter in one dimension is

h~x!5sgn~x!e22uxu/s, ~4!

wheres2 is the variance of the white noise and sgn(x) is
sign function. Note that the noise in the US images inclu
white noise and speckle noise. It is possible to use o
filters that are specifically designed for US images.15

The above-mentioned filter is applied to the volumet
image data in three perpendicular directions and the sum
the results is used as the image energy. The gradient of
image energy at each point defines the local external fo
The force applied to each vertex is the radial componen
the local external force. Hence, we will have

fex,i52~¹Eim•r i !r i , ~5!

whereEim is the image energy defined by

Eim5uh~x!* I u1uh~y!* I u1uh~z!* I u1¹d, ~6!

where¹d is the gradient of the local standard deviation
the image data, measured in a window centered at the p
of interest,I represents the volumetric image data, and* is
the convolution operator.

Effects of the strong edge at the interface of ultrasou
probe and body tissue, and artifacts generated by destru
Medical Physics, Vol. 28, No. 10, October 2001
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and constructive addition of the ultrasound waves cre
some very strong gradients in the image that can mislead
model. To remedy this problem, we ignore the pixels that
too bright or too dark in calculation ofEim . We have experi-
mentally found that ignoring the first 10% and last 10%
the histogram will considerably reduces this undesired eff
Figure 2 shows the histogram for a typical US prostate im
and the cutoff points.

3. Deformation process

The deformation process is a result of internal and ex
nal forces acting on the model. The total force acting on e
vertex is a weighted sum off in and fex and a damping force
fdamp, which is set proportional to the vertex velocity,vi ,
and used to make the model more stable:

fdamp,i5Kdampvi , ~7!

whereKdamp is a negative constant. The surface deformat
is computed in discrete positions in time as follows:

pi~ t1Dt !5pi~ t !1vi~ t !Dt, ~8!

vi~ t1Dt !5vi~ t !1ai~ t !Dt, ~9!

ai~ t1Dt !5f i~ t1Dt !/mi , ~10!

f i5wexfex,i1winf in,i1wdampfdamp,i , ~11!

whereai , vi , and mi are vertex acceleration, velocity, an
assigned mass, respectively.Dt is the time step and its valu
can influence the model convergence. We have usedDt
51 s in each iteration. A larger value might jeopardize t
convergence and too small values slow down the model

The deformation process starts from an initial surfa
Vertices will move according to Eqs.~8!–~11! until the
model reaches equilibrium in which the total force acting
each vertex is zero. In practice, we use a threshold on
model velocity as a stopping criterion. In this method, it
assumed that convergence is achieved when the m
movements are very small during several consecutive it
tions.

For the model initialization, most of the authors have us
a fixed shape. We have developed a specific method
gives the user flexibility in defining the initial shape. Th
model creates a closed surface from a stack of 2D conto
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that have been drawn on parallel cross sections. On pos
approach for achieving this goal is to apply a generic tri
gulation method to the set of initial vertices. In our mod
the initial shape will be produced in two steps. In the fi
step, appropriate vertices of the consecutive polygons
connected to each other in a specific order. In the sec
step, the first and the last polygons are broken into trian
facets, as explained in detail in Ref. 11.

TABLE I. Comparison between the model results and manual outlining
ten studies. Pixelwise OR, AND, and XOR operators are used to mea
the similarity and difference between two areas~manual and model!. Simi-
larity is defined by the ratio of the common area to the total area, and
difference as the ratio of noncommon area to the total area. The ave
distances of manual and model contours are shown in the last column

Prostate
study

Average
OR

~pixels!

Average
AND

~pixels!

Average
XOR

~pixels!

Average
similarity

~%!

Average
difference

~%!

Average
distance
~pixels!

1 4 903 4 176 727 85.00 15.00 2.74
2 4 746 4 086 660 85.71 14.29 2.49
3 7 885 6 788 1096 85.67 14.33 2.88
4 5 897 5 251 645 89.43 10.57 2.25
5 5 011 4 533 478 90.46 9.54 1.84
6 6 123 5 347 775 90.43 9.57 2.32
7 5 515 4 886 628 88.69 11.31 2.30
8 4 882 4 242 639 89.60 10.40 2.00
9 6 300 5 671 729 91.67 8.33 2.64

10 12 004 10 777 1227 89.13 10.87 2.92
Average of averages 88.58 11.42 2.44
Medical Physics, Vol. 28, No. 10, October 2001
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C. Prostate studies

We acquired ultrasound prostate image sets of ten
tients. We used a dual-focus multiplane 7.5 MHz transre
US probe. Images were acquired in a pre-planned clin
condition. The US device was directly connected to a co
puter and images stored digitally. In each study, the ima
are 5 mm apart, and have a pixel size of 0.3630.36 mm, and
the matrix size of 2563256 (FOV5939 cm). The initial
contours are drawn on 40%–70% of the slices of each st
and six to eight vertices used for each 2D contour. Then
contours are connected to form a 3D initial shape for
model. The running time is approximately 30 s on a SU
Ultra 20. The same studies are segmented carefully b
radiologist and the contours are compared using the meth
in Sec. II D.

D. Evaluation methods

We use a similarity measure, which is based on Kap
statistics to compare the model results with the manual s
mentation. For measuring the similarity value, letA1 andA2

be the areas~in pixels!obtained by the manual and automa
methods, respectively. The relative amount of agreem
~similarity value!and disagreement between the model a
manual segmentation are shown byRc andRn , respectively,
and for each slice they are computed as

Rc5
A1 AND A2

A1 OR A2
, ~12!
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e
ge
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nt
FIG. 3. ~a! A slice of the ultrasound prostate image.~b!
The prostates image with the initial contour overla
~dash lines!.~c! The prostate image with the final con
tour generated by the model.~d! The prostate image
with both the manual contour~solid lines! and the
model contour~dashed lines!. Note the good agreeme
between the model and manual contours.
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FIG. 4. ~a! A slice of the ultrasound prostate image.~b!
The prostate image with the initial contour overla
~dashed lines!.~c! The prostate image with the fina
contour generated by the model.~d! The prostate image
~using a larger magnification! with both the manual
contour ~solid lines! and the model contour~dashed
lines!. Note that the model has successfully closed
boundaries at the bottom left and right of the prosta
where there are no clear edges. Also, the strong edg
the interface between the ultrasound probe and tis
~dark circle at the bottom of the image! has not misled
the model.
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Rn5
A1 OR A22A1 AND A2

A1 OR A2
, ~13!

whereRc andRn are the ratio of the common pixels~pixels
that marked as prostate by both methods!, and noncommon
pixels ~pixels that are marked only by one method! to the
total area, respectively. The common pixels are obtained
pixelwise AND operator and total area by pixelwise OR o
erator. A similarity value between 0.7 and 1.0 represents
excellent agreement while a similarity between 0.4 and
represents a good agreement.

Another measure we use to evaluate the results is
average distance between the model and the manual
tours. This is calculated by finding the nearest pixel on
other contour for each pixel on the model contour and g
ting the average of Euclidean distance of the pixels along
contour.

III. EXPERIMENTAL RESULTS

We applied the proposed deformable model to ten ul
sound image sets described in Sec. II C to segment the p
tate. A physician also segmented the prostate by drawing
boundaries on individual slices using a mouse. Then
compared manual segmentation results with the model u
the methods explained in Sec. II D.

The summary of the performance measures are prese
in Table I. Each row shows the average of the values ove
the slices of the corresponding patient. It can be seen f
Table I that the average similarity value is 0.89~89%! and
Medical Physics, Vol. 28, No. 10, October 2001
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there exists an excellent agreement between the results
tained by the two methods. We also measured the ave
distance of the model and manual contours, which is ab
2.5 pixels as reported in Table I.

Figure 3 shows the result on a slice generated by
model. The initial and final model contours are shown us
dashed line. The manual contour is shown using solid li
As can be seen there is good agreement between the m
and the manual contour.

In Fig. 4, a slice near the end of prostate is shown. In t
example, the model successfully closed the boundary at
bottom left and right where there is no clear edge. The str
edges created at the interface of ultrasound probe and ti
has not misled the model. In Fig. 5, a beginning slice
prostate is shown along with the manual result. Parts of
difference between the manual and model contour on
image is due to the smooth closing of the model at the
slices versus the abrupt end in manual segmentation.

IV. DISCUSSION

It can be seen that there is excellent agreement betw
the model and radiologist. We observed that radiologists t
to draw the contours rather large in areas that do not ha
clear boundary. Part of the disagreement between the m
and manual contours can be attributed to this fact. Also,
agreement was largest on the beginning and end slices d
smooth closing of the 3D model versus abrupt start and
that a radiologist applies.
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FIG. 5. ~a! A beginning slice of the prostate.~b! The
prostate image~using a larger magnification! with the
initial contour overlaid~dashed lines!.~c! The prostate
image with the final contour generated by the mod
~d! The prostate image with both the manual conto
~solid lines!and the model contour~dashed lines!. Note
the good agreement between the model and the man
contour.

FIG. 6. Two examples of comparison between th
model result with and without using the gradient of th
local standard deviation of gray levels~¹d! in calculat-
ing Eim . The model results and the manual results a
shown using solid and dashed lines, respectively. T
images~a!,~c! show the results without using¹d and
the images~b!,~d! show the results with using¹d. The
white arrows point to the areas where significant diffe
ences are noticed.
Medical Physics, Vol. 28, No. 10, October 2001
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More studies are needed to confirm the hypothesis
including the standard deviation of the image pixels in c
culation of image energies indeed improves the segme
tion. Figure 6 shows two examples of comparison betw
the model result with and without incorporating the loc
standard deviation of the image gray level~¹d! in calculating
the image energies,Eim . Figure 6 shows some improvemen
in the model results when¹d is incorporated. In particular
the white arrows in Fig. 6 point to the regions where t
effect is most visible. However, more studies are neede
confirm this hypothesis.

Overall, the model generates reproducible results
gives an accuracy of near 89%, and a speed up of up to th
and sixfold compared to a totally manual outlining. Futu
work on this research can be directed toward including t
ture features in the calculation of image energies and u
landmarks ora priori knowledge for automatic initialization
of the model.
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