A three-dimensional deformable model for segmentation of human prostate
from ultrasound images
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Segmentation of human prostate from ultraso(n8) images is a crucial step in radiation therapy,
especially in real-time planning for US image-guided prostate seed implant. This step is critical to
determine the radioactive seed placement and to ensure the adequate dose coverage of prostate.
However, due to the low contrast of prostate and very low signal-to-noise ratio in US images, this
task remains as an obstacle. The manual segmentation of this object is time consuming and highly
subjective. In this work, we have proposed a three-dimensi@tal deformable surface model for
automatic segmentation of prostate. The model has a discrete structure made from a set of vertices
in the 3D space that form triangle facets. The model converges from an initial shape to its equilib-
rium iteratively, by a weighted sum of the internal and external forces. Internal forces are based on
the local curvature of the surface and external forces are extracted from the volumetric image data
by applying an appropriate edge filter. We have also developed a method for initialization of the
model from a few initial contours that are drawn on different slices. During the deformation, a
resampling procedure is used to maintain the resolution of the model. The entire model is applied

in a multiscale scheme, which increases the robustness and speed, and guarantees a better conver-
gence. The model is tested on real clinical data and initial results are very promising00®
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I. INTRODUCTION ful initialization of the contour, which requires the user to

Prostate boundaries form the basis of many diagnosis,sieIeCt ﬁomtsl f_r; rt]he prosta_te bounhdary. | ¢ def |
treatment procedures for prostate diseases. Prostate implant/<n°ll €t al">have considered the problem of deformable

is a common procedure in radiation therapy, which requireSONtour initialization and modeling for segmentation of the
outlining the prostate boundaries. However, there is a larg8Uman prostate in medical images. They proposed a tech-

intraoperator variation in manual contouring, and it is notNique for elastic deformation res_triction to particul_ar object
reproducible. Also the time needed for contouring prostate i§hapes of closed planar curve using localized multiscale con-
not desirable for a real-time prostate implant procedure. Th&Ur parametrization based on the one-dimensional dyadic
goal of this research was to develop a technique to semiaivavelet transform{WT). For this purpose, they define inter-
tomatically and consistently segment prostate in ultrasounfi@l curve deformation forces as a result of multiscale para-
images, and to improve the efficiency of a real-time prostaténetrical contour analysis. Their contour deformation method
implant procedure. is integrated into a coarse-to-fine segmentation frame based

There have been a number of works so far on automati®n & multiscale image edge representation using the local
segmentation of prostate from ultrasoudS) images. modulus maxima of the dyadic WT. The form restricted con-
Pathaket al! used an edge-based technique for outlining thetour deformation and its initialization by template matching
prostate and statistically showed that automatic or semiautdre performed in a coarse to fine segmentation process based
matic segmentation of the prostate indeed leads to a bett@n a multiscale image edge representation containing the im-
consistency of the results. The segmentation technique dgfortant edges of the image at various scales.

Ladak et al? is based on a deformable model that changes Chenet al®’ have presented an algorithm to reconstruct
shape to fit the boundary of an object. They used anatomithe three-dimensional3D)-shading image of the prostate
data and cubic interpolation to interpolate between points. Ifirom a series of ultrasound cross-sectional images of the or-
their model, gradient direction information is used duringgan. In their proposed method, first the image is smoothed by
deformation to push the model toward the boundaries. Howlow pass filtering. The center of the prostate is estimated and
ever, the success of their approach is dependent on the catben a search process in radial directions from the estimated
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center is performed to locate the prostate boundary by
matched filtering. Then they use edge linking to obtain the
two-dimensional (2D) contour. The Hermite-surface ap-
proach is used to interpolate the spatial data to reconstruct
the 3D object’s surface from a series of 2D contours.

Richardet al® have segmented 2D images of the prostate
gland into prostate and nonprostate regions for forming a 3D
image of the prostate from a set of parallel 2D images. The
texture-based segmentation method they presented is a pixel v(i,0)d
classifier based on four texture energy measures associated i
with each pixel in the image. A clustering procedure is used
to label each pixel in the image with the label of its most
probable class.

Prateret al® described a method for segmenting transrec-
tal ultrasound images of the prostate using feed-forward neu-
ral networks. They presented three neural network architec-
tures for this purpose. Each of these networks was trained
using a small portion of a training image segmented by afkg. 1. A simple example of the model structure with ten vertices and five
expert sonographer. patches. The relative indices of some of the neighbor¥;ohave been

Eng|meiei"o Suggested a method that with the aid of Com_ShOWI’l.ri is the unit radial(normal) vector at vertex and di,o is the unit
puter enables the user to obtain data on volume and weig{fctor along the edge betwedh andv (i,0).
by segmentation and integration of pictures of sections of the
gland. The authors described the methods used to extract t
required dafca from the ultrasonic images and evaluate th e clockwise direction. The edge betweieand (i k) is
results obtained. shown byD;  :

In our approach, we use a 3D discrete deformable surface ke
for accurate outlining of prostate. After acquiring the 2D D x= Py~ Pi - Q)
ultrasound images, we use bilinear interpolation to create e used
3D volumetric image. The operator draws a few initial con-
tours on sométypically 40%—70%)of the slices. These ini-
tial contours, which are outlined as polygons, do not have to )
be accurate and can have as low as four to five points. Thg- Model deformation

model creates a closed initial surface from the contours The model deforms under the influence of the internal and
drawn. Starting from the initial surface, the model deformsexternal forces. The external forces are extracted from the
by movement of its vertices under defined force terms—image features. In this work, external forces are defined to
internal and external forces. Calculated from the local sur- make the model converge to the object boundaries. The in-
face curvature, internal forces try to maximize the modekernal forces maintain the smoothness of the model by mini-
smoothness, while external forces pull the model toward thenizing the surface curvature as described in Sec. IIB 1.
prostate boundaries. We have applied the proposed model to

real clinical cases and compared the results with manual outl. /nternal forces

lining. In the following, we first give a brief description of  The internal forces are based on the local curvature of the
the model and then we discuss the results. surface. In this work, we use a least-squares error estimation
to the Dupin indicatrix for estimating the curvature and the
surface normat® The method is robust and relatively insen-
sitive to the model resolution, number of points used for
II. METHODS AND MATERIALS estimation, and choice of the coordinate system. After calcu-
lating the principal curvature@naximum and minimum cur-
vatures)for each vertexx; and x,, we consider the mean

This section briefly describes the model geometry. Thecurvature,C;, as the numerical value for the curvature at
reader is referred to Refs. 11 and 12 for more details. Thehat vertex:

model structure consists of a set of vertices and edges that

form a closed surface defined by connected triangle facets Ci=(k1t r2)/2. )
(see Fig. 1). The position of vertéxV;, in the Cartesian Internal force at vertek f;,;, is computed from the local
space is represented by vector. Each vertex, likei, is  curvature valueC;, and the curvatures of the neighboring
directly connected to three or more vertices by edges. Theertices,CU(i,k), as

endicular to the surface, the indé&xn v(i,k) increases in

i k to show the unit vector alonD; , andr; to show
the unit vector normal to the model surfaceVat

A. Model structure

kth neighboring vertex ofV; is shown byuv(i,k) (0=<k M -1
=<M,;—1, whereM; is the number of the neighboring verti- fo—lc— i C . otbp &)
ces forV;). Looking toV; from outside of the volume per- '”" M; & e

Medical Physics, Vol. 28, No. 10, October 2001



2149 Ghanei et al.: A 3D deformable model 2149

Fic. 2. The histogram of a typical prostate ultrasound
image. The pixels that are too brigiwith gray levels
larger than 90% of the maximum image gray leve
too dark (with gray levels smaller than 10% of the
maximum image gray levehre not considered for cal-
culation of the image energieg, .

The above-given definition sets the directiorfigf along the  and constructive addition of the ultrasound waves create
radial vector. Wherf, is the only acting force, the above- some very strong gradients in the image that can mislead the
mentioned internal forces push the initial shape toward anodel. To remedy this problem, we ignore the pixels that are
maximally smooth and closed surface, which has a generabo bright or too dark in calculation &;,. We have experi-
spherical shape. In practical situations, there are also externalentally found that ignoring the first 10% and last 10% of
forces acting on the model, and the final shape depends dhe histogram will considerably reduces this undesired effect.
the relative weight of the two forces and will also be affectedFigure 2 shows the histogram for a typical US prostate image
by the image data. and the cutoff points.

2. External forces 3. Deformation process

External forces push the model toward the minimum of an  The deformation process is a result of internal and exter-
external energy, which is defined from the volume data usingal forces acting on the model. The total force acting on each
an appropriate operator. We use a step expansion matchingrtex is a weighted sum ¢f, andf., and a damping force,
and restorationSEF) filter which has been introduced by faamp: WhiCh is set proportional to the vertex velocity,,
Raoet al* It is an edge detector that uses expansion matchand used to make the model more stable:
ing and restoration. It is optimal in the sense of a special
figure of merit named discriminative signal-to-noise rafio.  dampi = Kdampi @
Assuming the noise in the image can be modeled with whitevhereK y,npis a negative constant. The surface deformation
noise and the edge model is a step function, the impulsg& computed in discrete positions in time as follows:
response of SEF filter in one dimension is

pi(t+At)=pi(t) +Vvi(H)AL, (8)
h(x)=sgr(x)e~2X7, 4)
vi(t+At) =v;(t) +a(t)At, 9)
whered? is the variance of the white noise and sgn(x) is the
sign function. Note that the noise in the US images includes a&(t+At)=fi(t+At)/m;, (10)
white noise and speckle noise. It is possible to use other 1= Wenfexi + Winfin,i & Wetamd dampi (11)

filters that are specifically designed for US images.
The above-mentioned filter is applied to the volumetricwherea;, v;, andm; are vertex acceleration, velocity, and
image data in three perpendicular directions and the sum ¢issigned mass, respectiveht is the time step and its value
the results is used as the image energy. The gradient of thgan influence the model convergence. We have used
image energy at each point defines the local external forcez 1 s in each iteration. A larger value might jeopardize the

The force applied to each vertex is the radial component ogonvergence and too small values slow down the model.
the local external force. Hence, we will have The deformation process starts from an initial surface.

Vertices will move according to Eqs8)—(11) until the
fexi=—(VEim 1)ri, 5 model reaches equilibrium in which the total force acting on
whereE,,, is the image energy defined by each vertex is zero. In practice, we use a threshold on the
model velocity as a stopping criterion. In this method, it is
Eim=[h()*1|+|h(y)*1|+[h(2)*1|+ V5, ®)  assumed that convergence is achieved when the model
whereV§é is the gradient of the local standard deviation of movements are very small during several consecutive itera-
the image data, measured in a window centered at the poitibns.
of interest,| represents the volumetric image data, anid For the model initialization, most of the authors have used
the convolution operator. a fixed shape. We have developed a specific method that
Effects of the strong edge at the interface of ultrasoundjives the user flexibility in defining the initial shape. The
probe and body tissue, and artifacts generated by destructiveodel creates a closed surface from a stack of 2D contours
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TaBLE |. Comparison between the model results and manual outlining forC. Prostate studies
ten studies. Pixelwise OR, AND, and XOR operators are used to measure . .
the similarity and difference between two arg¢asanual and modgl Simi- We acquired ultrasound prostate image sets of ten pa-
larity is defined by the ratio of the common area to the total area, and th¢ients. We used a dual-focus multiplane 7.5 MHz transrectal
difference as the ratio of noncommon area to the total area. The averaggg probe. Images were acquired in a pre-planned clinical
distances of manual and model contours are shown in the last column. condition. The US device was directly connected to a com-
Average Average Average Average Average Average Puter and images stored d|g|t_a”y- |_n each study, the images
Prostate OR AND  XOR similarity difference distance  are 5 mm apart, and have a pixel size of 3636 mm, and
study  (pixels) (pixels) (pixels) (%) (%) (pixels) the matrix size of 258256 (FOV=9X9 cm). The initial
4903 4176 797 85.00 15.00 274 contours are drawn on 40%—70% of the slices of each study,

1
2 4746 4086 660 85.71 14.29 2.49 and six to eight vertices used for each 2D contour. Then the
3 7885 6788 1096 85.67 14.33 288  contours are connected to form a 3D initial shape for the
4 5807 5251 645 8943 1057 225 mgdel. The running time is approximately 30 s on a SUN
2 ggg ggi? ‘7";2 gg:ig 322471 ;:gg Ultra 20. The same studies are segmented carefully by a
7 5515 4886 628 88.69 11.31 230 fradiologist and the contours are compared using the methods
8 4882 4242 639 89.60 10.40 200 in Sec. IID.
9 6300 5671 729 91.67 8.33 2.64
10 12004 10777 1227 89.13 10.87 292 b Evaluation methods

Average of averages 88.58 11.42 2.44

We use a similarity measure, which is based on Kappa
statistics to compare the model results with the manual seg-
mentation. For measuring the similarity value, AgtandA,
that have been drawn on parallel cross sections. On possibis: the areaéin pixels)obtained by the manual and automatic
approach for achieving this goal is to apply a generic trianmethods, respectively. The relative amount of agreement
gulation method to the set of initial vertices. In our model, (similarity value)and disagreement between the model and
the initial shape will be produced in two steps. In the firstmanual segmentation are shownRyandR,,, respectively,

step, appropriate vertices of the consecutive polygons argnd for each slice they are computed as
connected to each other in a specific order. In the second
R A; AND A,

step, the first and the last polygons are broken into triangle

= , 12
facets, as explained in detail in Ref. 11. ¢ A; OR A, 12)

Fic. 3. (a) A slice of the ultrasound prostate imagdb)
The prostates image with the initial contour overlaid
(dash lines)(c) The prostate image with the final con-
tour generated by the modeld) The prostate image
with both the manual contou¢solid lines) and the
model contour(dashed lines). Note the good agreement
between the model and manual contours.
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Fic. 4. (a) A slice of the ultrasound prostate imagdb)

The prostate image with the initial contour overlaid
(dashed lines)(c) The prostate image with the final
contour generated by the modél) The prostate image
(using a larger magnificatignwith both the manual
contour (solid lines) and the model contoutdashed
lines). Note that the model has successfully closed the
boundaries at the bottom left and right of the prostate
where there are no clear edges. Also, the strong edge at
the interface between the ultrasound probe and tissue
(dark circle at the bottom of the imagkas not misled

the model.
A; OR A,—A; AND A, there exists an excellent agreement between the results ob-
n= A, OR A, , (13)  tained by the two methods. We also measured the average

distance of the model and manual contours, which is about
whereR; andR,, are the ratio of the common pixe(pixels 25 pixels as reported in Table .
that marked as prostate by both methodsd noncommon Figure 3 shows the result on a slice generated by the
pixels (pixels that are marked only by one methdd the  model. The initial and final model contours are shown using
total area, respectively. The common pixels are obtained byashed line. The manual contour is shown using solid line.
pixelwise AND operator and total area by pixelwise OR 0p-As can be seen there is good agreement between the model
erator. A similarity value between 0.7 and 1.0 represents agnd the manual contour.
excellent agreement while a S|m||ar|ty between 0.4 and 0.7 In F|g 4, a slice near the end of prostate is shown. In this
represents a good agreement. example, the model successfully closed the boundary at the
Another measure we use to evaluate the results is thgottom left and right where there is no clear edge. The strong
average distance between the model and the manual coggges created at the interface of ultrasound probe and tissue
tours. This is calculated by finding the nearest pixel on thenas not misled the model. In Fig. 5, a beginning slice of
other contour for each pixel on the model contour and getprostate is shown along with the manual result. Parts of the
ting the average of Euclidean distance of the pixels along thgifference between the manual and model contour on this
contour. image is due to the smooth closing of the model at the end
slices versus the abrupt end in manual segmentation.
. EXPERIMENTAL RESULTS

We gpplled the propqsed .deformable model to ten uItraiV. DISCUSSION
sound image sets described in Sec. Il C to segment the pros-
tate. A physician also segmented the prostate by drawing its It can be seen that there is excellent agreement between
boundaries on individual slices using a mouse. Then weéhe model and radiologist. We observed that radiologists tend
compared manual segmentation results with the model usinp draw the contours rather large in areas that do not have a
the methods explained in Sec. IID. clear boundary. Part of the disagreement between the model
The summary of the performance measures are presentecid manual contours can be attributed to this fact. Also, dis-
in Table I. Each row shows the average of the values over alhigreement was largest on the beginning and end slices due to
the slices of the corresponding patient. It can be seen frormamooth closing of the 3D model versus abrupt start and end

Table | that the average similarity value is 0.88%) and  that a radiologist applies.
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Fic. 5. (a) A beginning slice of the prostatéb) The
prostate imagedusing a larger magnificatiorwith the
initial contour overlaid(dashed lines)(c) The prostate
image with the final contour generated by the model.
(d) The prostate image with both the manual contour
(solid lines)and the model contoydashed lines). Note
the good agreement between the model and the manual
contour.

Fic. 6. Two examples of comparison between the
model result with and without using the gradient of the
local standard deviation of gray leve86) in calculat-

ing E;,,. The model results and the manual results are
shown using solid and dashed lines, respectively. The
images(a),(c) show the results without usingé and

the imagegb),(d) show the results with usingés. The
white arrows point to the areas where significant differ-
ences are noticed.
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More studies are needed to confirm the hypothesis that K'. Inamura, and M. W. Vannigr, “A new confqrmal radiotherapy plgn-
including the standard deviation of the image pixels in cal- Ning system for prostate carcinoma,” Proceedings of Computer Assisted
culation of image energies indeed improves the segmenta Radiology and Surgery, CAR 97, 25-28 June 1997, Berlin, Germany,
’ X : ~ 1997, pp. 375-380.
tion. Figure 6 shows two examples of comparison betweenc. knol, M. Alcaniz, V. Grau, C. Montserrat, and M. C. Juan, “Outlining
the model result with and without incorporating the local of the prostate using snakes with shape restrictions based on the wavelet
standard deviation of the image gray le¢€b) in calculating transform,” Pattern Recogrg2, 1767-17811999).
the image energieE- Figure 6 shows some improvements 5C. Knoll, M. Alcaniz, C. Monserrat, V. Grau, and M. C. Juan, “Multi-

. im- .. . resolution segmentation of medical images using shape-restricted
in the model results wheR é is incorporated. In particular, snakes,” Proc. SPIB2, 1767—17811999)

the white arrows in Fig. 6 point to the regions where the sc H. chen, J.Y. Lee, W. H. Yang, C. M. Chang, and Y. N. Sun, “Seg-
effect is most visible. However, more studies are needed to mentation and reconstruction of prostate from transrectal ultrasound im-
confirm this hypothesis. ages,” Biomed. Eng. Appl. Basis-Commu8. 287—-292(1996).

Overall, the model generates reproducible results and'C: H: Chen, J. D. Lee, and H. B. Hsieh, "3D reconstruction of the
. prostate from transrectal ultrasound images,” Biomed. Eng. Appl. Basis
gives an accuracy of near 89%, and a speed up of up to three-c, 1011, 1-10(1999).

and sixfold compared to a totally manual outlining. Future 8w, p. Richard and C. G. Keen, “Automated texture-based segmentation
work on this research can be directed toward including tex- of ultrasound images of the prostate,” Comput. Medical Imag. Graphics
ture features in the calculation of image energies and using,20; 131-1401996).

L S L J. S. Prater and W. D. Richard, “Segmenting ultrasound images of the
landmarks om priori knowledge for automatic initialization prostrate using neural networks,” Ultrason. Imagib 159—-1851992).

of the model. 10K. H. Englmeier, R. Hecker, and S. J. Poppl, “A computer assisted esti-
mate of the volume of the prostate gland obtained from transrectal ultra-
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