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Inverse-planned intensity modulated radiation therapy (IMRT) is often able to achieve complex
treatment planning goals that are unattainable with forward three-dimensional (3D) conformal
planning. However, the common use of IMRT has introduced several new challenges. The poten-
tially high degree of modulation in IMRT beams risks the loss of some advantages of 3D planning,
such as excellent target coverage and high delivery efficiency. Previous attempts to reduce beam
complexity by smoothing often result in plan degradation because the smoothing algorithm cannot
distinguish between areas of desirable and undesirable modulation. The purpose of this work is to
introduce and evaluate adaptive diffusion smoothing (ADS), a novel procedure designed to prefer-
entially reduce IMRT beam complexity. In this method, a discrete diffusion equation is used to
smooth IMRT beams using diffusion coefficients, automatically defined for each beamlet, that
dictate the degree of smoothing allowed for each beamlet. This yields a method that can distinguish
between areas of desirable and undesirable modulation. The ADS method has been incorporated
into our optimization system as a weighted cost function penalty, with two diffusion coefficient
definitions designed to promote: (1) uniform smoothing everywhere or (2) smoothing based on cost
function gradients with respect to the plan beamlet intensities. The ADS method (with both coef-
ficient types) has been tested in a phantom and in two clinical examples (prostate and head/neck).
Both types of diffusion coefficients produce plans with reduced modulation and minimal dosimetric
impact, but the cost function gradient-based coefficients show more potential for reducing beam
modulation without affecting dosimetric plan quality. In summary, adaptive diffusion smoothing is
a promising tool for ensuring that only the necessary amount of beam modulation is used, promot-
ing more efficient and accurate IMRT planning, QA, and delivery. © 2008 American Association
of Physicists in Medicine. [DOI: 10.1118/1.2889703]
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[. INTRODUCTION

Inverse planned intensity modulated radiation therapy
(IMRT) is now a common mode of treatment in radiation
oncology centers worldwide. As with many new technolo-
gies that show potentially large advantages over previous
methods, IMRT was quickly thrust into clinical use before
some of its potential disadvantages could be evaluated. Be-
cause of this, many centers are now performing retrospective
studies and working to suppress difficulties seen in IMRT
treatments. One such difficulty, which is intricately tied to
the roots of IMRT, is the complexity (high modulation) of
IMRT fluence patterns. Looking back at more conventional
conformal treatments, it is distressing to see that IMRT has
sacrificed, sometimes largely, the good delivery efficiency
and geometrically robust target coverage of three-
dimensional (3D) conformal therapy. To achieve a balance
between all important aspects of radiation therapy treatment,
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we seek a more ideal IMRT planning scheme, in which the
benefits of optimal normal tissue avoidance are obtained
without losing the excellent target coverage and high deliv-
ery efficiency achieved with conventional planning. To
achieve this balance, it is necessary to intelligently reduce
the high degree of modulation often present in IMRT inten-
sity patterns.

Considerable effort has been spent trying to reduce the
complexity of IMRT fluence patterns while preserving the
advantages gained by employing IMRT. Methods that have
been considered include beamlet intensity restrictions,” direct
optimization of delivery,>™* and smoothing of intensity
modulated beams either during or after optimization.S‘13 As
the parameters in each of these methods are relaxed, the
unconstrained beamlet solution is approached. The goal is to
restrain the parameters enough so that the solution is an ac-
ceptable compromise between the ideal beamlet solution and
a more efficient conventional 3D conformal solution. Unfor-
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tunately, these previously described smoothing methods may
not yield optimally smoothed plans because the methods
cannot distinguish between parts of the beam that should and
should not be smoothed.

So far, the most promising smoothing methods are those
that penalize or account for modulation inside the inverse
planning cost function. When smoothing occurs during opti-
mization, given that the smoothing procedure has a relatively
low priority, some complexity reduction is usually possible
before causing degradation to the plan. Previously, we have
shown that significant increases in efficiency are possible
while preserving the full dosimetric quality of the original
(unsmoothed) IMRT plan.® However, the difficulty remains
that the beam is either penalized for being modulated, which
is the fundamental feature of IMRT in the first place, or the
beam is penalized for not conforming to a certain filtered
version of itself, which may not be ideal for the specific
beam in question. The amount of smoothing possible is al-
ways limited by the eventual tradeoffs that are made with
target or normal tissue coverage, leading us to believe that a
more adaptive smoothing procedure that can distinguish be-
tween areas that should or should not be smoothed could
produce superior results.

A spatially adaptive smoothing method was previously
investigated by Llacer et al. for a simple two-dimensional
(2D) test case, and was shown to compromise PTV coverage
to a lesser degree than other conventional filtering
techniques.5 In their work, beamlets around the PTV were
manually selected to receive less filtering in order to preserve
the intensity near the target. In the current work, we present
a new adaptive diffusion smoothing (ADS) method for pref-
erential smoothing in 3D inverse planning. The ADS method,
which makes simple use of the common diffusion equation,
allows for preferential smoothing by using variable and au-
tomatically defined diffusion coefficients. This method has
the potential to distinguish between important and nonimpor-
tant areas of modulation, facilitating smarter tradeoffs be-
tween the cost function and smoothing criteria. While other
methods can be used to reduce MU and modulation in IMRT,
adaptive diffusion smoothing is unique because of the ability
to customize the diffusion coefficients. In fact, diffusion
smoothing schemes have been applied in a variety of other
medical physics-related applications, such as image
processing**™'" and the smoothing of Monte Carlo-derived
dose distributions."® Broser et al. used a diffusion filter to
enhance the signal-to-noise ratio in microscopy by using lo-
cal structural data to control the amount of filtering applied
to the image.16 Miao et al. used a diffusion filter to denoise
Monte Carlo dose distributions based on the local statistical
noise. '

In the following, we (i) describe the ADS method for
controlling IMRT beam complexity, (ii) characterize it using
a test phantom optimization case, and (iii) demonstrate its
utility and potential in clinical IMRT cases.
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Il. METHODS

IILA. Adaptive diffusion smoothing formulation and
implementation

The time-dependent diffusion equation, given in Eq. (1),
is found in many areas of science and engineering. This
equation describes the propagation of a material from areas
of high concentration to areas of low concentration accord-
ing to a spatially variant diffusion coefficient, D(x,y), which
depends on the local properties of the medium (this equation
is cast in 2D for application to the beamlet intensity situa-
tion)

%)(X,y,t) =V D(X,Y) \Y ¢(lelt)

= 9 5w ?®
- aXD(le) ax (vart)

7 on’?
+ ayD(x,y) 7y (x,y,1). (1)

By replacing the density of diffusing material, ¢(x,y,t), with
beamlet intensity, 1(x,y,t), we can make an analogy from the
diffusion of a material to the smoothing of an IMRT beam.
Using this idea, we have designed a procedure, named
“adaptive diffusion smoothing” or ADS, in which an inten-
sity modulated beamlet grid is smoothed using Eq. (1) with a
diffusion coefficient D(x,y) that is automatically defined for
each beamlet. This allows the smoothing characteristics to
adapt to each individual plan. The diffusion coefficients can
be derived from any case related parameter(s), allowing for
spatially variant smoothing.

To describe the ADS method, we consider the following
time-dependent diffusion problem:

L%y, = DY) V1%,

for 0<x<X, o<y<Y, (2)
with boundary conditions
alg alg
—(0,y,t) =—(X,y,t)=0 for 0<y<Y,
&X( ) 0X( y.t) or y
alg alg
—(x,0,t) = —(x,Y,t)=0 for 0<x<X, (3a)
ady ady

and initial condition
[s(X,y,0) = lo(x,y). (3b)

Here I4(x, ) is the unsmoothed intensity map, (X, y,t) is the
smoothed intensity map at time t, and D(x,y)=0 is the pre-
scribed diffusion coefficient (discussed in detail below). For
t=0, l4x,y,0)=Iy(x,y) and no smoothing has taken place.
For D(x,y)>0, as t increases, ls(x,y,t) becomes increas-
ingly smoothed. Also, integrating Eq. (2) over 0=x=X and
0=y=Y and using the boundary conditions expressed in Eq.
(3a), we easily obtain for all t=0,
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Y X

X
f I(x,y,t)dxdy = f f [o(x,y)dxdy. (4)
0 00

otY——r <

Thus, the total intensity of the unsmoothed beam 1, is auto-
matically preserved for all t>0.

To estimate the smoothed beam at time At>0, we inte-
grate Eq. (2) over 0=t=<At to obtain

At
Is(X,y,At) = lo(x,y) + V- DV f Is(x,y, t)dt. (5)
0

To evaluate the integral term, we consider the implicit and
explicit time-differencing approximations. Using the implicit
approximation, we obtain the following integral term:

w
lojj + F(Di+l/2,j|s,i+l,j +Dj_12lsi-1j + Dijeralsijer * Dijorolsij-r)  Divnzj= D.+D
ij * Disy,j

1534

At At

JIs(x,y,t)dtzfIS(x,y,At)dt=Atls(x,y,At)=At|s(x,y).
0 0

(6)
Using the explicit approximation, we obtain instead
At At
J ls(x,y, t)dt = J Is(xy,0)dt = Atlo(x,y). (7

0 0

Introducing the implicit approximation, Eq. (6), into Eq.
(5), we get

-V WD(X,Y) v |S(X, Y) + ls(xl Y) = IO(va)! (8)

where w=At. Then, using the classic cell-centered spatial
discretization® of the diffusion operator (=V-DV), we obtain
the following discretization of the diffusion problem:

2D,Disy
= "L o on boundaries,

lsij =

w
1+ F(Diﬂ/z,j +Dj_12) * Diji12*+ Dij-112)

Here h is the dimension of one side of the square beamlet
(this solution could be easily altered to account for rectangu-
lar beamlets). The diffusion coefficients in Eq. (9) are also
defined for each beamlet interface, dictating the amount of
smoothing between each beamlet at every side. With this
discretization, the smoothed beamlet intensity at “ij” de-
pends on the smoothed intensities of its neighboring beam-
lets, making an iteration scheme necessary to solve for I;;.

On the other hand, using the explicit approximation, Eq.
(7), in Eq. (5), we obtain

ls(%,y) =lo(x,y) + V- wDVIo(x,y), where w=At. (10)

Applying the same cell-centered discretization to I,
rather than I, we obtain the following discretization of the
diffusion problem with explicit time differencing [the D val-
ues are the same as Eq. (9)]:

w
lsij=loij| 1~ F(Di+1/2,j +Dj_1/2) + Dij+12+ Dijjo1/2)

w
+ F(Di+l/2,j|0,i+l,j +Di-12jlo,-1,) + Dijsreloij+1

+Djj10l0)ij-1) (11)

Now the smoothed intensities are based explicitly on the
original intensities, making the smoothed intensity pattern
much easier to calculate. Also, this solution can easily be
applied inside of the optimization procedure as a penalized
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1 (9)
2D, D, ;
Dij12= ——4- 0 on boundaries.
: Di; + Dj jo1

cost function component to be used with a gradient-based
optimization scheme. While it would be possible to use Eq.
(9) inside the cost function, the cost function gradient with
respect to the original intensities cannot be calculated, mak-
ing it necessary to employ a nongradient based (and likely
much slower) optimization algorithm, such as simulated an-
nealing. For these reasons, we employ the explicit solution to
the diffusion equation in the remainder of this work.

The explicit diffusion smoothing scheme has several in-
teresting features (many of which are shared with the im-
plicit solution), including:

(1) If I,=uniform intensity, then I =1,. Thus, ADS does not
alter a flat field.

(2) 1f W/h?(Djs12+Di1/2,* Di j12+ Di jo12) =1 for all ij,
then 1o min=1s(X,¥) =lomax. Thus, if the first inequality
is true, the maximum and minimum intensities of the
smoothed beam will lie between the maximum and
minimum intensities of the unsmoothed beam. (For the
implicit solution, this property is always true.) This
property ensures that as long as the original beamlet
intensity is positive, the smoothed beamlet intensity will
also be positive. In addition, this property gives us a
guideline for choosing the absolute values of the time
step w and diffusion coefficients. We have chosen to
limit D to the range between 0 and 10 for all beamlets,
and thus to satisfy the above inequality, and to provide
the possibility for a relatively high degree of smoothing,
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we chose w=0.02h?, where h is the beamlet dimension
(usually 0.5 or 1.0 cm) for the remainder of this work.
Limiting D between 0 and 10 allows us to keep w fixed
while still providing a wide range of smoothing capabili-
ties.

3) Ealll beamlets O:Eall beamletsls OF the smoothed beam pre-
serves the total intensity of the unsmoothed beam. [The
discretization scheme preserves Eq. (4).] This property
ensures that the smoothed plan will not be drastically
different from the original plan and that the contributing
beams will be consistent. In some cases, this feature
could be considered restrictive, but in the iterative ADS
penalty smoothing scheme discussed below, this prop-
erty is beneficial because it does not interfere by causing
a shift in the total intensity from one beam to another.

(4) Because of the properties of the diffusion operator, the
ADS process preferentially suppresses high frequency
components of I, This is an important feature, because,
unlike other smoothing techniques such as polynomial
fitting, ADS ensures that the smoothed beam is actually
a less modulated version of the original beam. No un-
wanted high frequency components can arise as artifacts
of the ADS smoothing process.

(5) If D;j=0 in beamlet ij, then Ig;;=1,;; if Dj; is large, Igj;
is strongly smoothed. This gives us a basis on which to
define D according to the amount of smoothing desired
in a certain beamlet.

(6) The explicitly smoothed I;; is determined by the origi-
nal plan I, only at the ij beamlet and its four nearest
neighbors. The implicit solution smoothes over the en-
tire beam. Thus, in addition to being simpler to calcu-
late, the explicit solution also leads to more local
smoothing, which is most likely more desirable for
IMRT beams. However, if a more globally smoothed
beam is desired, exploration of the implicit method
would certainly be warranted.

We believe that the full power of the diffusion smoothing
procedure lies in the definition of the diffusion coefficient, D.
D can be defined in a multitude of ways, the only constraint
being D;j=0 for all beamlets. We know from the above
properties that if D;;=0 for a certain beamlet, then the
smoothed intensity of that beamlet will equal the original
intensity. Conversely, if D;; is large for a beamlet, then there
will be a large amount of smoothing between the original and
smoothed beamlet intensities. This gives the user a high de-
gree of control in the amount of smoothing applied over the
field and allows for spatially variable amounts of smoothing.

Smoothing procedures that are applied as a cost function
penalty appear to have the fewest drawbacks in terms of plan
degradation compared to those applied outside the cost func-
tion. Therefore, we chose to characterize adaptive diffusion
smoothing for use inside the cost function. From the previ-
ous paragraph, we can specify D so that modulation is pe-
nalized strongly or weakly in given areas of the beam. For
example, if we would like to keep sharp edges at the target
boundary, we can choose D to have low or zero components
near the edges of the beamlet intensity map. Similarly, if we
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do not wish to penalize a large intensity gradient over a
target/normal tissue interface, we can choose D to be small
over those beamlets. Because there are practically no restric-
tions on the definition of the coefficient values, there are
many parameters that can be used to prescribe D. As a first
characterization of the ADS method, we will consider two
logical ways to define the diffusion coefficients.

Uniform: In IMRT cases with simple geometries, there is
generally a large solution space of acceptable plans, and the
cost function is not sensitive to small changes in the beamlet
intensity patterns. In these situations, the simplest way to
define D is as a uniform value across the field. Although this
definition of D does not exploit the full potential of defining
individual diffusion coefficients (and thus does not distin-
guish between desirable and undesirable modulations), it
provides a good starting point to test the diffusion smoothing
scheme and assess whether customized diffusion smoothing
coefficients are necessary for simple plans.

Gradient: The ultimate goal of smoothing an IMRT inten-
sity pattern should be to maximally smooth the field with the
minimum change in cost function value, which translates to
the minimum negative effect on the inverse plan dose pre-
scription. In a gradient-based optimization method, the par-
tial derivatives of the cost function (CF) with respect to each
of the beamlet intensities (1;;), dCF/4l;;, must be calculated
at every iteration. Each of these partial derivatives describes
how important each beamlet value is to minimizing the cost
function value. Beamlets with large absolute values of the
gradient have the property that altering those beamlets would
have a large effect on the cost function, and vice versa. We
have observed that these gradients, at convergence, can vary
by several orders of magnitude, with a small percentage of
the gradients having very high values, many having very
small values and a few having moderate values. With this
information, we can define D to be a function of these gra-
dient values to achieve little to no smoothing in high gradient
beamlets, moderate smoothing in moderate gradient beam-
lets, and a high degree of smoothing in low gradient beam-
lets. We have studied a variety of possible formulations for
D, including making Dj; inversely proportional to
|dCF/dl;;|™. In order to achieve the desired distribution of D,
we have concluded that the following function is a robust
and tunable formulation for D that can be used in most, if not
all, IMRT cases:

10
Dij = |0CF/dlg | \" 12
=
S

Here s is a gradient scaling factor which we set equal to the
median value of [JCF/dl;j|. (The median value was chosen
over the mean because of the tendency for some gradients to
have extremely high values and bias the mean toward the
higher end.) The parameters a and n are tunable parameters
that allow D to be further customized depending on the in-
dividual case. It is likely that similar plans will have similar
optimal values of a and n. The parameter a serves to shift the
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Low Intensity

Brainstem High Intensity

transition from high to low D and n controls the steepness of
the falloff from high to low D.

In theory, Eq. (12) implies that the highest amount of
smoothing will occur in beamlets that have a small effect on
the dose prescription goals, and only minor smoothing will
occur in beamlets that have a large effect on the cost func-
tion. Thus, the use of a variable diffusion coefficient defined
in this way yields a method that can distinguish between
desirable and undesirable modulations.

As an illustration of each of the above diffusion coeffi-
cient definitions and the ADS method itself, Fig. 1(a) shows
a standard optimized intensity modulated beam from a brain
cancer treatment example with the PTV and several critical
structures outlined. Figure 1(b) shows the diffusion
smoothed version of that beam using uniform diffusion co-
efficients across the entire field. The beam was “diffusion
smoothed” over five iterations to accentuate the smoothing
for illustration purposes. Figures 1(c)-1(e) demonstrate the
gradient-based diffusion smoothing process. Figure 1(c)
shows the [JCF/dl;;| values, which are highest in areas of the
beam that project onto the critical normal tissues. Figure 1(d)
shows the gradient-based diffusion coefficients that are cal-
culated using Eq. (12) with a=1 and n=2. Finally, Fig. 1(e)
shows the diffusion smoothed beam calculated with the dif-
fusion coefficients shown in Fig. 1(d). This beam is also
shown after five diffusion smoothing calculations, to high-
light the differences between the two methods. We see that
when D is uniform, the degree of smoothing is the same over
the entire field, smoothing out the modulation near the or-
gans at risk. However, when D is defined using the cost
function gradients with respect to the beamlet intensities, the
least amount of smoothing occurs in areas where modulation
is necessary to meet the plan objectives. In this case, these
areas occur around in the overlap regions of the PTV, brain-
stem, and optic structures. This is shown by the profiles in
Fig. 2, which were taken in the direction of travel (shown by
the arrow in Fig. 1) for one leaf pair. The base line beam
intensity profile has very high and low intensities while the
ADS profiles are much smoother. The ADS-gradient profile
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Fic. 1. (a) An optimized brain IMRT beam, (b) the dif-
fusion smoothed beams when using uniform coeffi-
cients, (c) absolute value of the cost function gradients
with respect to the beamlets, [JCF/dl;|, (d) adaptive
diffusion smoothing coefficients that are defined as a
function of (c), and (e) diffusion smoothed beams when
using the gradient-based diffusion coefficients in (d).
Beams are shown in the beam’s eye view in relation to
the PTV, brainstem, optic nerves, and optic chiasm.
Blue represents low intensity beamlets (gradients, or
diffusion coefficients) while red represents high
intensity.

preserves the intensity gradients near the brainstem and chi-
asm overlap regions, while the ADS-uniform profile has a
smaller slope. It should be noted that the smoothing that
occurs with the gradient-based diffusion coefficients is not
always intuitive, as in this beam, since the gradient values
depend not only on the normal structure locations but also on
the interplay between each of the beams.

Due to the fact that even small changes in the beamlet
weights can cause large changes in the cost function,
smoothing is usually most successful when applied inside the
cost function. Thus, for the remainder of this work, the adap-
tive diffusion smoothing procedure is used inside the IMRT
inverse cost function. To do this, we first calculate the diffu-
sion smoothed beamlet intensities and then calculate the de-
viation between the original beamlet intensities and the
smoothed intensities. This deviation is then penalized as a

25
T — = Diffusion Smoothed (Gradient D)
Diffusion Smoothed (Uniform D)
Baseline
20
—
2
% 15 I
c
L
S )
= Brainstem Chiasm
§ 10 =
m
51
|| 1 — g

0 | L L L L L | | | | | L L | | | L L L
172 3 45 6 7 8 9 10 1112 13 14 15 16 17 18 19 20
Beamlet Number

Fic. 2. Beam intensity profiles for the base line and ADS plans in the
direction of leaf travel for one leaf pair in Fig. 1. The leaf pair is shown by
the white arrow in Fig. 1. The beam area that projects onto the brainstem
and chiasm is shown by the black arrows.
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TaBLE |. Test case plan objectives and PDU scale for comparisons to base line plan.

Structure Goal

Approximate loss in plan quality
(relative to base line plan)
equal to a PDU of 1.0

PTV % vol>57 Gy=100
% vol>63 Gy=0

OAR1 % vol>35 Gy=15
% vol>63 Gy=0
Minimize mean dose
OAR2 % vol>20 Gy=0
% vol>63 Gy=0
Minimize mean dose
Normal % vol>63 Gy=1
tissue Minimize mean dose

0.1 Gy increase to 100% (same as 1 Gy to 1%)
0.1 Gy increase to 100%

0.1 Gy increase to 85%
0.5 Gy increase to 100%
1 Gy increase

0.1 Gy to 100%
0.5 Gy to 100%
1 Gy increase

1 Gy increase to 99%
2 Gy increase

part of a weighted sum cost function with weight, p. Specifi-
cally, the following adaptive diffusion smoothing penalty is
added to the total cost:

ADS penalty=p x >, %‘, (lojj = 1si)? (13)
all ij

Here I is calculated using Eq. (11), and D and w must
abide by property 2. As stated previously, D was chosen to
fall between 0 and 10 and w=0.02h?, where h is the beamlet
dimension. The individual D values are variables between 0
and 10, depending on the type of adaptive diffusion smooth-
ing coefficients chosen.

[I.B. Characterization in CT phantom and clinical
examples

To characterize the method and coefficient choices, we
applied adaptive diffusion smoothing to a test case with a
central spherical target surrounded by two normal structures.
The plan consisted of three 6 MV beams with 0.5 cm by 0.5
cm beamlets covering the PTV. The base line inverse plan
objectives are shown in Table I. The point density in the
structures was adequate to properly sample the region and
minimize any point-based artifacts in the beamlet intensities.
Beamlet intensity optimization was first performed using the
base line cost function with UMOpt,?° our in-house IMRT
optimization software package. UMOpt supports a variety of
different cost function components, or “costlets”®! and al-
lows the implementation of new costlets, such as the adap-
tive diffusion smoothing penalty. After optimization with the
base line cost function, the ADS penalty was added to the
cost function at a given weight and the plan was reoptimized.
This was repeated with increasing ADS penalty weights to
study the consequences of increasing the importance of the
ADS smoothness costlet. In these studies, the weight of the
ADS penalty was systematically varied to analyze the range
of plans and tradeoffs possible for both the uniform and
gradient-based diffusion coefficients.

Medical Physics, Vol. 35, No. 4, April 2008

In addition to the comparisons made between base line
IMRT and ADS plans, we also optimized plans using the
PIMV,, method,® which penalizes the quadratic plan intensity
map variation defined by

Ny /3-1K-1
PIMV,= > (E |:(bjk_ by e1)” + (Bjic = bjag)?
n=1 \j=1 k=1

1 1
+ E(bjk ~bjar )’ + E(bjk - bj+1,k—1)2] ) . (14)

Here Ny is the number of beams in a plan, J is the maximum
number of beamlets in the direction parallel to the motion of
the multileaf collimator (MLC), K is the maximum number
of beamlets in the direction perpendicular to the motion of
the MLC, and by, is the intensity of the beamlet at the (j,k)
grid position. The PIMV, penalty has been shown to be a
simple, yet viable smoothing costlet, and we apply it here to
determine whether there is an advantage to using the more
sophisticated ADS scheme.

After characterizing the ADS procedure and penalty in the
simple test case, we employed the same scheme to clinical
examples in the prostate and head/neck. Both cases had
seven equispaced 6 MV beams; the base line planning objec-
tives are shown in Tables Il and Il and reflect in-house
IMRT protocols. The normal tissue goals for the prostate are
conservatively based on several published toxicity recom-
mendations from RTOG 9406.2% All cases were planned
for a 6 MV linear accelerator (Varian Medical Systems,
21EX) with 120 leaf MLC (0.5 and 1.0 cm leaf widths).
Dose calculations for the inverse planning system were per-
formed by a convolution/superposition algorithm originally
based on the work of Mackie et al.?* but optimized for
beamlet calculations. As stated previously, treatment plan-
ning was performed with our in-house 3D treatment planning
and IMRT optimization software packages, UMPlan and
UMOpt.2®?% |eaf sequencing for static MLC (SMLC) de-
livery was performed with an in-house-developed leaf se-
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TaBLE Il. Prostate plan objectives and PDU scale for comparisons to base line plan.

Structure Goal

Approximate loss in plan quality
(relative to base line plan)
equal to a PDU of 1.0

Prostate +5 mm % vol>78 Gy=100

% vol>88 Gy=0
Rectum % vol>45 Gy=20
% vol>85 Gy=0
Minimize mean dose
Bladder <30% gets >45 Gy
% vol>85 Gy=0
Minimize mean dose
Penile bulb Mean <35
% vol>85 Gy=0
Minimize mean dose

Mean <30
<10% gets >40

% vol>45 Gy=0
Minimize mean dose

Femurs

Normal
tissue

Maximum <88 Gy
Minimize mean dose

0.1 Gy decrease to 100% (same as 1 Gy to 1%)
0.1 Gy increase to 100%

0.1 Gy increase to 80%
0.1 Gy increase to 100%
1 Gy increase

0.1 Gy increase to 70%
0.1 Gy increase to 100%
1 Gy increase

1 Gy increase
0.1 Gy increase to 100%
1 Gy increase

1 Gy increase

1 Gy increase to 90%
1 Gy increase to 100%
1 Gy increase

2 Gy
2 Gy increase

quencer based on a method published by Bortfeld et al .2
Delivery sequences allow up to 250 segments per beam, with
a goal of achieving a correspondence between planned and
delivered intensities of 1%. The ADS penalty was evaluated
by comparing the results of the ADS penalized plans to the
base line IMRT plan and the PIMV,, plan for each case.
Plan comparisons (without and with varying amounts of
ADS smoothing) are described by examining dose-volume
histograms, relevant dose metrics, IMRT beam complexity,
and delivery efficiency (MU required). However, compari-
sons of different plans, especially when somewhat different
optimization schemes are used, can be difficult, especially
since values of the total cost function or individual costlets
do not have any specific clinical relevance that can be used
to compare the importance of the tradeoffs that are used to
achieve the final “optimal” plans. Therefore, we describe
here a method for (1) choosing the objective function
weights in a clinically relevant manner and (2) judging the
quality of inverse plan compromises (or tradeoffs). We call
this method “plan degradation units,” or PDU. The goal of
the PDU construct is to describe a consistent unit of
“tradeoff,” since different kinds of compromises are typically
made among the many goals involved in a clinical inverse
treatment plan. To facilitate these comparisons, we develop a
PDU scale for each case along with the base line objectives
in Tables I-I11. This scale is developed along with the design
of the base line cost function: we assign a concession or
sacrifice value for each cost function goal which corresponds
to 1 PDU. Each concession is meant to correspond to a con-
sistent level of plan degradation. For example, we could as-
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sign a PDU of 1.0 to be a minimum PTV dose of 59.9 Gy
instead of 60 Gy, while also defining 1 PDU as 99% of the
PTV receiving 60 Gy and 1% of the PTV receiving 59 Gy.
For a less important objective, a PDU of 1.0 may correspond
to larger dose concession, such as allowing the unspecified
mean normal tissue dose to increase by 2 Gy. Once we have
designed the PDU scale, we work backward to assign the
objective function weights so that the final total cost of the
objective function is equal to the PDU value. The total cost
in a weighted-sum cost function is given by, C=Xw;f;, where
w is the weight of the objective f. For one component of the
cost function, the cost contribution is simply w:f;. To normal-
ize all of the objectives to their unit PDU values, we set the
individual cost components, C;=1, and use the objective
concession levels given in the table to calculate w. For ex-
ample, the minimum PTV dose concession in the previous
example that was equal to 1 PDU was 0.1 Gy. Therefore, in
a quadratic cost function, the weight is equal to 1 divided by
0.1, or 100. Inspection of the PDU scales shown in Tables
I-111 shows that we have chosen PDU scales that are conser-
vative. In other words, the PDU value is meant to be very
sensitive to small changes in the dosimetric goals. This was
done purposefully, to show that a significant amount of
smoothing is possible in IMRT plans without sacrificing
clinical plan quality. In Tables I-111 the plan quality metric
sacrifices (relative to the achieved base line plan objectives
in Gy that correspond to a PDU of 1.0) that were used to
assign the cost function weights and judge the final plan
quality are given.
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TaBLE Ill. Head/neck plan objectives and PDU scale for comparisons to base line plan.

Structure Goal

Approximate loss in plan quality
(relative to base line plan)
equal to a PDU of 1.0

PTV70 % vol>69.3 Gy=100

% vol>77 Gy=0

PTV64 % vol>63.4 Gy=100
% vol>70.4 Gy=0
PTV60 % vol >59.4 Gy=100

% vol>66 Gy=0

Cord Maximum <50 Gy
Minimize mean dose

Brainstem Maximum <54 Gy
Minimize mean dose
Mandible Maximum <73.5 Gy
Minimize mean dose

Parotids Maximum <77 Gy

Mean <26 Gy

Minimize mean dose

Esophagus Maximum <50 Gy
larynx Minimize mean dose

Maximum <77 Gy

Oral cavity Mean <49 Gy

Minimize mean dose
Normal Maximum <73.5 Gy
tissue Minimize mean dose

0.15 Gy decrease to 100% (same as 1 Gy to 1%)
0.2 Gy increase to 100%

0.15 Gy decrease to 100%
0.2 Gy increase to 100%

0.15 Gy decrease to 100%
0.2 Gy increase to 100%

0.1Gy increase
1 Gy increase

0.1 Gy increase
1 Gy increase

0.2 Gy increase
1 Gy increase

0.2 Gy increase
0.25 Gy increase
1 Gy increase

1 Gy increase
0.5 Gy increase
1 Gy increase

0.5 Gy increase
1 Gy increase

1 Gy increase
2 Gy increase

lll. RESULTS
llILA. Phantom study

The adaptive diffusion smoothing procedure was imple-
mented into our 3D treatment optimization system infrastruc-
ture as a penalty or costlet to be used inside the cost function
of an inverse IMRT plan. A test case was used to test the
ADS implementation and characterize the two different
methods for setting diffusion coefficients. A base line plan
was established for this case by optimizing beamlet weights
according to the minimization of the cost functions in Table
I. Then, to study the impact of including the ADS penalty at
varying weights in the cost function, we reoptimized the base
line plan while systematically increasing the ADS penalty
weights.

Results of the phantom comparisons are shown in Fig. 3.
Figure 3(a) shows the simple three field beam arrangement
and anatomy. Figure 3(b) illustrates the tradeoff between MU
and dosimetric plan quality as the modulation penalty
weights are increased for the PIMV,, ADS-uniform, and
ADS-gradient smoothing penalties. This figure plots the rela-
tive MU required to deliver the plan as a function of plan
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degradation (PDUs) with respect to the base line plan. We
would like to note that the PDU value is equal to the objec-
tive function value. Table I contains the PDU scale for the
phantom case. A PDU of 1 corresponds to a loss in plan
quality relative to the base line plan and could be equivalent
to, for example, a 0.1 Gy decrease in the minimum dose to
the target, or a 2 Gy increase in the mean dose to the normal
tissue, or a lesser combination of the two. As stated previ-
ously, we have used these values to assign the objective
weights inside the objective function and purposefully made
the PDU scale sensitive to changes in plan quality, to show
that a large reduction in MU is possible with small losses in
plan quality. In Figs. 3(b) and 3(c), the plans optimized with
each different method, to similar relative MU values, are
compared [denoted by the circled plans in Fig. 3(b)]. Figure
3(c) shows the dose-volume histograms (DVHSs) for each of
these plans compared to the base line plan, and Fig. 3(d)
illustrates the effect of the various smoothing penalties on
the beamlet intensity maps. For plans requiring approxi-
mately the same MU, the ADS-gradient penalty yielded the
highest dosimetric quality plan. With a PDU of 2.0, the dif-
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Fic. 3. (a) The phantom geometry and beam arrangement, (b) relative MU (to the base line plan) as a function of plan degradation units, (c) dose-volume
histograms for the circled plans in (b), and (d) the corresponding intensity modulated beams in the beam’s eye view for the phantom case 1 for standard IMRT
and the three different modulation penalties. The outline of the two OARs is shown by the dotted lines. Red corresponds to high intensity beamlets and blue

to low intensity beamlets.

ference between the base line plan and ADS-gradient plan is
very small, demonstrating the conservative PDU scale. From
the beam’s eye view in Fig. 3(d), we see a large reduction in
overall modulation when using each of the smoothing meth-
ods, although the complexity reduction is slightly different
for each technique.

The large amounts of smoothing possible in this case may
be indicative of the simple geometry and cost function. In
fact, the optimal a and n values in Eq. (12) for this case were
0.1 and 2, respectively. While n=2 results in a reasonable
fall-off from high D to low D, the low value of a shifts this
falloff so that it occurs at a fairly high value of D, meaning
that the majority of the beamlets were maximally smoothed.

As expected, the steep fluence gradients and modulation
near normal tissue interfaces and overlap regions appear to
be preserved to a greater extent in the ADS-gradient beams
than in the ADS-uniform beams. On the other hand, the
PIMV,, penalty promotes an overall reduction of the intensity
variation and high intensities in the fields and leads to the
distribution of intensity more evenly across the fields. When
applying the truly adaptive gradient-based diffusion coeffi-
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cients in ADS, there appears to be a higher degree of
smoothing in areas that are not in tissue overlap regions. This
is expected, because the cost function gradients with respect
to the vector of beamlet intensities (dCF/dl) are likely to be
smaller in these regions. Because of this additional smooth-
ing, the ADS-gradient beams may result in lower MU than
the ADS-uniform and PIMV,, penalties, even though the
ADS-gradient beams have steeper fluence gradients and
modulation near the normal tissue interfaces and overlap re-
gions.

These initial results demonstrate that diffusion smoothing
is a promising method for controlling modulation in IMRT
fields, with an advantage when using the adaptive gradient-
based coefficients.

IIl.B. Clinical examples

To gain more insight into the merits of each of the two
different coefficient definition methods, we tested each
method for the more complicated clinical geometries of the
prostate and head/neck. These cases were optimized with the
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Fic. 4. (a) relative MU (to the base line plan) as a function of plan degradation units, (b) dose-volume histograms for the circled plans in (a), and (c) the
corresponding intensity modulated beams in the beam’s eye view for the prostate case for base line IMRT and the three different modulation penalties. From
left to right is base line, PIMV,, ADS-uniform, and ADS-gradient. The bladder, rectum, and penile bulb are shown in the beam’s eye view.

cost functions shown in Tables Il and 1, and the ADS pen-
alties (using both diffusion coefficient definition methods).
As in the phantom case, the base line cost function was first
optimized, and then smoothing penalties were added at in-
creasing weights inside the cost function. The weights were
systematically increased to observe the tradeoffs made with
the base line goals.

I11.B.1. Prostate

Figure 4(a) shows results of the prostate base line optimi-
zation along with the potential for reducing MU through use
of the ADS and PIMV, penalties, as a function of plan deg-
radation units. The addition of any of the smoothing penal-
ties reduced the MU substantially, although a greater benefit
is observed with the ADS-gradient penalty. The maximum
reductions in MU were around 26%-36%, although this
would be much higher if more degradation was allowed in
the plan objectives. It can be seen that the ADS-gradient
method achieves its maximum result with smaller tradeoffs
(PDUs) than the other penalties. This is because the ADS-
gradient penalty does not highly penalize the important areas
of modulation. Therefore, this penalty will be nearly zero for
high quality plans, while the other methods can still create
large penalties because they are penalizing overall modula-
tion. In Fig. 3 we showed that in plans with similar MU
requirements, the ADS-gradient plan had the best dosimetric
quality. Conversely, in Fig. 4, we compare plans with similar
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dosimetric quality. Figure 4(b) shows the DVHs for the base
line plan and the other plans at a PDU level of approximately
6. Because of the number of structures in the cost function,
this level of plan degradation is very slight, as seen by in-
spection of the (nearly identical) DVHs. In Fig. 4(c), we
display a typical beam intensity distribution for each optimi-
zation method, along with the rectum, bladder, and penile
bulb in the beam’s eye view. Small differences are observed
between the ADS-uniform and ADS-gradient beams: the
ADS-gradient beams are more uniform in areas where there
are no normal tissue overlap regions and allow for quicker
falloff between high and low intensity regions. These fea-
tures combine throughout all of the beams to produce more
smoothing and MU reduction at the same level of plan qual-
ity. The smoothing that occurs is a function of the interplay
between the cost function and many beamlets from seven
directions; therefore, one must be careful not to draw signifi-
cant conclusions from the display of a single beam. For ex-
ample, the ADS-uniform beam from this left posterior direc-
tion is more intense than the other beams, but this is offset by
a smaller contribution from the anterior beam in this case. An
inspection of all seven beams demonstrates that the PIMV,
beams display an overall flattening of intensity across the
beams with the intensity contributions from each beam be-
coming more uniform. On the other hand, the ADS-gradient
plans show a shift in intensity contributions to the beams that
intersect the fewest organs at risk. From this point-of-view,
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Fic. 5. (a) Relative SMLC monitor units are shown as a function of the plan degradation base line cost for the head/neck plan. (b) DVHs and (c) a typical
intensity modulated beam are shown for the circled plan in (a) for each of the optimization methods. From left to right is base line, ADS-gradient,
ADS-uniform, and PIMV,,. Several normal structures are outlined in the beam’s eye view.

the ADS-gradient beams are much more intuitive than the
PIMV,, beams. There were only slight differences observed
in the dose distributions in each of the techniques.

In comparison to the optimal a and n values in Eq. (12)
for the phantom compared to this prostate example, the n
value remained at 2 while the a value increased to an opti-
mum of 0.5. Again, the relative small a value means that the
majority of the beamlets are being maximally smoothed, but
not quite to the same degree as the phantom case. A prelimi-
nary observation is that the a value is an indication of the
difficulty of the geometry and/or cost function.

I11.B.2. Head/neck

The inverse plan objectives used in the head/neck ex-
ample were very strict and closely reflect our current clinical
standard. Despite the strict cost function and seemingly small
amount of solution space to work with, the application of
both the ADS and PIMV, penalties resulted in a substantial
reduction of modulation and MU (Fig. 5). This demonstrates
that, even in complicated cases, there may still be a large
range of plans that can achieve similar results, and that some
of those plans may be more desirable in terms of plan effi-
ciency. The use of the ADS (and PIMV,) smoothing costlets
enabled us to find a more efficient plan without sacrificing
the quality achieved with the base line plan. In contrast to the
phantom and prostate cases, there was no substantial differ-
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ence in MU reduction between the different smoothing cost-
lets [Fig. 5(a)]. The ADS-gradient and PIMV, penalties
showed nearly identical results in terms of MU reduction,
and the ADS-uniform penalty was slightly worse. Figure 5(c)
demonstrates typical qualitative differences between beams
smoothed with each of the different methods. These differ-
ences are small, which may point to the fact the head/neck
plan solution space with the additional objectives of modu-
lation reduction is fairly small. The ADS beams both appear
to do a slightly better job at sparing the larynx in the beam
shown, although the DVHs are nearly identical for all meth-
ods. The optimal a and n values in Eq. (12) may also indicate
the complexity of the case itself. The values found for this
case were a=5 and n=0.25—quite different results than in
the previous two cases. Here the optimal diffusion coeffi-
cients falloff very slowly from high to low intensity and are
focused on a smaller and lower range of values, due to the
combination of the low n and high a values.

To demonstrate the ability of the ADS-gradient penalty to
preserve intensity gradients as well as to smooth at high pen-
alty weights, the final (most penalized) ADS-gradient plan is
shown in Fig. 6. Figure 6(a) illustrates the difference be-
tween the base line and ADS-smoothed plans via a 3D visu-
alization of the two plans with several of the important re-
gions of interest displayed. This ADS-gradient plan is
noticeably smoother and can be delivered with 57% fewer
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Fic. 6. (a) Head/neck geometry and intensity modulated beams for the base line plan and the last (most smoothed) ADS-gradient plan shown in Fig. 6. The
ADS-gradient plan can be delivered with 57% fewer SMLC monitor units with minimal effect on the base line plan quality, as shown in the DVHs in (b).

MU. The loss in dosimetric quality is minimal, which can be
seen in the DVH comparison of the two plans in Fig. 6(b).
The substantial differences noted in the intensity modulated
beams between the two techniques suggest that there may be
significant differences in the dose distributions of the two
plans. Figure 7 shows dose distributions from two transverse
slices for the base line and ADS-gradient plans. The dose
distributions in the more superior slice [(a) and (b)] are very
similar, and the dose distributions in the more inferior slice
[(c) and (d)] are slightly different. The anterior and posterior
lateral ADS-gradient beams contribute more dose in this
plane than in the base line plan, which can be seen in Fig. 6.
In addition, the base line isodose lines are slightly less
smooth than the ADS-gradient isodose lines.

IV. DISCUSSION

This work has shown that ADS can significantly reduce
unneeded modulation in the intensity distributions for IMRT
plans. In the phantom and prostate, we are able to reduce
MU by approximately 30%-40% with no loss in the plan
quality when using ADS, and MU reductions greater than
40% are attainable with only very small concessions in the
base line plan. While all smoothing penalties performed well,
the adaptive gradient-based diffusion coefficients in the
ADS-gradient penalty were able to reduce MU by around
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10% more at higher penalty weights in the phantom and
prostate cases. This advantage may be due to the fact that the
ADS-gradient penalty more appropriately penalizes the less
important modulation more than the more important modu-
lation. Therefore, it can preserve—with minimum penalty—
the essential modulation in the plan while smoothing large
regions of the beam. In the prostate, this results in more
uniform areas in each beam that require fewer MU to deliver.
Although a large amount of smoothing was achieved in the
head/neck case with the ADS-gradient method, significant
differences in MU reduction were not seen in this example
compared to the PIMV,, penalty. Superior improvement in
delivery efficiency with the more sophisticated ADS-gradient
method may not have been observed in this case because the
cost function gradients were much higher and fluctuated
more than in the other sites, due to the large number of
clinical goals, and the comparative difficulty of the cost
function. In addition, we expect that some uncertainties in
the gradients (due to the point sampling, for example) will
exist and may lead to undesirable variation in the diffusion
coefficients. This is the subject of ongoing study.

This preliminary evaluation of adaptive diffusion smooth-
ing with spatially variant diffusion coefficients (the ADS-
gradient penalty) revealed that it has great potential as a tool
to reduce IMRT beam complexity in regions where the com-
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Fic. 7. Transverse dose distributions corresponding to the base line [(a) and
(c)] and ADS-gradient [(b) and (d)] head/neck plans shown in Fig. 6.
PTV70, 64, and 60 are shown in yellow, red, and violet, respectively. The
parotids glands are contoured in blue and the spinal cord is contoured in
green.

plexity is not necessary to produce a quality plan. While
more work is needed to evaluate the ADS method, the results
of this study show that the use of the ADS penalty does not
have to lead to a reduction in dosimetric plan quality and can
significantly reduce modulation and MU. In the phantom and
prostate examples tested in this work, the use of uniform
smoothing methods such as the ADS-uniform penalty or
PIMV,, penalty was adequate to reduce beam complexity.
However, use of the gradient-based diffusion coefficients in
the ADS-gradient penalty more successfully smoothed in ar-
eas where modulation was not essential to meeting the plan
objectives. Nonetheless, more work on additional clinical
cases and body sites is warranted and underway. Additional
case studies will also provide guidance on the optimal a and
n values that can be used in Eq. (12) to define the gradient
diffusion coefficients. Having these parameters is an advan-
tage because it allows us to further customize the method to
individual treatment sites, but it can also be a disadvantage if
this customization is required for each individual patient.
The geometries shown in this work demonstrated a signifi-
cant range of optimal a and n values, and tuning these pa-
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rameters could be time-consuming if it had to be done for
each case. Some preliminary testing has suggested that a and
n can be fixed for similar geometries, and future work will
aim to provide estimated values for a and n in a variety of
treatment sites.

In this article, we have not studied smoothing outside of
the plan optimization (e.g., within a leaf sequencer), other
than in the initial example (Fig. 1), which was used to dem-
onstrate how the smoothing (by itself) works. However, it
would be possible to study the application of an ADS algo-
rithm for postoptimization smoothing within the leaf se-
quencing step. In this kind of study, we would expect the
diffusion coefficient definition to have a much greater impact
on the final solution. Thus, for centers employing postopti-
mization smoothing or filtering inside the leaf sequencing
process, gradient-based diffusion smoothing could be an at-
tractive option.

One issue with smoothing IMRT plans is the effect it will
have on the geometric sensitivity of the plan. This compli-
cated question can only be fully answered through the simu-
lation of a large number of treatment courses for a variety of
sites. However, preliminary testing on the prostate case
shows that there may be an advantage to using the ADS-
gradient method to improve target coverage in the face of
setup uncertainty. More detailed analysis on geometric un-
certainty, including breathing and organ motion on several
patients, will have to be performed to draw any firm conclu-
sions on the robustness of diffusion smoothing to geometric
uncertainty.

One of the most exciting results of this study is the large
amount of smoothing possible without affecting the quality
of the plan. We plan to retrospectively analyze a series of
clinical protocol plans to learn how much smoothing would
have been possible with the use of the ADS-gradient penalty.
In addition, we are currently using the Lexicographic
Ordering27 method to quantify the tradeoffs between the
modulation penalties and the plan objectives. This will allow
our physicians to make educated choices between smoothing
and the plan objectives.

On the other hand, for weighted-sum cost functions, the
development of a more quantitative way to choose the objec-
tive weights and show comparisons between plans using the
new idea of PDU has been successful. Many current optimi-
zation algorithms rely on the use of conventional weighted-
sum cost functions and require a large number of trial-and-
error iterations to choose the proper weights for the
individual objectives. The addition of a modulation penalty
can affect the other objectives in different ways, and evalu-
ating the overall cost after the addition of the modulation
penalty can be difficult. The plan degradation unit scale puts
a value on different degrees of plan degradation and makes it
more intuitive to assign the objective weights and evaluate
the tradeoffs that are made when including a modulation
penalty. Instead of simply providing a “cost” with no obvious
clinical relevance, the PDU value gives a more reliable
gauge of the change in plan quality. We believe that the
adoption of this methodology will be very useful for judging
and designing cost functions for clinical use.
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Further applications of diffusion smoothing in IMRT are
the use of specialized diffusion coefficients to manipulate
beamlet intensities to reduce plan sensitivity to setup errors,
organ motion, and even undesirable delivery artifacts such as
tongue and groove underdosage.’®?° In future work, we plan
to use custom diffusion coefficients for adaptive radiation
therapy to ensure that large gradients do not occur in areas
that may require corrections in an adaptive scheme. This
should make it easier to apply feedback during the treatment
course, to make fractional changes in the intensity patterns
required to correct or change the dose prescription. Thus, the
increase of delivery efficiency may be just one of the pos-
sible applications of the ADS method.

V. CONCLUSION

The diffusion equation has been used in a procedure that
preferentially smoothes IMRT plans, using a diffusion coef-
ficient matrix that allows the degree of smoothing to adapt to
each individual plan. This procedure was used to define an
ADS penalty, applied inside an inverse planning cost func-
tion, to promote overall smoothing and monitor unit reduc-
tion. Two methods for definition of the diffusion
coefficients—to promote uniform smoothing and smoothing
based on the beamlet gradients (partial derivatives of the cost
function with respect to the beamlet intensity)—were applied
and tested on a CT phantom and two clinical examples.
Without compromising the base line cost function, MU re-
ductions on the order of 30% and 40% were obtained with
the ADS penalties. Compared to the ADS-uniform penalty,
the ADS-gradient penalty was better able to preserve inten-
sity gradients and modulation in important areas of the IMRT
fields, leading to an advantage in reducing MU in the phan-
tom and prostate cases. This was possible because the
gradient-based diffusion coefficients preferentially induce
smoothing in the beam where it does not interfere with meet-
ing the dose prescription objectives. All smoothing penalties
were equally successful in the head/neck example. Overall,
the ADS procedure and penalty is a promising tool for
smoothing the unnecessary modulation in IMRT plans which
may well have additional important uses due to the possibil-
ity of customizing the diffusion coefficients for purposes be-
yond the reduction of MU.
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