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Random setup errors can lead to erroneous prediction of the dose distribution calculated for a
patient using a static computed tomography~CT! model. Multiple recomputations of the dose
distribution covering the range of expected patient positions provides a way to estimate a course of
treatment. However, due to the statistical nature of the setup uncertainties, many courses of treat-
ment must be simulated to calculate a distribution of average dose values delivered to a patient.
Thus, direct simulation methods can be time consuming and may be impractical for routine clinical
treatment planning applications. Methods have been proposed to efficiently calculate the distribu-
tion of average dose values via a convolution of the dose distribution~calculated on a static CT
model!with a probability distribution function~generally Gaussian!that describes the nature of the
uncertainty. In this paper, we extend the convolution-based calculation to calculate the standard
deviation of potential outcomessD(x,y,z) about the distribution of average dose values, and we
characterize the statistical significance of this quantity using the central limit theorem. For an
example treatment plan based on a treatment protocol in use at our institution, we found that there
is a 68% probability that the actual dose delivered to any point(x,y,z)will be within 3% of the
average dose value at that point. The standard deviation also yields confidence limits on the dose
distribution, and these may be used to evaluate treatment plan stability. ©1999 American Asso-
ciation of Physicists in Medicine.@S0094-2405~99!02411-6#
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I. INTRODUCTION

Uncertainties arising from daily setup errors and organ m
tion can lead to differences between the dose distribution
a treatment plan and the actual dose distribution delivere
a patient. Two primary approaches exist to account for th
uncertainties. The traditional approach measures or estim
the extent of setup uncertainty and organ motion and a
margins around a clinical target volume~CTV! to form a
planning target volume~PTV!. The dose is calculated on
static patient model and prescribed to the PTV, with the
tent that the actual dose delivered to the CTV will be equi
lent to the predicted dose distribution. This margin expans
approach does not account for the differences between
predicted dose distribution and the actual delivered dose
tribution for normal tissues near the CTV. The second
proach includes margins for errors and incorporates the
certainties directly into the dose calculations, thereby giv
a more complete and accurate prediction of the delive
dose distribution to both the target volume and normal
sues.

Methods based on a convolution of the static dose dis
bution with a function~generally Gaussian!representing the
distribution of random uncertainties from setup and org
motion have been proposed for sites in the pelvis.1–5 In a
previous paper, we described a convolution-based metho
incorporate uncertainties from intratreatment organ mot
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due to breathing into 3-D dose calculations.6 In the present
work, we generalize this method to incorporate uncertain
due to daily setup errors into 3-D dose calculations for
diotherapy. In doing this, we quantitatively describe poten
differences between convolution-based predictions of
dose distribution and the actual dose delivered in a fin
fractioned course of treatment. We confirm the validity
our approach via comparisons to direct simulations for tre
ment of tumors in the liver. Also, we retrospectively analy
the effects of these uncertainties on the treatment plan
dose prescriptions based on a treatment protocol for l
disease used at the University of Michigan.7–9

II. METHODS AND MATERIALS

The basic algorithm for convolving setup uncertainti
with a static dose distribution has been describ
previously.1–5 The convolution method assumes rigid bo
motion, no change in the patient external contour, and
organ deformation. In the present study, we consider rand
translational setup uncertainties along the anterior–poste
~AP!, left–right ~LR!, and superior–inferior~SI! axes.

Based on a retrospective analysis of our patient setup
Scheweet al.,10 we assume that the translations along the
primary axes are independent and that the nature of the
dom translational setup uncertainties can be characterize
Gaussian probability distribution functions, as shown in F
2397„11…/2397/6/$15.00 © 1999 Am. Assoc. Phys. Med.
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FIG. 1. Measured distribution of setup errors in the LR and SI directions and Gaussian model of data~solid line! for treatments to sites in the abdomen
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1 for treatment to sites in the abdomen. In this figure,
origin of coordinates corresponds to the nominal position
the patient assuming no systematic error~i.e., the static pa-
tient position at treatment planning!. The mean setup uncer
tainty is assumed to be zero for all three axes, and we u
the standard deviations in translation from Schewe’s st
(sLR57.4 mm,sAP54.9 mm,sSI55.3 mm!.

The distribution of average dose valuesD̄(x,y,z), includ-
ing random translational setup uncertainties calculated u
a convolution-based method, is computed using Eq.~1!:

D̄~x,y,z!5EEED0~x8,y8,z8!

3N~x82x,y82y,z82z! dx8dy8dz8, ~1!

whereD̄(x,y,z) is the mean dose to any pointx,y,zincluding
uncertainties;D0(x8,y8,z8) is the static dose to a pointx8,
y8,z8; N is the normalized probability distribution functio
describing setup uncertainties in 3-D along the LR, AP, a
SI axes, respectively;N5Nx(x82x)Ny(y82y)Nz(z82z);

and Nx(x82x)5e2(x82x)2/2sx
2
/sxA2p, is the normal distri-

bution with standard deviationsx about a pointx, similar for
y andz.

In theory, the integration is carried out over all spa
~6`!, but for a practical implementation, we cut off the i
tegration at63s in each direction and renormalize. As note
by Leong1 and Killoran,11 the distribution of average dos
values calculated using Eq.~1! represents the dose distribu
tion received by the patient given an infinite number of sm
fractions. However, a real course of treatment is delive
with a finite number of fractions.

Leong proposed characterizing the potential differen
between a real finite fractioned treatment and the distribu
of average dose valuesD̄ by the standard deviationsD of the
average dose distribution. Killoran proposed using a Mo
Carlo-based direct simulation method to account for the
nite nature of treatment delivery~a course of treatment i
simulated multiple times, allowing for the computation of t
mean dose distribution as well as a range of possible
Medical Physics, Vol. 26, No. 11, November 1999
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comes about the mean dose distribution!. However, direct
simulations can be time consuming and often impractical
regular treatment planning applications.

Hence, we extended the convolution-based method to
low for an efficient computation of the standard deviationsD

of the average expected dose distributionD̄. Our method for
calculatingsD and the statistical significance of this quanti
is given below.

The general expression for the standard deviation12 is

sD~x,y,z!5F E E E @D0~x8,y8,z8!2D̄~x,y,z!#2

3N~x82x,y82y,z82z! dx8dy8dz8G1/2

.

~2!
Equation~2! can be expanded and expressed as

sD~x,y,z!5F S E E E D0
2~x8,y8,z8!

3N~x82x,y82y,z82z! dx8dy8dz8 D
2~D̄2~x,y,z!!G1/2

. ~3!

Equation~3! gives the standard deviation that would res
from an entire treatment delivered in a single fraction with
setup uncertainty characterized byN(x82x,y82y,z82z).
Real treatments are delivered overM multiple fractions, and
so the standard deviation for a fractionated plan is sma
than sD by 1/AM . For a fractionated plan, the probabilit
that the absolute difference between a real treatment con
ing of M fractionsDM and D̄(x,y,z) at any pointx,y,zwill
be less thansD(x,y,z)/AM can be expressed using the ce
tral limit theorem13 as

prob H uDM~x,y,z!2D̄~x,y,z!u,
ksD~x,y,z!

AM
J

5
1

A2p
E

2k

k

e2t2/2 dt. ~4!
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The integral on the right-hand side of Eq.~4! '0.68 for k
51, 0.95 fork52, and 0.98 fork53.

We performed Monte Carlo-based dire
simulations11,14–16using the treatment planning system at t
University of Michigan~UMPLAN, University of Michigan,
Ann Arbor, MI! to confirm the validity of our convolution-
based approach to calculateD̄(x,y,z) and sD(x,y,z). Our
procedure is described below.

~1! Randomly sample the setup orientation for each fract
in 3-D from the normal distributions shown in Fig. 1
~The distribution was sampled over63s and properly
renormalized.!

~2! Recalculate the dose distribution for each fraction in
new geometry using the beam weights~monitor units!
from the original configuration~i.e., for a slightly mis-
aligned patient, treatment would proceed under origi
plan assumptions, but with slightly altered patient geo
etry!.

~3! Combine the dose distribution from each fraction on
common grid to form one possible realization of t
course of treatment.

~4! Repeat procedure to calculate many possible realizat
of outcome.

~5! Average all realizations to determine distribution of a
erage dose values.

~6! Calculate the distribution of standard deviation valu
about the average dose values~direct simulation includes
effects of fractionation in the calculation of standard d
viation!.

~7! Compare the dose distribution and standard devia
distribution to the outcome of the convolution calcul
tions.

The treatment planning geometry used for our simulati
is shown in Fig. 2. In this problem, the gross tumor volum
~GTV! is located in the anterior–inferior portion of the live
We expanded the PTV from the CTV by an amount equa
the standard deviation of the setup uncertainties in the
AP, and SI directions~i.e., LR expansion of 7.4 mm5sLR ,
AP expansion of 4.9 mm5sAP, SI expansion of 5.3 mm
5sSI). Organ motion due to breathing was not conside

FIG. 2. Treatment planning geometry.
Medical Physics, Vol. 26, No. 11, November 1999
n

e

l
-

ns

s

-

n

s

o
,

d

for this study. We treated the PTV using a right lateral be
~RL!, a posterior–anterior beam~PA!, and a wedged pair o
oblique beams~RAIO, LASO!. The 95% isodose surfac
completely covered the PTV~normalized to 100% at iso
center!. Based on the dose to the normal liver~characterized
by the effective volumeVeff ,

17 the fractional volume of an
organ that if uniformly irradiated would result in the sam
complication probability as the nonuniform irradiated sc
nario!, treatment delivery was planned for 58 fractions at
gray/fraction delivered twice daily.

We compared the distribution of average dose values
culated using Eq.~1! to the static~initial treatment plan! dose
distribution. Also, we calculated dose volume histogra
~DVHs! and the effective volumeVeff for the convolved and
static treatment plans to determine the gross effects of
setup uncertainties on the treatment plan, as per a liver d
escalation protocol.7–9 Next, we calculated the standard d
viation of the convolved dose distribution@D̄(x,y,z)# using
Eq. ~3! and evaluated the result using Eq.~4! to determine
the range of potential outcomes in dose about the ave
dose values.

The results of our convolution-based calculations w
also compared to the direct simulations, in the manner
scribed above. We calculated upper and lower bounds on
dose distribution via calculation ofD̄12sD /AM and D̄
22sD /AM , respectively~95% confidence limits!. We then
developed an interpretation of these bounds for the dose
tribution and potential applications in the reevaluation
treatment plans using DVHs andVeff calculations.

III. RESULTS

Figure 3~a!shows the RL and PA beam orientation on
single axial CT slice. Figure 3~b!shows a dose differenc
display, in which the original planning~static!dose distribu-
tion is subtracted from the distribution of average dose v
ues (D̄2D0). Dose to the CTV predicted using a stat
model is approximately the same as the distribution of av
age dose values that includes uncertainties, indicating
the margins for the PTV are sufficient. Differences up
68% of the isocenter dose are observed in regions out
the CTV, resulting in a decrease inVeff for the normal liver
sufficient to consider a change in the prescription dose
signed for this treatment plan to maintain a fixed level
toxicity.9,18

As discussed above, for comparison to the convoluti
based calculations, we performed multiple direct simulatio
for the treatment plan shown in Fig. 2~58 fractions per
course of treatment at 1.5 gray/fraction!. Ten courses of
treatment were computed, then averaged and compare
the distribution of average dose valuesD̄ calculated using
the convolution method of Eq.~1!. A dose difference display
~not shown!demonstrated negligible differences~,0.5%! in
the regions of interest~normal liver, target volumes!, with
differences observed near the surface of the patient du
artifacts in the convolution calculation arising from disco
tinuities of the dose distribution at the patient surface. T
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DVHs for the target and organs at risk were indistinguisha
between the average of the direct simulation calculations
the convolution-based calculation, withVeff calculations dif-
fering by less than 0.2%.

FIG. 3. ~a! Single axial slice showing RL and AP beam orientation,~b! dose
difference display:D̄2D0 . The CTV contour is indicated in white. Ligh
gray areas indicate regions whereD̄.D0 , dark gray areas indicate region
whereD̄,D0 ~68%!.

FIG. 4. Dose difference display between two direct simulations of a cou
of treatment consisting of 56 fractionsDN and the distribution of average
dose values calculated via convolutionD̄. Differences up to62% are ob-
served.
Medical Physics, Vol. 26, No. 11, November 1999
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On average, the dose distribution calculated via multi
direct simulations and convolution-based methods@Eq. ~1!#
agree~,0.5% differences!, but the dose distribution fro
any single simulation of a course of treatmentDN could de-
viate from that average@Eq. ~1!#. This is shown in Fig. 4 on
a single CT slice for the treatment planning geometry in F
2. For this treatment plan, we observed potential differen
between direct simulations~58 fractions!andD̄ up to 2% in
regions outside the CTV.

Results from calculations ofsD(x,y,z)/AM for M558
fractions are shown in Fig. 5 for axial, coronal, and obliq
CT reconstructions~in a plane containing beams obliqu
beams 3 and 4!. The spatial distribution ofsD /AM com-
puted via Eq.~3! agrees with calculations made via dire
simulations~not shown,,0.2% differences!.

IV. DISCUSSION

For the example shown, the PTV margins about the C
were sufficiently large that a realistic dose calculation inclu
ing random setup uncertainties demonstrated that the s
dose calculation correctly predicted the dose to the CT

e

FIG. 5. sD /AM for treatment geometry given in Fig. 2 on an axial, coron
and oblique CT reconstruction~beam numbers indicated!.
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However, random setup uncertainties during fractionated
diotherapy led to erroneous predictions of the doses to
mal tissues. As seen in Fig. 3, the maximum differen
between the preplanned and average dose calculation in
ing predicted daily variations are in normal tissue regio
corresponding to the beam edges. This result agrees
clinical observations made by Michalskiet al.19 Though the
example shown is specific to a particular treatment plann
geometry, it is clear that including the effects of rando
setup uncertainties in the dose calculations can lead
changes in the prescription dose for protocols based on
predicted dose distribution to normal tissues.

The distribution of average dose valuesD̄(x,y,z) can be
calculated via direct simulations of the treatment, or wh
appropriate, via a convolution-based calculation applied
the static dose distribution@Eq. ~1!#. In both cases,D̄(x,y,z)
represents the dose to pointsx,y,zthat would be delivered to
an average patient given a very large~infinite! number of
fractions. The dose delivered in a finite-fractioned treatm
can differ fromD̄ for even a relatively large number of frac
tions.

FIG. 6. sD /AM for 10 ~a!, 20 ~b!, and 40 fractions~c! on a single axial CT
slice.
Medical Physics, Vol. 26, No. 11, November 1999
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We have proposed a method to calculate the range
potential outcomes in a real treatment aboutD̄(x,y,z) using
a convolution-based calculation. Using the central limit the
rem, this distribution of possible outcomes can be charac
ized by sD(x,y,z)/AM @where the standard deviatio
sD(x,y,z) is defined in Eq.~3!, and M is the number of
fractions in a course of treatment#. Calculation ofD̄(x,y,z)
62sD(x,y,z)/AM can provide population-based confiden
limits on our dose distribution~in particular for dose to sen
sitive structures!and should be considered when assign
the prescription dose.

While the upper and lower bounds on the dose distri
tion represent true 95% confidence limits~based on the cen
tral limit theorem!, the upper bound assumes that all po
in the distribution receive a dose greater than the aver
dose, while the lower bound assumes that all points recei
dose smaller than the average dose. These bounds ma
be physically realizable because of conservation of ene
~delivered dose! ~i.e., if some points in the dose distributio
receive a higher than average dose, then other points
receive a lower than average dose!. Thus, the upper and
lower bounds are true on a voxel-by-voxel basis but do
generally represent the physical~realizable!upper and lower
bounds on the total dose distribution. Hence, the spatial
tribution of sD(x,y,z)/AM should be considered whe
evaluating the upper and lower bounds on the average d
distribution D̄(x,y,z).

As the number of fractions in the treatment plan increas
the range of potential outcomes about the average outc
will decrease. This is shown in Fig. 6, where the distributi
of sD(x,y,z)/AM is compared forM510, 20, and 40 frac-
tions using the planning geometry described in Fig. 2. Thi
also seen in Fig. 7, which shows cumulative DVHs of t
normal liver based on calculations ofD̄ and D̄62sD /AM
for 10 and 40 fractions. Clearly, as the number of fractio
increases,D̄ become a better prediction of the actual do
delivered to the patient.

As noted earlier, the convolution calculation does n

FIG. 7. Cumulative DVH of the normal liver forD̄ andD̄62(sD /AM ) for
10 and 40 fractions.
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agree with direct simulations near the patient surface. In g
eral, a convolution-based approach is not valid in regio
where the dose distribution itself is not invariant under sm
changes, for example, near interfaces with large homog
ity differences~lung/normal tissue interface, external surfa
of the patient!. Based on our algorithm~in which the convo-
lution is performed over63s), the average dose distribu
tion calculated via Eq.~1! is not accurate in regions within
3s distance of such an interface, and care must be take
evaluating the dose to volumes in those regions.

In regions where Eq.~1! can be applied, calculation o
D̄(x,y,z) and sD(x,y,z)/AM can be used to evaluate th
stability of a treatment plan. For example, beam angles
may lead to unacceptable variations in dose to normal tiss
can be adjusted as necessary. Further, setup situations
may require additional efforts~such as daily portal imaging
to minimize setup uncertainties can be identified.

Finally, for a single patient geometry, alternative tre
ment plans can be evaluated in terms of the effects un
tainties have on the plan. As an example, a second treatm
plan was designed for the same patient geometry as Fig
The PTV for the second treatment plan was covered by
95% isodose surface using three oblique beams. Treatm
delivery was planned using the same fractionation sche
~58 fractions at 1.5 gray/fraction! as plan 1~Fig. 2!. The
distribution ofsD(x,y,z)/AM was calculated for plan 2 an
compared to plan 1 as shown in Fig. 8. The range of poss
outcomes about the average expected dose distributio
smaller for treatment plan 1 than for treatment plan 2. Hen
all other factors being equal, we would prefer treatment p
1, as we are better able to predict the dose to the patien
plan 1 compared with plan 2.
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