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Abstract

Solar energy is a fast growing energy source and has allowed the development of efficient, af-
fordable, and easy-to-install photovoltaic systems over the years. Solar energy stakeholders are,
however, concerned with sudden deterioration of photovoltaic systems’ performance. Thus, effec-
tive change-point detection in solar panel performance analysis is essential for better harnessing
solar energy and making photovoltaic systems more efficient. In particular, this study focuses on
retrospectively identifying the time points of abrupt changes. Because the power generations from
the solar panels are affected by a wide variety of factors, it is very difficult, if not impossible, to find
a parametric model to detect abrupt changes in the power generation. We present a nonparamet-
ric detection method based on Thresholded LASSO. The proposed method has low computational
complexity and is able to accurately detect performance changes, while being robust against false
detection under noisy signals. The performance of the proposed method in detection of abrupt
changes is evaluated and compared with state-of-the-art methods through extensive simulations
and a case study using data collected from four solar energy facilities. We demonstrate that the
proposed method is superior to benchmark methods. The proposed method will help solar energy
stakeholders in several aspects including operations planning, maintenance scheduling, warranty
underwriting, and cost-benefit analysis.
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1. Introduction
Photovoltaic systems harness the solar energy by directly converting solar radiation into electricity,
with no noise, pollution or moving parts, making them reliable and long lasting. Over the past ten
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years, domestic solar energy installations have increased by a factor of ten1,2. The global market
for solar energy is expected to triple by 20203.

Solar panels on the market typically come with 20 year warranties to guarantee that the panels will
produce at least 80% of the rated power after 20 years of use4. There are two aspects in analyzing
the performance changes of the solar panels: gradual degradation and abrupt changes. Concerning
the gradual degradation, the National Renewable Energy Laboratory conducted an extensive study
and reported that the performance degradation patterns of solar panel systems depend on various
factors such as technologies, ages, manufacturers, and geographic locations5.

Different from the gradual degradation, the performance of solar panels also experiences abrupt
changes. For example, breakages of various components of solar panel systems are commonly
observed in many solar energy facilities. Corrosion and thermal stresses result in the fracture of
solar cells. Corrosion also causes the fracture of connectors and wires. The resulting sudden per-
formance deterioration could significantly affect normal daily operations, maintenance scheduling,
warranty underwriting, and financial analysis. As such, the detection of abrupt changes in solar
panel health conditions becomes highly important to solar energy stakeholders. Despite its increas-
ing importance, to the best of our knowledge, detection of abrupt changes in the solar panel system
has not been studied well in the literature.

An example of the typical patterns of solar panel performance change is shown in Figure 1. This
solar energy facility, located in Kaneohe, Hawaii had eight 4×6 foot AC modules weighing 122
pounds each. The vertical axis in Figure 1 represents the daily average PV-to-POA ratio collected
from August 1999 to November 2009, which is a commonly used health index in evaluating the
performance of a solar panel. PV-to-POA ratio represents the solar panel’s health condition and
energy conversion efficiency, where ‘PV’ denotes solar power output (kW) and ‘POA’ denotes
plane of array solar irradiance (watts/m2). Even after taking seasonality into consideration, we can
roughly observe that there is a significant sudden performance drop in the beginning of 2004. We
note that in February 2004, the location experienced the largest quantity of precipitation in years,
which was 9.49” of liquid precipitation 6, comparing to an average value of 2.01” 7. The sudden
drop in solar panel performance may be attributed to local or partial panel failure, possibly caused
by the heavy precipitation. This example will be discussed further in Section 4.

There is considerable literature on detecting change-points in general time series data, including
on-line (sequential) detection of change-points and off-line (retrospective) detection. Some appli-
cations are reasonable to assume that there is at most a single change-point 8, whereas others need
to consider multiple change-points 9–11. In the literature on change-point detection, the definition
of change-point varies: Bai 9 considers shifts in multiple regression coefficients at certain times as
change-points; Roy et al. 8 regard a change in the underlying network structure at a certain time
based on a Markov random field model; but, majority of the works consider changes (or jumps)
in a time series of a response variable. Particularly, in many cases, detecting such changes can be
reduced to identifying shifts in the mean of the time series 12,13.

In our motivating example to be described in Section 4, we observe that the solar panels may have
undergone multiple health condition changes during the data collection period. The solar panels are
evaluated retrospectively for any abrupt performance changes. Therefore, in this study, we focus
on the off-line detection of multiple change-points in the mean of the time series of performance
measurements. The off-line detection will be particularly useful for solar energy stakeholders in
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Figure 1: Observed PV-to-POA ratio for Facility D

several aspects including operations planning, maintenance scheduling, warranty underwriting, and
cost-benefit analysis.

The off-line detection of mean shifts has been most commonly formulated as multivariate optimiza-
tion problems and then tackled by dynamic programming (DP). This approach utilizes the intrinsic
additive nature of the least-square objective to recursively find the optimal change-points. The
major drawback of these change-point estimators is their computational complexity10,14, which is
typically of order O(n2), where n is the number of observations. With the worst-case complexity of
O(n2), a recently developed method called PELT11 is able to achieve the complexity of O(n) if the
number of change-points increases at the same rate as n. However, this assumption is unreasonable
for photovoltaic systems because the number of change-points does not necessarily increase in pro-
portion to n. In addition, despite its theoretical complexity of O(n), PELT tends to be empirically
slow in many practical settings11. For off-line detection methods, the computational complexity
has been of interest in the literature10,11,14 because detecting a few change-points among a large
number of time stamps is equivalent to finding the best solution among 2n−1 possible solutions.

Another widely used approach for off-line multiple change-points detection is Binary Segmenta-
tion (BS). BS first searches for a single change-point from the entire dataset. If a change-point is
identified, the data are split into two subsegments at the change-point location. The single change-
point detection procedure is then performed on either subsegment, possibly resulting in further
splits. This process continues until no change points are found in any parts of the data. The com-
putational complexity of BS is O(n logn) and often empirically much faster than PELT and other
DP-based approaches. However, since each stage of BS involves the search for a single change-
point, BS tends to be less accurate in change-point estimation than other methods11,14, especially
when multiple change-points are contained. Fryzlewicz 14 shows that BS is only consistent in es-
timating the number and locations of multiple change-points when the minimum spacing between
any two adjacent change-points is of order greater than n3/4, which is relatively large and may not
be satisfied in solar panel performance changes. Wild Binary Segmentation (WBS)14, a recently
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developed method, improves BS for the consistent estimation.

A different route to tackling the multiple change-point detection problem is taken by Harchaoui and
Lévy-Leduc10,15 who propose to use the least absolute shrinkage and selection operator (LASSO)
for the off-line detection of mean shifts. The benefits of this approach include low computational
complexity of at most O(n log(n)) and capability in handling large datasets. On the other hand,
LASSO tends to choose more change points than necessary15. A remedy proposed by Harchaoui
and Lévy-Leduc 10 is to add a reduced DP to the final step in order to remove potentially false
change points. They acknowledge, however, that the addition of reduced DP is a heuristic approach
and lacks thorough theoretical support.

The objective of this article is to develop a LASSO-based nonparametric approach that is accurate
and robust in detecting abrupt performance changes of solar panel array. We capitalize the benefits
of LASSO but remedy its false detection problem by using the Thresholded LASSO (TLASSO)
proposed in Zhou 16 . TLASSO was originally developed to enhance LASSO by reducing the num-
ber of false positive variable selections in a high-dimensional linear model. However, inspired by
Harchaoui and Lévy-Leduc 10 , we note that our change-point detection problem can be formulated
as a variable selection problem, and we utilize the benefits of TLASSO to reduce falsely detected
change-points. TLASSO maintains the same level of computational complexity of LASSO (i.e.,
at most O(n log(n))) and empirically takes the similar computational time with other fast methods
of O(n log(n)). To the best of our knowledge, our work is the first study that employs TLASSO
in the context of change-point detection. Our preliminary study17 explored the feasibility of using
TLASSO for off-line multiple change-points detection. This article further explores the accuracy
and robustness of TLASSO-based method for detecting abrupt changes and demonstrates its bene-
fit over two competing state-of-the-art methods, WBS and LASSO with reduced DP. Results from
simulations and solar panel degradation analysis suggest that the TLASSO approach is not only
able to accurately detect performance changes, but also robust under many uncertainties.

This article is organized as follows. In Section 2, we present the TLASSO method with back-
grounds on problem formulation, LASSO-based detection methods, and WBS. In Section 3, TLASSO
and state-of-the-art methods are compared via simulation studies. In Section 4, we exhibit the
performance of the proposed method in a case study with data collected from four solar energy
facilities. Finally, we provide our conclusions and summarize our future research directions.

2. Methods for off-line change-point detection
In this section, we present four methods that can be used for off-line detection of multiple change
points. Specifically, we will introduce the proposed TLASSO-based method and review three
benchmark methods, namely, LASSO, LASSO with reduced DP, and WBS.

First, the mathematical formulation of the off-line detection of mean shifts is described as follows.
Suppose that there are K change-points, namely, τ1, . . . ,τK , where K is unknown. Consider the
following piecewise constant model:

Yt = µk + εt , (1)
where τk−1 ≤ t ≤ τk−1, k = 1, . . . ,K+1, t = 1, . . . ,n with τ0 = 1 and τK+1 = n+1. The response
variable, Yt , denotes the PV-to-POA ratio at time t. The noises, {εt}1≤t≤n, are i.i.d. zero-mean
random variables with finite variance, σ2. With this model, our goal is to estimate the model
parameters, K, τ1, . . . ,τK and µ1, . . . ,µK+1, that can best explain the observations, {Yt}1≤t≤n. Note
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that no constraints are imposed on {µk}1≤k≤K+1, although the performance changes may have a
certain direction, e.g., µk+1−µk ≤ 0 for k = 1, . . . ,K.

2.1 LASSO-based change-point detection
Model parameters, τ1, . . . ,τK and µ1, . . . ,µK+1, can be estimated by minimizing

K+1

∑
k=1

C (Yτk−1, . . . ,Yτk−1)+λ f (K), (2)

where C is a cost function for a segment and λ f (K) is a penalty to the model complexity11. The
LASSO-based change-point detection method proposed by Harchaoui and Lévy-Leduc 10 consid-
ers a squared loss function of C and penalizes the total variation as follows:

min
u∈Rn

1
n

n

∑
t=1

(Yt−ut)
2 +λn

n−1

∑
t=1
|ut+1−ut | . (3)

Harchaoui and Lévy-Leduc 10 show that this change-point detection problem can be cast into an
equivalent variable selection problem by setting u≡ Xnβ:

min
β∈Rn

1
n

n

∑
t=1

(Yt− (Xnβ)t)
2 +λn

n

∑
t=2
|βt | , (4)

where Xn is the n×n lower triangular matrix with all non-zero elements being ones. That is, all
the entries above the main diagonal are zeros and the rest of the entries are ones. Then, non-
zero βt , t = 1, . . . ,n, encodes the jump size and direction at the estimated change-point of t. The
formulation in (4) has an important implication, because finding the change points becomes a
variable selection problem for which LASSO provides a path of solutions over different λn very
efficiently18.

A drawback of the LASSO-based detection is that it tends to choose more change-points than the
true number10. As an illustrative example, let us consider K = 2 with µ1 = 0, µ2 = 1, µ3 = 0.5,
εt

iid∼ N(µ = 0,σ = 0.3), t = 1, . . . ,n, in (1), where the change-points are located at τ1 = 1001
and τ2 = 2001. The LASSO regularization path in Figure 2(a) can be interpreted as follows: the
saturated model that regards all time stamps as change-points explains 100% of deviance (i.e., all
variation in the observed responses), while the null model that assumes the absence of change-
points explains 0% of deviance. For example, over 60% of deviance can be explained with four
change-points chosen. However, among the four change points, some have fairly small coefficients,
indicating that we could prune them to avoid false positives. Figure 2(b) visualizes the observations
from the given data generating model and the estimated change-points.

We also summarize the limitations of the LASSO-based change point detection method in the the-
oretical point of view. First, as shown in Harchaoui and Lévy-Leduc 10 , Cn = n−1XT

n Xn does not
satisfy the irrepresentable condition19, implying that a perfect estimation of the change-points is
not possible. They also proved that for mn = sn logn, with sn being the sparsity (i.e., the number of
nonzero coefficients), φmin(mn)≤ 1/n holds for all n≥ 1, where φmin(m) is the m–sparse minimal
eigenvalue of Cn as defined in Meinshausen and Yu 20 , if all true change-points are adjacent to
each other. This implies that Cn does not satisfy the incoherent design condition that ensures l2–
consistency while sn is allowed to grow almost as fast as the sample size. Accordingly, Harchaoui
and Lévy-Leduc 10 limit the maximum number of change-points (i.e., bound the sparsity from
above by a constant) to establish l2–consistency. Furthermore, they establish the consistent estima-
tion of change-points, τ1, . . . ,τK , in (1) by (a) assuming that ε1, . . . ,εn are iid with a sub-Gaussian
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Figure 2: Illustration of LASSO-based change-point detection

distribution, (b) bounding the minimum interval between change-points, Imin = min
1≤k≤K

|τk+1− τk|,

from below, and (c) bounding the minimum jump size, Jmin = min
1≤k≤K

|µk+1−µk|, from below.

With these theoretical properties, for large n, change-points estimated by LASSO will include most
(if not all) true change-points because they will be correctly identified with a high probability (see
Proposition 3 in Harchaoui and Lévy-Leduc 10). Moreover, we will only see a small number of
false positives (i.e., {t ∈ {1, . . . ,n} : βt = 0, β̂t 6= 0}) with small coefficients when n is large (see
Proposition 2 in Harchaoui and Lévy-Leduc 10). Therefore, we believe that an appropriate pruning
based on coefficient sizes can help reduce false positives while keeping the correctly estimated
change-points, which motivates the use of TLASSO.

2.2 LASSO with reduced DP-based pruning
Before presenting the proposed change-point detection method with TLASSO, we discuss an-
other pruning method based on the reduced DP (rDP), proposed by Harchaoui and Lévy-Leduc 15

to find a good subset of the change-points identified by the LASSO-based detection. Let S =
{τ̂1, . . . , τ̂Kmax} denote the set of change-points estimated by LASSO. Then, rDP computes the
minimum loss for choosing K̂ change-points as follows:

J(K̂) = min
η1<···<ηK̂

s.t.η1,··· ,ηK̂∈S

K̂+1

∑
k=1

ηk−1

∑
t=ηk−1

(Yt− µ̂k)
2 (5)

for K̂ in {1, . . . ,Kmax} with η0 = 1 and ηK̂+1 = n+1.

The rule of thumb suggested in Harchaoui and Lévy-Leduc 15 decides the final number of change-
points, K∗ = mink≥1{J(k+1)/J(k)≥ 1−ν}, using a threshold, ν. This threshold is set as 0.05 or
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0.01, in Harchaoui and Lévy-Leduc 15 . We call this approach LASSO+rDP. This approach appears
to be effective in practice but does not have thorough theoretical support10.

2.3 Thresholded LASSO (TLASSO) for change-point detection
In this article, we propose to use TLASSO16 for detecting abrupt changes of solar panel perfor-
mance. As mentioned earlier, TLASSO was originally designed to improve LASSO in estimating
the parameters of a high-dimensional linear model. TLASSO maintains the similar prediction and
estimation error with LASSO while substantially reducing the false positives in variable selec-
tion21. TLASSO has been not used for the change-point detection, but we note that TLASSO
can benefit the change-point detection by better protecting against false positives than the existing
methods that do not focus on reducing false positives.

We apply TLASSO to the change-point detection problem that is cast into the variable selection
formulation in (4). We assume that βmin := min{|βt | : βt 6= 0, t ∈ {1, . . . ,n}} is sufficiently large,
because we want to detect large changes of PV-to-POA ratios, not small noises that are of little
practical interests. Following the implementation procedure theoretically supported by Zhou 16 ,
we obtain an intial estimator β̂init = (β̂1,init , · · · , β̂n,init)

T from LASSO solving (4) and recommend
using the parameter, λn = λσ, where λ is

√
2(logn)/n and σ is estimated if unknown. Then, we

take the following procedure:

TLASSO procedure

1. First Thresholding: Threshold β̂init to obtain

I = {t ∈ {1, . . . ,n} :
∣∣∣β̂t,init

∣∣∣≥ ξ0}, (6)
where the threshold, ξ0, is set as λσ.

2. Refitting: Refit the data with the ordinary least squares, β̂I =
(
XT

I XI
)−1 XT

I Y and β̂Ic = 0,
where XI is the n×|I| submatrix consisting of the columns of Xn, indexed by I; similarly, β̂I

is a subvector of β̂ confined to I.

3. Second Thresholding: Threshold β̂I with ξ1 = 4λn
√
|I| to obtain

J = {t ∈ I :
∣∣∣β̂t

∣∣∣≥ ξ1} ⊆ I. (7)

4. Final Fitting: Conduct Step 2 with J in place of I to obtain the final estimates, β̂J and β̂Jc .
The set, J, denotes the time points of abrupt changes.

As we can see in Steps 1 and 3, TLASSO sets small non-zero coefficients to zeros through twice of
thresholding in order to prune potential false positives according to the rationale explained at the
end of Section 2.1. The TLASSO procedure including the thresholds, ξ0 and ξ1, is theoretically
proven to yield accurate identification of the true non-zero coefficients in the linear model 16. This
implies that the above thresholding rules provide accurate detection of true change-points in our
problem. In particular, different from LASSO+rDP, TLASSO is known to have desirable theoret-
ical properties such as consistent estimation of β16, i.e., consistent estimation of change-points.
We also note that the solution from TLASSO does not necessarily reside in the solution path of
LASSO, implying that varying the penalty parameter for LASSO would not necessarily give us the
same solution from TLASSO.

When we need to estimate σ, we can use the standard deviation of observed noise as the maxi-
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mum likelihood estimator under the assumption of Gaussian noises 22. We, however, note that the
‘observed noise’ calculated under a wrong model (e.g., assuming no change-point when there actu-
ally exist change-points) can result in a biased estimator of σ. For our case study where responses
mainly show trend and seasonality, we calculate the standard deviation of noise after removing
trend and seasonality from the observed response values. For more complicated datasets, future re-
search may explore an iterative approach, e.g., the estimate of σ is refined to consider the possible
change-points in each iteration.
Since the number of abrupt changes we aim to detect in solar panel performance would be small
compared to the total number of time stamps, n, TLASSO procedure keeps the same computational
complexity of LASSO-only approach, namely, at most O(n log(n)). Moreover, TLASSO will help
reduce false positives while keeping the correctly estimated change-points, allowing engineers to
focus on a few critical changes in solar panel performance.
It is known that TLASSO performs similarly with another famous variation of LASSO, adaptive
LASSO23, in terms of prediction and estimation21. Both TLASSO and adaptive LASSO23 en-
hance LASSO by reducing false positives, but the upper bound on the number of false positives
of TLASSO is tighter than that of adaptive LASSO21, leading us to favor TLASSO in order to
potentially better guard against false positives. Also, TLASSO requires less stricter condition on
βmin than adaptive LASSO to achieve exact change-point estimation21, making TLASSO a better
choice for detecting solar panel performance changes that are subject to various sizes of stochastic
noises.

2.4 Wild Binary Segmentation (WBS) for change-point detection
The WBS14 method for multiple change-point detection has been demonstrated to be computa-
tionally fast and perform very well in many applications. Considering WBS as a benchmark, we
will compare TLASSO-based detection with WBS in simulation and case studies. This subsection
briefly reviews the WBS method.
The basic element of WBS is the CUSUM statistic defined as

Ỹ b
s,e =

√
e−b

(e− s+1)(b− s+1)

b

∑
i=s

Yi−

√
b− s+1

(e− s+1)(e−b)

e

∑
i=b+1

Yi, (8)

where s≤ b< e. The first step of WBS computes Ỹ b
1,n and then takes b1,1 = argmaxb:1≤b<n|Ỹ b

1,n|+1
to be the first change-point candidate. If b1,1 is judged to be significant (based on a certain threshold
ζn, which is compared to the CUSUM statistic), the domain [1,n] is split into two sub-intervals to
the left and right of b1,1 and the recursion continues by computing Ỹ b

1,b1,1−1 and Ỹ b
b1,1,n

, possibly
resulting in further splits. Instead of using fixed intervals in the standard BS algorithm, WBS
randomly draws a number of pairs (s,e) and compute the CUSUM statistic, Ỹ b

s,e.
Noting that the number of estimated change-points is a nonincreasing function of the threshold,
ζn, Fryzlewicz 14 also proposes a way to circumvent the need to choose ζn by directly selecting
the number of change-points. This approach minimizes a new model selection criterion called
“strengthened Schwarz Information Criterion” (sSIC), which is defined as

sSIC(k) =
n
2

log σ̂
2
k + k (logn)α , (9)

where k is the number of change-points, σ̂2
k is the corresponding maximum likelihood estimator

of the residual variance under Gaussian noise assumption, and α > 1 is a constant parameter. The
standard SIC penalty corresponds to the choice of α = 1, thus α > 1 is required in order to result
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in a stronger penalty than the standard SIC. Fryzlewicz 14 recommends α = 1.01.

3. Performance evaluation using simulation study
In this section, we conduct simulations to evaluate and compare the performance of the change-
point detection methods. All the four detection methods, WBS, LASSO, LASSO+rDP, and TLASSO,
depend on some tuning parameter (e.g., threshold or regularization parameter) that determines the
final number of change point estimates. Due to the importance of the tuning parameter, we perform
simulation studies to investigate the robustness of detection performance as we vary the tuning pa-
rameter.

The tuning parameter in each method has a monotonic relationship with the number of estimated
change-points, K̂. We start with a tuning parameter that gives much larger K̂ than the true num-
ber of change-points, K, and varies the tuning parameter to incrementally decrease K̂ down to
one. To this end, for WBS, we increment threshold, ζn, to yield a smaller K̂. For LASSO, we
increase the regularization parameter and select β̂ that explains the largest deviance for each K̂.
For LASSO+rDP, a larger threshold, ν, leads to a smaller K̂. For TLASSO, we obtain β̂init from
LASSO with 0.1λn for λn defined in Section 2 and then threshold β̂init as in the first step of the
TLASSO procedure in Section 2. We increment the threshold ξ0 to obtain a smaller K̂.

Change-point detection error can be measured as a difference between two sets, the set of true
change-points and the set of estimated change-points. Boysen et al.24 define the following set
difference measure for two sets, A and B, by

E(A‖B) = sup
b∈B

inf
a∈A
|a−b| . (10)

Harchaoui and Lévy-Leduc 10 use this measure to quantify the two types of detection error. First,
false positive measure (FPM) is E

(
T ‖T̂

)
, where T = {τk,k = 1, . . . ,K} is the set of true change-

points and T̂ = {τ̂k,k = 1, . . . , K̂} is the set of estimated change-points. Next, false negative mea-
sure (FNM) is E

(
T̂ ‖T

)
. The larger one between FPM and FNM is called the Hausdorff distance

between T and T̂ ,
∆

(
T , T̂

)
= sup

{
E
(

T ‖T̂
)
,E
(

T̂ ‖T
)}

. (11)
Therefore, perfect change-point detection is equivalent to zero Hausdorff distance.

For simulation study, we consider two data generating models. The first model takes the same pat-
tern of stairs10 model in Fryzlewicz 14 but reverses the shift directions from upwards to down-
wards so that we can model the performance drops. We use the same number of change-points,
K = 14, and set n = 1,000 as in Fryzlewicz 14 . Figure 3 shows the typical datasets generated from
the model with several noise levels.

Figure 4 shows the average FPM and FNM based on 100 replications for the four detection methods
with three noise levels. The horizontal axis denotes K̂ and the vertical axis represents the error
measures, FPM and FNM. From all plots, we observe larger FPM (smaller FNM) as more change-
points (i.e., larger K̂) are required to estimate. Ideally, when K̂ is equal to the true number of
change-points, K = 14, we hope the Hausdorff distance (i.e., the larger one between FPM and
FNM) to be close to zero. LASSO detection errors reported in the second row of Figure 4 show
that LASSO does not achieve this goal in this example. On the other hand, WBS (in the first
row), LASSO+rDP (in the third row), and TLASSO (in the fourth row) maintain the Hausdorff
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distance close to zero for K̂ = 14. WBS performs similarly with LASSO+rDP. Both of them
generally have lower FNM than TLASSO when K̂ < K. That is, some true change-points missed
by TLASSO would be farther from the estimated change-points than other methods in this example
(this pattern reverses in the next data generating model that is more complicated than this model).
On the other hand, when K̂ > K, TLASSO maintains lower FPM than other methods, showing the
robustness against the false positives. Therefore, false positives from TLASSO would be closer to
true change-points than those from other methods.

The second data generating model is the Blocks model in Donoho and Johnstone25. This model is
more complicated than the first model and is known as a difficult model for change-point detection
due to large heterogeneity10. The spaces between K = 11 change-points are irregular and the shift
directions can be both upwards and downwards. Figure 5 shows the typical datasets with different
noise levels. We again set n = 1000 and average FPM and FNM over 100 replications.

Figure 6 shows the detection errors for the four methods with three noise levels. We observe
generally similar findings with the first data generating model. LASSO in the second row does
not achieve zero Hausdorff distance at K̂ = K = 11 for all three noise levels. LASSO WBS and
LASSO+rDP show similar performance. For K̂ < K, TLASSO tends to have smaller or similar
FNM than WBS and LASSO+rDP. For K̂ > K, TLASSO shows a distinctly better FPM pattern
than WBS and LASSO+rDP, echoing the observation from the first data generating model. The
results suggest that TLASSO would be more robust against false positives.

We now compare the performances of WBS, LASSO+rDP, and TLASSO under their recommended
parameter settings, which include sSIC with α = 1.01 for WBS according to Fryzlewicz 14 , ν = 0.05
for LASSO+rDP according to Harchaoui and Lévy-Leduc 15 , and λn = λσ for TLASSO. Note that
we omit LASSO because no guideline for this detection method was provided in the literature.
Table 1 shows the results based on 100 replications for the first data generating model. K̂ is the
number of estimated change-points. Although it is generally better for K̂ to be close to the true
number of change-points, K = 14, K̂ being equal to 14 does not mean that the locations of the true
change-points are correctly identified. To evaluate the actual detection performance, we need to
consider FPM and FNM. LASSO+rDP underestimates the number of change-points for the three
noise sizes (σ = 0.05,0.10, and 0.20), resulting in relatively large FNMs compared to other two
methods. For small noise sizes (i.e., σ = 0.05 and 0.10), TLASSO and WBS yield similar K̂ and
the same FNMs, but TLASSO leads to smaller FPMs on average with smaller standard deviations.
This robustness against false positives echoes the observation from Figure 4. When the noise size
is large (i.e., σ = 0.50), the recommended setting for TLASSO results in a smaller K̂ and a larger
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Figure 3: Stairs example with different noise levels
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Figure 4: Comparison of WBS (first row), LASSO (second row), LASSO+rDP (third row), and
TLASSO (fourth row) for the first data generating model with three different noise levels, σ =
0.05,0.10, and 0.20, from left to right.
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Figure 5: Blocks example with different noise levels

FNM than WBS, even though TLASSO’s FPM stays very small. This conservative estimation re-
sult can be understood from the fact that TLASSO assumes the sufficiently large βmin to focus on
large changes, not small jumps comparable to noises (cf. Section 2.3).

For the second data generating model, we observe similar comparison results summarized in Ta-
ble 2. In particular, in all noise levels, LASSO+rDP underestimates the number of change-points.
In all cases, WBS leads to the highest FPM.

In summary, as discussed by Harchaoui and Lévy-Leduc 10 , LASSO alone is not good for change-
point detection. Although WBS performs similarly with the proposed TLASSO-based detection
method in terms of FNM in these simulation studies, WBS produces larger FPM in all cases. Such
tendency of WBS will generate frequent false positives in practice, which will be seen in our case
study in Section 4.

4. Chang-point detection in solar panel degradation
In this section, the methodology discussed in Section 2 is applied to a case study of performance
degradation analysis for solar panel systems. This case study considers detecting abrupt changes
in energy conversion efficiencies of four solar energy facilities with data collected over years (see
Table 3 for the description of facilities and data collection period). Each facility has PV and POA
measured with the frequency of 15 minutes. After aggregating 15-min data, we analyze the daily
average PV-to-POA ratio. Figure 7(a) shows the daily average PV-to-POA ratios of four facilities
over time. The pattern of data highly depends on the facility and season.

Facilities A and B are at the same location, both collecting data for approximately 3 years, but using
solar panels from different manufacturers. In the two facilities, we observe significantly different
degradation patterns. It appears that Facility A used more advanced technology than Facility B,
where the decreasing efficiency was fixed in mid-1999.

The performances of panels at Facilities A and C are similar in the sense that the overall efficiency
largely oscillates (drop-rise-drop pattern). We note that Facilities A and C use solar panels from the
same manufacturer and have the same data collection period from mid-2007 to mid-2012. Facility
D data is the largest data set covering over 10 years. For Facility D, we do not observe the ‘drop-
rise-drop’ pattern. The distinct degradation pattern would be because its panel manufacturer is
different from others.

To preprocess data for change-point detection, we first impute missing data by linear interpolation.
We then remove the seasonality from the time series using the seasonal decomposition by moving
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Figure 6: Comparison of WBS (first row), LASSO (second row), LASSO+rDP (third row), and
TLASSO (fourth row) for the second data generating model with three different noise levels, σ =
0.05,0.10, and 0.50, from left to right.
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Figure 7: Data plots for four facilities (note the missing data for Facility D in 2006 and for Facilities
A and C in 2009)

averages26. Figure 7(b) shows the resulting deseasonalized data that we use to detect change-
points. Below, we compare four change-point detection methods: WBS, LASSO, LASSO+rDP
and TLASSO. Table 4 summarizes the number of estimated change-points from each method for
four facilities. Because we do not know the true change-points in these datasets, we do not include
FPM and FNM in Table 4.

4.1 WBS detection results
We use WBS with the number of estimated change-points determined by sSIC (α = 1.01), follow-
ing the recommendation in Fryzlewicz 14 . The results are as follows:

• Facility A: 35 change-points are detected.

14

This article is protected by copyright. All rights reserved.



Choe, Guo, Byon, Jin and Li

• Facility B: 43 change-points are detected.

• Facility C: 43 change-points are detected.

• Facility D: 50 change points are detected.

WBS suggests more change-points than we can possibly observe in real solar panel operations.
For example, for Facility D, Figure 8(a) shows the detection result for WBS. The seemingly over-
detection results would be because WBS is not designed to guard against false positives but to
approximately minimize an estimation error criterion. From Table 4, we also see that WBS tends
to estimate noticeably many change-points compared to other three methods.

4.2 LASSO detection results
LASSO provides the regularization path that let us determine how many estimated change-points
are needed to explain a certain percentage of deviance in the observations. The results are as
follows:

• Facility A: 35, 52, and 120 change-points account for 10%, 20%, and 40% deviance, respec-
tively.

• Facility B: 5, 19, and 27 change-points account for 20%, 40%, and 60% deviance, respec-
tively.

• Facility C: 8, 43, and 108 change-points account for 10%, 20%, and 40% deviance, respec-
tively.

• Facility D: Two (2004-03-09 and 2004-03-10) and nine change-points account for 20% and
60% deviance, respectively.

The results indicate that a large number of change-points need to be used in order to explain a good
amount of deviance (at least 20%) in the data. Considering that the significant portion of deviance
comes from stochastic noises, it becomes obvious that we need to take an additional step to prune
potential false change-points.

4.3 LASSO+rDP detection results
The LASSO+rDP with ν = 0.05 results in a much smaller number of change points than LASSO
as follows:

• Facility A: A single change-point at 2008-03-23 is detected.

• Facility B: Four change-points at 1998-05-31, 1998-06-25, 1999-02-01, and 1999-05-28 are
detected.

• Facility C: A single change-point at 2008-09-04 is detected.

• Facility D: A single change-point at 2004-03-11 is detected.

We can check the plausibility of individual change-point estimates. For example, the change-point
estimates for Facilities A and C are within the first 9 and 17 months from installation, respec-
tively. Such early change-points are unlikely due to actual performance changes, indicating that
the method may have chosen at least one change-point as an artifact of the method.
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Figure 8: Detection of change-points for Facility D by WBS and TLASSO (Note: the red dotted
vertical lines indicate the change-point estimates.)

4.4 TLASSO detection results
For TLASSO, we can assume that βmin is large for practical reason (i.e., we are interested in abrupt
and persistent performance change distinct from a stochastic noise). We estimate σ by the sample
standard deviation of random errors (i.e., the residuals after removing trend and seasonality from
the observations). TLASSO results in few or no change-points as follows:
• Facility A: No change-point is detected.

• Facility B: A single change-point at 1998-06-24 is detected.

• Facility C: No change-point is detected.

• Facility D: A single change-point at 2004-03-09 is detected.
For Facility B, the change-point is located at the date when the solar panel efficiency recovers after
noticeable drops, potentially indicating a maintenance activity. For Facility D, Figure 8(b) visually
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confirms that the solar panel indeed experienced an abrupt performance drop after four years from
installation.

5. Conclusion
Solar energy is a fast growing energy source and has become more and more versatile. Solar
energy has been in use for a long time and has allowed the development of efficient, affordable,
and easy-to-install solar panels. One of the main challenges in evaluating the performance of solar
panel systems is the detection of abrupt changes in energy conversion efficiency. Thus, effective
change-point detection in solar panel performance analysis is essential for better harnessing solar
energy and making photovoltaic systems more profitable.

In this article, we proposed a nonparametric method for off-line detection of multiple change points
in the mean of solar panels’ health condition indexes. Detecting change-points via the standard
LASSO has low computational complexity but with a major drawback that unnecessarily many
change-points are chosen, yielding a high false positive rate. We present that TLASSO, originally
developed for the parameter estimation and variable selection in a high-dimensional linear model,
can be used for abrupt change point detection. TLASSO helps reduce the false positives while
keeping the correctly estimated change points by thresholding the initial estimator obtained from
LASSO.

The performance of the TLASSO-based detection method was assessed and compared with bench-
mark methods using extensive simulations. The simulation concluded that TLASSO is able to ac-
curately detect performance changes, while being robust under many uncertainties. LASSO alone
has the worst performance in change-point detection, while additionally pruning by rDP makes
LASSO-based detection perform similarly with WBS. TLASSO, however, outperforms them in
terms of robustness against false positives while maintaining the similar level of accuracy. To
demonstrate how the proposed TLASSO-based detection method can be applied to solar panel
analysis, a case study using data collected from four solar energy facilities over years was con-
ducted. Similar to simulation results, the results of case study also indicated that TLASSO outper-
forms other methods. The proposed method identified physically meaningful change-points: one
indicating a maintenance activity and the other implying a significant performance drop.

The proposed methodology will be extended to off-line detection of changes with multiple health
indexes or signals in future research. Incorporating the findings from change-point detection into
solar panel maintenance scheduling, warranty underwriting, cost-benefit analysis, and regulatory
policymaking is another important, yet challenging topic that deserves further investigation.
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Table 1: Comparison of WBS, LASSO+rDP, and TLASSO for the first data generating model
under their suggested settings

K̂ FPM FNM
σ 0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20

WBS 14.05 14.07 14.10 0.00076 0.00078 0.00111 0.00000 0.00000 0.00029
(0.22) (0.26) (0.36) (0.00363) (0.00363) (0.00361) (0.00000) (0.00000) (0.00048)

LASSO+rDP 7.42 6.60 5.80 0.00000 0.00001 0.00035 0.07579 0.08786 0.10725
(0.91) (0.85) (0.88) (0.00000) (0.00010) (0.00058) (0.02267) (0.03117) (0.03295)

TLASSO 14.23 14.20 11.08 0.00022 0.00021 0.00006 0.00000 0.00000 0.07580
(0.45) (0.43) (1.71) (0.00042) (0.00046) (0.00024) (0.00000) (0.00000) (0.03647)

Note: Each cell contains the average in the first line and the standard deviation in parentheses in
the second line based on 100 replications.
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Table 2: Comparison of WBS, LASSO+rDP, and TLASSO for the second data generating model
under their suggested settings

K̂ FPM FNM
σ 0.05 0.10 0.50 0.05 0.10 0.50 0.05 0.10 0.50

WBS 11.08 11.08 11.11 0.00402 0.00402 0.00409 0.00000 0.00000 0.00005
(0.31) (0.31) (0.37) (0.02136) (0.02136) (0.02134) (0.00000) (0.00000) (0.00022)

LASSO+rDP 6.09 6.86 7.40 0.00000 0.00000 0.00028 0.07087 0.05375 0.05056
(0.92) (0.94) (1.20) (0.00000) (0.00000) (0.00241) (0.03530) (0.01786) (0.01649)

TLASSO 11.34 11.27 6.45 0.00029 0.00025 0.00081 0.00000 0.00000 0.05110
(0.57) (0.49) (0.59) (0.00046) (0.00044) (0.00160) (0.00000) (0.00000) (0.01001)

Note: Each cell contains the average in the first line and the standard deviation in parentheses in
the second line based on 100 replications.
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Table 3: Description of solar energy facilities and data collection periods

Facility Coordinates Tilt Azimuth Data collection period
A 21.5◦N 158.2◦W 20 208.4 Jul-2007 ∼May-2012 (1377 days)
B 21.5◦N 158.2◦W 20 180.0 Jan-1998 ∼Mar-2001 (1057 days)
C 21.3◦N 157.8◦W 20 153.1 Apr-2007 ∼May-2012 (1608 days)
D 21.4◦N 157.8◦W 10 180.0 Aug-1999 ∼ Nov-2009 (3536 days)

Note: Array tilt (degree from horizontal) and array azimuth (degree from north) present the setups
of solar panels.
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Table 4: Number of estimated change-points from each method for four solar energy facilities

Facility A B C D
WBS 35 43 43 50

LASSO 52 5 43 2
LASSO+rDP 1 4 1 1

TLASSO 0 1 0 1
Note: LASSO detection results are based on the regularization parameters explaining 20% de-
viance. Other methods are based on their recommended settings.
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