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We have parallelized the Dose Planning MethibdM), a Monte Carlo code optimized for radio-
therapy class problems, on distributed-memory processor architectures using the Message Passing
Interface(MPI). Parallelization has been investigated on a variety of parallel computing architec-
tures at the University of Michigan-Center for Advanced Computing, with respect to efficiency and
speedup as a function of the number of processors. We have integrated the parallel pseudo random
number generator from the Scalable Parallel Pseudo-Random Number Gef@RRNG)library

to run with the parallel DPM. The Intel cluster consisting of 800 MHz Intel Pentium Il processor
shows an almost linear speedup up to 32 processors for simulatri@®lor more particles. The
speedup results are nearly linear on an Athlon clugiprto 24 processors based on availability
which consists of 1.8 GHz-Advanced Micro Device$AMD) Athlon processors on increasing the
problem size up to & 10° histories. For a smaller number of histories{10%) the reduction of
efficiency with the Athlon clustefdown to 83.9% with 24 processorsccurs because the process-

ing time required to simulate @ 1C® histories is less than the time associated with interprocessor
communication. A similar trend was seen with the Opteron Clystasisting of 1400 MHz, 64-bit

AMD Opteron processoyson increasing the problem size. Because of the 64-bit architecture
Opteron processors are capable of storing and processing instructions at a faster rate and hence are
faster as compared to the 32-bit Athlon processors. We have validated our implementation with an
in-phantom dose calculation study using a parallel pencil monoenergetic electron beam of 20 MeV
energy. The phantom consists of layers of water, lung, bone, aluminum, and titanium. The agree-
ment in the central axis depth dose curves and profiles at different depths shows that the serial and
parallel codes are equivalent in accuracy.2804 American Association of Physicists in Medicine.
[DOI: 10.1118/1.1786691]
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l. INTRODUCTION mulated. Several existing radiotherapy Monte Catloodes
have been parallelized using different approaches such as

The increased accuracy of Monte Carlo calculations in radioparallel Virtual MachingPVM)® or Message Passing Inter-
therapy treatment planning applications is accompanied by face (MPI)® or a Linux shell script. PVM provides for mes-
significant increase in computational burden—this still re-sage passing between homogeneous or heterogeneous com-
mains perhaps one of the biggest drawbacks of the routinguters and has a collection of library routines that the user
use of Monte Carlo in a clinical setting. Since the Montecan employ with C or FORTRAN programs. MPI is a
Carlo method is inherently parallel due to the independenstandards-based message passing library for a set of process-
nature of particle transport the use of parallel processing foing elements, typically with distributed memory. It is also
Monte Carlo simulation offers an attractive approach towarcbne of the most popular interfaces for parallelizing existing
improving the overall computational time. This increase inserial applications.
performance coupled with the use of efficient and accurate In a perfect world, the reduction in computation time
codes that have been optimized for radiotherapy, such asould be directly linear with the number of processors.
DPM,! VMC,? etc. may finally make feasible the use of However, Amdahl’s laf prevents us from achieving perfect
Monte Carlo for routine clinical treatment planning. parallelism. The serial part of the code limits the speedup

Parallelization of Monte Carlo codes is a straight forwardand efficiency of the overall code. The overhead associated
approach and is based on distributing the jolomber of  with communication and synchronization leads to further
histories)among different processors which work indepen-degradation in speedup and efficiency. One can define
dent of each other in parallel and their final result is accuspeedupSy, as the ratio of execution time on a single pro-
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cessor ;) to the execution time using NT{) processors,
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processor. A detailed description of the parallelization is

i.e., Sy=T,/Ty. Since most scientific codes have a serialshown in the flowchartFig. 1). The original code is written
and a parallel portion, the definition of speedup can also bén FORTRAN 77 and uses GNU compilers on an UNIX en-

written as

1
f_p 1
N

Sn= 1)

fst+

where f = serial fraction on one processor afig=parallel
fraction of the code on one processor dd f,=1. Equa-
tion (1) describes Amdahl’s law and also implies that the(a)
maximum achievable speedypbtained as the number of
processorsN—) is 1/f5, i.e., speedup is limited by the
portion of the code that is serial. The serial portion has &b)
strong limiting effect on the speedup but can often be mini-
mized by increasing the problem size, which tends to reduce
the serial fraction for many applications. One can also define
the efficiency of the parallel code wit processors as the
ratio of the speedup to the number of processefs
=Sy/N. SinceSy=N, we haveey=<1. Perfect speedup is
achieved wherSy=N, andey=1. In practice, superlinear
speedup may be achieved whenever the speedup exceeds the
number of processors. The most common causes for super-
linear speedup are cache effects and randomized algorithms.
As the number of processors increases for a fixed problem
size, the smaller problem size on each processor results in
higher cache hits as compared to large cache misses for tie)
single-processor case. Therefore, certain applications and
problem sizes may exhibit a super linear speedup up to a
certain number of processors. If the communication costs
grow with increasing number of processors, eventually the
gain due to cache hits is offset by the increased communica-
tion.

This study describes the implementation of the DPM
Monte Carlo code on a variety of parallel computing archi-
tectures, and investigates the sources of degradation in effi-
ciency and speedup in the parallel version of the code.

[I. IMPLEMENTATION OF DPM ON A PARALLEL
ARCHITECTURE

A. Parallelization

The DPM code was parallelized on a Linux cluster using
the Message Passing InterfagdéPl) for interprocessor com-
munication. Temporary buffers are assigned within DPM and
are used by the master and slave processors to store dose and
error values. Eight basic standard MPI calls were used for
parallelization. The basic functions of the master process
include reading the initial datasefsuch as number of histo-

vironment. The parallel MPI version is compiled with
mpif77 and mpiCC.

B. Parallel architectures under study

The speedup and efficiency were tested on three different
Linux clusters of different processor architectures:

An Intel cluster consisting of 50 nod¢2 CPU's/node),
800 MHz Intel Pentium Il processors. Each node
shared a common memory pool of 1 GB RAM.

An Athlon cluster consisting of 50, 1.8 GHz AMD
Athlon nodes(2 CPU’s/node). The dual processors on
each node are configured with 2 GB RAM and there-
fore, can operate as a SMBymmetric Multiproces-
sors)node. The Athlon MP has three out-of-order, su-
perscalar and fully-pipelined floating point execution
units and is well-suited for scientific and engineering
computations. Moreover, the system bus with a peak
rate of 2.1 GB/s provides high bandwidth for data-
intensive applications. The nodes in the Athlon cluster
are interconnected via a Myrif&2000 switch that pro-
vides sustained one-way data rate of 248 MB/s, and a
low latency (6.3 us).

An Opteron cluster consisting of 100 nod@CPU’s/
node) of 64-bit AMD Opterons with a CPU speed of
1400 MHz. Of these, a total of 36 nodes share a
memory pool of 2 GB/node, 32 nodes share 4 GB/node
and another 32 nodes share 6GB/node. The Opteron
processor provides up to 6.4 GB/s of memory band-
width per processor reducing the memory latency and
I/O bottlenecks. In addition, the AMD Hyper Transport
technology allows up to three coherent links, or 19.2
GB/s of peak bandwidth per processor. A significant
feature of the Opteron processor is its ability to simul-
taneously execute both 32- and 64-bit binaries natively.
The Opteron cluster uses a dedicated Force-10 Gigabit
Ethernet switch for interconnection of the nodes. While
Gigabit Ethernet provides approximately half the band-
width of a corresponding Myrinet switch, it can be suf-
ficient for many scientific applications requiring mod-
erate interprocessor communication and taking
advantage of overlapping computation with communi-
cation.

o Scalable parallel pseudo random number
generator

ries, electron and photon energy cut-offs, the voxel geometry An important element in history-based parallel algorithms

file, cross-section files and region of interest for dose ouwtputis a reliable parallel random number generator that provides
from the DPM input file and broadcasting this information to uncorrelated random number streams to each processor. The
the other processors. At the end of the simulation, the mastgrarallel random number sequence should also satisfy the cri-
processor collects and combines all the dose values calcteria of an acceptable serial random number stream, i.e., it
lated by the slaves. The slave processors read the broasghould be sufficiently uniform, have a large period and have
casted information, write dose values in temporary buffersio correlation between the numbers in the sequence. The
and send the calculated data when requested by the mastaiginal serial version of DPM Monte Carlo code uses a 64-
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bit random number generator from PENELOPE. We haveelation to the processor speed of the three Linux clusters.
implemented the parallel pseudo random number generatdiree sets of calculations were performed for each analysis
from the SPRNGRef. 9)library in parallel DPM. SPRNG is depending on the availability of processors and an estimate
a set of libraries for scalable and portable pseudorandorof uncertainty is evaluated. The standard deviation for all
number generation. It has been ported on a variety of comealculated times was within 5%. The Intel cluster with the
puting platforms and supports MPI. We modified the relevanslowest 800 MHz processors, took the largest amount of
subroutine within DPM to incorporate SPRNG. SPRNG usesimulation time. The Athlon cluster being twice as fast as
an initial seed which refers to the encoding of the startingntel took approximately half the simulation time as is noted
state rather than the conventional notion of the starting stati Table II. However in comparing the efficieneybetween

of the random number stream. Distinct streams initializedntel and Athlon, we find that Intel shows consistently better
with the same initial seed have different starting states. Thigfficiency up to 32 processors for simulatingx 108
makes it convenient to use the same seed for distinct streams

and still obtain different initial states. We compiled SPRNG

with the gcc/g77 and the PGPortland group)version of

; 0
MPI. It was also tested with LAM-MPY. TaBLE |. Speedup and efficiency on an Intel clust®lumber of histories

=1x10°).

lNl. TIMING RESULTS Nodes No.of CPUs T (min) S Eimel (%)

Tables I, Il, and Ill show the efficiency and speedup esti- 1 829 1.0 100.0
mates as calculated on the Intel, Athlon, and Opteron clus- 1 2 40.3 2.0 100.0
ters. These calculations are based on a simulati@gnGoMV 2 4 211 3.9 98.4
photon beam in a 25.625.6x30 cn? water phantom with 4 8 105 79 99.2
voxel size 0.2>0.2x0.2 cn?. The timeT (min) taken for the 180 ;g i'i ig'g g;'g
simulation is the time required for the in-phantom dose cal- 4 32 3.0 276 86.4

culation using the DPM code. This time shows an inverse
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TasLE IIl. Speedup and efficiency on an Athlon cluster.

T(min)= o (%) Samp &amp (%)
(Min, Max)
No. of Number of histories
Nodes CPU’s 100 8x 108 108 8x 10 10° 8x10°
1 1 30.9+0.7 244.4+0.4 1.0 1.0 100.0 100.0
(30.6, 31.0) 243.7, 245.8)
1 2 16.0+1.9 127.7+0.02 1.9 1.9 96.2 95.7
(15.8, 16.4) 127.7, 127.8)
2 4 8.1+15 65.4+0.7 3.8 3.7 95.2 93.5
(8.0, 8.3) 65.1, 66.1)
4 8 4.3+1.8 32.8+0.7 7.2 7.5 90.7 93.3
(4.2, 4.4) 82.4, 32.9)
8 16 2.2+0.9 16.7+0.8 14.1 14.6 88.2 91.3
(2.2, 2.2) 16.6, 16.9)
10 20 1.9+4.3 12.9+0.2 16.4 18.9 82.1 94.8
(1.8, 2.0) 12.9, 12.9)
12 24 1.5*1.3 11.2+0.4 20.1 21.8 83.9 90.8
(1.5, 1.6) (1.2, 11.3)

particles. This is because, with the Intel cluster, the amounat a faster rate as compared to the 32-bit Athlon cluster.
of overhead associated with interprocessor communicatioMoreover, as mentioned earlier, the Opteron processor has a
and the serial fraction of the code is masked by the limitatiormemory bandwidth much higher than the Athlon resulting in
in processor speed. On the other hand, the reduction of effiaster data movement in and out of cache, as well as the
ciency with the Athlon clustefdown to 83.9% with 24 pro- - system bus. The time taken to simulate 10° histories was
cessorsjoccurs because the processing time required 19 5 min on 24 processors. However, the efficiency of the
surnul_ate <10 particles is I_ess_ than the_ time .assggéatedcalculation was only 87.0%, which is again associated with
with interprocessor communication. On simulating fact that the amount of CPU time was significantly smaller

histories with Athlon, we found an improvement in effi- . . U

. . . than the cost attributed to interprocessor communication and
ciency (90.8% as compared to 83.9% with<1LC? particles h ; | it " hani h
simulated). This is also consistent with the fact that the frac- € usage ob a slower interconnection mechanism than a

tion of time spent in the sequential part of an algorithm mayl\llyrinet switch. We performed a similar phantom calculation

actually decrease as the problem size increases making tMéth 8% 1.08 histories on the Opteron cluster and again, there
parallel computation more efficient. was a significant improvement in efficiency and speedup

From Table 1ll, we find that the Opteron cluster is faster(96.1% on 24 CPU's). The scalability of the Code on the
than the Athlon cluster even though its processor speed i@pteron cluster was also studied up to 64 processors where it
slower. This is due to the fact that Opteron, being a 64-bitshows an efficiency of 92% and hence are ideally suited for
architecture is capable of storing and processing instructionsrge scale applications.

TaBLE Ill. Speedup and efficiency on an Opteron cluster.

T(min)*= o (%) Sopteron €optero %0)
(Min, Max)
No. of Number of histories
Nodes CPU’s 108 8x10° 108 8x 10 108 8x 108
1 1 25.8+0.4 204.040.1 1.0 1.0 100.0 100.0
(25.6, 25.8) 203.7, 204.2)
1 2 13.1+0.9 102.740.3 1.97 1.99 98.6 99.4
(13.0, 13.2) 102.4, 103.1)
2 4 66+1.3 52.7+0.09 3.92 3.87 98.1 96.8
(6.5, 6.7) 62.6, 52.7)
4 8 34+0.5 26.6+2.1 7.69 7.67 96.1 95.9
(3.3, 3.4) 26.0, 27.0)
8 16 18+0.5 13.4+3.5 14.67 15.18 91.7 94.8
(1.8, 1.8) (3.1, 14.0)
10 20 1.5+1.7 10.5+0.2 17.69 19.35 88.5 96.7
(1.4, 1.5) 10.5, 10.6)
12 24 1.2+0.0 8.8+0.9 20.88 23.07 87.0 96.1
(1.2, 1.2) 8.8, 8.9)
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Depth (cm) 7.5 cm, respectively, for serial and parallel calculation.

Fic. 2. Central axis depth dose curve comparison between the serial and

parallel version of the DPM code in a phantom consisting of layers of water,

lung, aluminum, and titanium.

were noted with varying problem size. Speedup was also
found to scale with processor speed. By taking advantage of
multiple processors and the continuing increase in processor
speeds, it seems likely that parallelization techniques as ex-

To evaluate the accuracy and efficiency of the DPM par.plorEd in this Study will make feasible the routine use of
allel implementation with respect to the serial version, weMonte Carlo for treatment planning in the clinical setting.
simulated a phantom consisting of layers of water, lupg (
=0.3 g/cn?), bone, aluminum, and titanium. The simulation
was carried out on the University of Michigan Radiation
Oncology Intel Linux cluster. The cluster consists of 10 dual
node Intel Xenon Pentium IV processors with processoACKNOWLEDGMENTS
speed of 2.4 GHz. We used a parallel pencil electron beam of
20 MeV energy. The phantom size was 28525.6
X 30 cn? with a voxel size of 0.230.2%0.2 cn?. Two sets
of calculations were carried out: one with the sefalginal)
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