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We have parallelized the Dose Planning Method~DPM!, a Monte Carlo code optimized for radio-
therapy class problems, on distributed-memory processor architectures using the Message Passing
Interface~MPI!. Parallelization has been investigated on a variety of parallel computing architec-
tures at the University of Michigan-Center for Advanced Computing, with respect to efficiency and
speedup as a function of the number of processors. We have integrated the parallel pseudo random
number generator from the Scalable Parallel Pseudo-Random Number Generator~SPRNG!library
to run with the parallel DPM. The Intel cluster consisting of 800 MHz Intel Pentium III processor
shows an almost linear speedup up to 32 processors for simulating 13108 or more particles. The
speedup results are nearly linear on an Athlon cluster~up to 24 processors based on availability!
which consists of 1.8 GHz1Advanced Micro Devices~AMD! Athlon processors on increasing the
problem size up to 83108 histories. For a smaller number of histories (13108) the reduction of
efficiency with the Athlon cluster~down to 83.9% with 24 processors! occurs because the process-
ing time required to simulate 13108 histories is less than the time associated with interprocessor
communication. A similar trend was seen with the Opteron Cluster~consisting of 1400 MHz, 64-bit
AMD Opteron processors! on increasing the problem size. Because of the 64-bit architecture
Opteron processors are capable of storing and processing instructions at a faster rate and hence are
faster as compared to the 32-bit Athlon processors. We have validated our implementation with an
in-phantom dose calculation study using a parallel pencil monoenergetic electron beam of 20 MeV
energy. The phantom consists of layers of water, lung, bone, aluminum, and titanium. The agree-
ment in the central axis depth dose curves and profiles at different depths shows that the serial and
parallel codes are equivalent in accuracy. ©2004 American Association of Physicists in Medicine.
@DOI: 10.1118/1.1786691#
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I. INTRODUCTION

The increased accuracy of Monte Carlo calculations in rad
therapy treatment planning applications is accompanied b
significant increase in computational burden—this still
mains perhaps one of the biggest drawbacks of the rou
use of Monte Carlo in a clinical setting. Since the Mon
Carlo method is inherently parallel due to the independ
nature of particle transport the use of parallel processing
Monte Carlo simulation offers an attractive approach tow
improving the overall computational time. This increase
performance coupled with the use of efficient and accu
codes that have been optimized for radiotherapy, such
DPM,1 VMC,2 etc. may finally make feasible the use
Monte Carlo for routine clinical treatment planning.

Parallelization of Monte Carlo codes is a straight forwa
approach and is based on distributing the job~number of
histories!among different processors which work indepe
dent of each other in parallel and their final result is ac
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mulated. Several existing radiotherapy Monte Carlo3,4 codes
have been parallelized using different approaches such
Parallel Virtual Machine~PVM!5 or Message Passing Inte
face ~MPI!6 or a Linux shell script. PVM provides for mes
sage passing between homogeneous or heterogeneous
puters and has a collection of library routines that the u
can employ with C or FORTRAN programs. MPI is
standards-based message passing library for a set of pro
ing elements, typically with distributed memory. It is als
one of the most popular interfaces for parallelizing existi
serial applications.

In a perfect world, the reduction in computation tim
would be directly linear with the number of processo
However, Amdahl’s law7 prevents us from achieving perfec
parallelism. The serial part of the code limits the speed
and efficiency of the overall code. The overhead associa
with communication and synchronization leads to furth
degradation in speedup and efficiency. One can de
speedup,SN , as the ratio of execution time on a single pr
27211„9…Õ2721Õ5Õ$22.00 © 2004 Am. Assoc. Phys. Med.
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cessor (T1) to the execution time using N (TN) processors,
i.e., SN5T1 /TN . Since most scientific codes have a ser
and a parallel portion, the definition of speedup can also
written as

SN5
1

f s1
f p

N

, ~1!

where f s5serial fraction on one processor andf p5parallel
fraction of the code on one processor andf s1 f p51. Equa-
tion ~1! describes Amdahl’s law and also implies that t
maximum achievable speedup~obtained as the number o
processors,N→`) is 1/f s , i.e., speedup is limited by th
portion of the code that is serial. The serial portion ha
strong limiting effect on the speedup but can often be m
mized by increasing the problem size, which tends to red
the serial fraction for many applications. One can also de
the efficiency of the parallel code withN processors as th
ratio of the speedup to the number of processors«N

5SN /N . SinceSN<N, we have«N<1. Perfect speedup i
achieved whenSN5N, and «N51. In practice, superlinea
speedup may be achieved whenever the speedup excee
number of processors. The most common causes for su
linear speedup are cache effects and randomized algorit
As the number of processors increases for a fixed prob
size, the smaller problem size on each processor resul
higher cache hits as compared to large cache misses fo
single-processor case. Therefore, certain applications
problem sizes may exhibit a super linear speedup up
certain number of processors. If the communication co
grow with increasing number of processors, eventually
gain due to cache hits is offset by the increased commun
tion.

This study describes the implementation of the DP
Monte Carlo code on a variety of parallel computing arc
tectures, and investigates the sources of degradation in
ciency and speedup in the parallel version of the code.

II. IMPLEMENTATION OF DPM ON A PARALLEL
ARCHITECTURE

A. Parallelization

The DPM code was parallelized on a Linux cluster us
the Message Passing Interface~MPI! for interprocessor com
munication. Temporary buffers are assigned within DPM a
are used by the master and slave processors to store dos
error values. Eight basic standard MPI calls were used
parallelization. The basic functions of the master proces
include reading the initial datasets~such as number of histo
ries, electron and photon energy cut-offs, the voxel geom
file, cross-section files and region of interest for dose outp!
from the DPM input file and broadcasting this information
the other processors. At the end of the simulation, the ma
processor collects and combines all the dose values ca
lated by the slaves. The slave processors read the br
casted information, write dose values in temporary buff
and send the calculated data when requested by the m
Medical Physics, Vol. 31, No. 9, September 2004
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processor. A detailed description of the parallelization
shown in the flowchart~Fig. 1!. The original code is written
in FORTRAN 77 and uses GNU compilers on an UNIX e
vironment. The parallel MPI version is compiled wit
mpif77 and mpiCC.

B. Parallel architectures under study

The speedup and efficiency were tested on three diffe
Linux clusters of different processor architectures:

~a! An Intel cluster consisting of 50 nodes~2 CPU’s/node!,
800 MHz Intel Pentium III processors. Each nod
shared a common memory pool of 1 GB RAM.

~b! An Athlon cluster consisting of 50, 1.8 GHz1 AMD
Athlon nodes~2 CPU’s/node!. The dual processors o
each node are configured with 2 GB RAM and the
fore, can operate as a SMP~Symmetric Multiproces-
sors!node. The Athlon MP has three out-of-order, s
perscalar and fully-pipelined floating point executio
units and is well-suited for scientific and engineeri
computations. Moreover, the system bus with a pe
rate of 2.1 GB/s provides high bandwidth for dat
intensive applications. The nodes in the Athlon clus
are interconnected via a Myrinet8 2000 switch that pro-
vides sustained one-way data rate of 248 MB/s, an
low latency~6.3 ms!.

~c! An Opteron cluster consisting of 100 nodes~2 CPU’s/
node!of 64-bit AMD Opterons with a CPU speed o
1400 MHz. Of these, a total of 36 nodes share
memory pool of 2 GB/node, 32 nodes share 4 GB/no
and another 32 nodes share 6GB/node. The Opte
processor provides up to 6.4 GB/s of memory ban
width per processor reducing the memory latency a
I/O bottlenecks. In addition, the AMD Hyper Transpo
technology allows up to three coherent links, or 19
GB/s of peak bandwidth per processor. A significa
feature of the Opteron processor is its ability to sim
taneously execute both 32- and 64-bit binaries native
The Opteron cluster uses a dedicated Force-10 Gig
Ethernet switch for interconnection of the nodes. Wh
Gigabit Ethernet provides approximately half the ban
width of a corresponding Myrinet switch, it can be su
ficient for many scientific applications requiring mod
erate interprocessor communication and tak
advantage of overlapping computation with commu
cation.

C. Scalable parallel pseudo random number
generator

An important element in history-based parallel algorithm
is a reliable parallel random number generator that provi
uncorrelated random number streams to each processor
parallel random number sequence should also satisfy the
teria of an acceptable serial random number stream, i.e
should be sufficiently uniform, have a large period and ha
no correlation between the numbers in the sequence.
original serial version of DPM Monte Carlo code uses a 6
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FIG. 1. Flowchart describing the paral
lelization of the DPM Monte Carlo
Code.
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bit random number generator from PENELOPE. We ha
implemented the parallel pseudo random number gener
from the SPRNG~Ref. 9!library in parallel DPM. SPRNG is
a set of libraries for scalable and portable pseudorand
number generation. It has been ported on a variety of c
puting platforms and supports MPI. We modified the relev
subroutine within DPM to incorporate SPRNG. SPRNG u
an initial seed which refers to the encoding of the start
state rather than the conventional notion of the starting s
of the random number stream. Distinct streams initializ
with the same initial seed have different starting states. T
makes it convenient to use the same seed for distinct stre
and still obtain different initial states. We compiled SPRN
with the gcc/g77 and the PGI~Portland group!version of
MPI. It was also tested with LAM-MPI.10

III. TIMING RESULTS

Tables I, II, and III show the efficiency and speedup e
mates as calculated on the Intel, Athlon, and Opteron c
ters. These calculations are based on a simulation of a 6 MV
photon beam in a 25.6325.6330 cm3 water phantom with
voxel size 0.230.230.2 cm3. The timeT ~min! taken for the
simulation is the time required for the in-phantom dose c
culation using the DPM code. This time shows an inve
Medical Physics, Vol. 31, No. 9, September 2004
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relation to the processor speed of the three Linux clust
Three sets of calculations were performed for each anal
depending on the availability of processors and an estim
of uncertainty is evaluated. The standard deviation for
calculated times was within 5%. The Intel cluster with t
slowest 800 MHz processors, took the largest amount
simulation time. The Athlon cluster being twice as fast
Intel took approximately half the simulation time as is not
in Table II. However in comparing the efficiency« between
Intel and Athlon, we find that Intel shows consistently bet
efficiency up to 32 processors for simulating 13108

TABLE I. Speedup and efficiency on an Intel cluster~Number of histories
513108).

Nodes No. of CPUs T ~min! SIntel « Intel ~%!

1 1 82.9 1.0 100.0
1 2 40.3 2.0 100.0
2 4 21.1 3.9 98.4
4 8 10.5 7.9 99.2
8 16 5.3 15.6 97.5
10 20 4.4 18.6 93.2
16 32 3.0 27.6 86.4
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TABLE II. Speedup and efficiency on an Athlon cluster.

T(min)6s(%)
~Min, Max!

SAMD «AMD(%)

No. of Number of histories
Nodes CPU’s 108 83108 108 83108 108 83108

1 1 30.960.7 244.460.4 1.0 1.0 100.0 100.0
~30.6, 31.0! ~243.7, 245.8!

1 2 16.061.9 127.760.02 1.9 1.9 96.2 95.7
~15.8, 16.4! ~127.7, 127.8!

2 4 8.161.5 65.460.7 3.8 3.7 95.2 93.5
~8.0, 8.3! ~65.1, 66.1!

4 8 4.361.8 32.860.7 7.2 7.5 90.7 93.3
~4.2, 4.4! ~32.4, 32.9!

8 16 2.260.9 16.760.8 14.1 14.6 88.2 91.3
~2.2, 2.2! ~16.6, 16.9!

10 20 1.964.3 12.960.2 16.4 18.9 82.1 94.8
~1.8, 2.0! ~12.9, 12.9!

12 24 1.561.3 11.260.4 20.1 21.8 83.9 90.8
~1.5, 1.6! ~11.2, 11.3!
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particles. This is because, with the Intel cluster, the amo
of overhead associated with interprocessor communica
and the serial fraction of the code is masked by the limitat
in processor speed. On the other hand, the reduction of
ciency with the Athlon cluster~down to 83.9% with 24 pro-
cessors!occurs because the processing time required
simulate 13108 particles is less than the time associat
with interprocessor communication. On simulating 83108

histories with Athlon, we found an improvement in effi
ciency ~90.8% as compared to 83.9% with 13108 particles
simulated!. This is also consistent with the fact that the fr
tion of time spent in the sequential part of an algorithm m
actually decrease as the problem size increases making
parallel computation more efficient.

From Table III, we find that the Opteron cluster is fas
than the Athlon cluster even though its processor spee
slower. This is due to the fact that Opteron, being a 64
architecture is capable of storing and processing instruct
Medical Physics, Vol. 31, No. 9, September 2004
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at a faster rate as compared to the 32-bit Athlon clus
Moreover, as mentioned earlier, the Opteron processor h
memory bandwidth much higher than the Athlon resulting
faster data movement in and out of cache, as well as
system bus. The time taken to simulate 13108 histories was
1.2 min on 24 processors. However, the efficiency of
calculation was only 87.0%, which is again associated w
fact that the amount of CPU time was significantly smal
than the cost attributed to interprocessor communication
the usage of a slower interconnection mechanism tha
Myrinet switch. We performed a similar phantom calculati
with 83108 histories on the Opteron cluster and again, th
was a significant improvement in efficiency and speed
~96.1% on 24 CPU’s!. The scalability of the Code on t
Opteron cluster was also studied up to 64 processors whe
shows an efficiency of 92% and hence are ideally suited
large scale applications.
TABLE III. Speedup and efficiency on an Opteron cluster.

T(min)6s(%)
~Min, Max!

SOpteron «Opteron(%)

No. of Number of histories
Nodes CPU’s 108 83108 108 83108 108 83108

1 1 25.860.4 204.060.1 1.0 1.0 100.0 100.0
~25.6, 25.8! ~203.7, 204.2!

1 2 13.160.9 102.760.3 1.97 1.99 98.6 99.4
~13.0, 13.2! ~102.4, 103.1!

2 4 6.661.3 52.760.09 3.92 3.87 98.1 96.8
~6.5, 6.7! ~52.6, 52.7!

4 8 3.460.5 26.662.1 7.69 7.67 96.1 95.9
~3.3, 3.4! ~26.0, 27.0!

8 16 1.860.5 13.463.5 14.67 15.18 91.7 94.8
~1.8, 1.8! ~13.1, 14.0!

10 20 1.561.7 10.560.2 17.69 19.35 88.5 96.7
~1.4, 1.5! ~10.5, 10.6!

12 24 1.260.0 8.860.9 20.88 23.07 87.0 96.1
~1.2, 1.2! ~8.8, 8.9!
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IV. VALIDATION OF PARALLEL IMPLEMENTATION

To evaluate the accuracy and efficiency of the DPM p
allel implementation with respect to the serial version,
simulated a phantom consisting of layers of water, lungr
50.3 g/cm3), bone, aluminum, and titanium. The simulatio
was carried out on the University of Michigan Radiatio
Oncology Intel Linux cluster. The cluster consists of 10 du
node Intel Xenon Pentium IV processors with proces
speed of 2.4 GHz. We used a parallel pencil electron beam
20 MeV energy. The phantom size was 25.6325.6
330 cm3 with a voxel size of 0.230.230.2 cm3. Two sets
of calculations were carried out: one with the serial~original!
version of the DPM code and the other with the para
version. 13108 histories were simulated to get an avera
sigma of less than 0.1%. Figure 2 compares the central
depth dose curves from the serial and parallel calculatio
We see excellent agreement between the serial and pa
codes. Figure 3 shows one-dimensional line profiles in
transverse direction at various depths obtained from the
calculations. The agreement in the profiles illustrates that
serial and parallel codes are equivalent in accuracy. The
taken by the serial code for this simulation~for 13108 par-
ticles! was 438 min and the time taken by the parallel co
was 46.8 min on 8 processors, and shows that the sim
tions are far more efficient.

V. CONCLUSION

We have successfully parallelized the DPM Monte Ca
code for distributed-memory processor architectures us
the Message Passing Interface~MPI! and tested its efficiency
and speedup with respect to number of processors. Re
show roughly linear increases with speedup with an incre
ing number of processors, however, deviations from linea

FIG. 2. Central axis depth dose curve comparison between the seria
parallel version of the DPM code in a phantom consisting of layers of wa
lung, aluminum, and titanium.
Medical Physics, Vol. 31, No. 9, September 2004
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were noted with varying problem size. Speedup was a
found to scale with processor speed. By taking advantag
multiple processors and the continuing increase in proce
speeds, it seems likely that parallelization techniques as
plored in this study will make feasible the routine use
Monte Carlo for treatment planning in the clinical setting.
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FIG. 3. One-dimensional line profiles at depths of 3 cm, 5 cm, 6.5 cm,
7.5 cm, respectively, for serial and parallel calculation.


