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Summary

The paper discusses the asymptotic validity of posterior inference of pseudo-Bayesian quantile
regression methods with complete or censored data when an asymmetric Laplace likelihood is
used. The asymmetric Laplace likelihood has a special place in the Bayesian quantile regression
framework because the usual quantile regression estimator can be derived as the maximum
likelihood estimator under such a model, and this working likelihood enables highly efficient
Markov chain Monte Carlo algorithms for posterior sampling. However, it seems to be under-
recognised that the stationary distribution for the resulting posterior does not provide valid
posterior inference directly. We demonstrate that a simple adjustment to the covariance matrix
of the posterior chain leads to asymptotically valid posterior inference. Our simulation results
confirm that the posterior inference, when appropriately adjusted, is an attractive alternative to
other asymptotic approximations in quantile regression, especially in the presence of censored data.
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1 Introduction

Quantile regression, first introduced by Koenker & Bassett (1978), has been widely used as
a valuable tool for analysing the conditional quantile functions of a response variable given
covariates. In contrast to the ordinary least squares regression that focuses on the conditional
mean function, quantile regression provides a more comprehensive analysis on how covariates
may influence different aspects of the conditional distributions of the response. Quantile regres-
sion model also enhances the flexibility of parametric regression models by allowing error
heteroscedasticity. Compared with nonparametric regression, quantile regression has a direct
target on a quantile level of interest without modelling the whole conditional distribution and
avoids the curse of dimensionality by assuming a parametric quantile function.

In recent years, Bayesian quantile regression has attracted attention because of some of its
distinctive properties. For example, Bayesian quantile regression methods make use of Markov
chain Monte Carlo (MCMC) algorithms to sample the parameter values from the posterior
distribution, and the resultant estimator is as efficient as the classical estimator directly calcu-
lated through numerical optimisation. In some cases, the MCMC computation alleviates the
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computational curse of dimensionality in the optimisation of non-convex objective functions
such as the one used in Powell (1986) for censored quantile regression. Moreover, uncertainty
estimates or interval estimates can be calculated easily from a posterior sequence of MCMC
draws. In contrast, the asymptotic variance–covariance of the conventional quantile estimator
involves unknown conditional density functions, which are often difficult to estimate reliably.

The quantile regression models are most helpful when a parametric likelihood cannot be
specified, and thus, a working likelihood is needed for the Bayesian approach to work. Some
researchers considered non-parametric working likelihoods, for example, the Dirichlet process
mixture models in Gelfand & Kottas (2002) and Kottas & Krnjajić (2009), an infinite mix-
ture of normals in Reich et al. (2010) and Jeffreys’ substitution likelihood in Dunson & Taylor
(2005). Reich et al. (2011), Reich (2012) and Reich & Smith (2013) proposed semiparamet-
ric models on the entire quantile process. Lancaster & Jun (2010) considered exponential tilted
empirical likelihood, while Otsu (2008) and Yang & He (2012) considered empirical likelihood.
Arguably, the most popular choice of the working likelihood is the asymmetric Laplace (AL)
distribution. A Bayesian approach based on the AL likelihood was formally discussed in Yu
& Moyeed (2001) for linear quantile regression. In recent years, the AL likelihood has been
adopted for Bayesian quantile regression in different contexts and applications, for instance,
quantile regression with random effects (Geraci & Bottai, 2007; Yuan & Yin, 2009; Geraci &
Bottai, 2013; Yue & Rue, 2011; Luo et al., 2014; Wang, 2012), variable selection for quantile
regression (Li et al., 2010; Alhamzawi et al., 2012; Alhamzawi & Yu, 2013; 2012), spatial
quantile regression (Lum & Gelfand, 2012), quantile regression for count data with application
to environmental epidemiology (Lee & Neocleous, 2010), non-parametric and semiparametric
quantile regression models (Chen & Yu, 2009; Thompson et al., 2010; Hu et al., 2013; Wald-
mann et al., 2013; Zhu et al., 2013; Hu et al., 2014), quantile regression with fixed censoring
(Yu & Stander, 2007; Kozumi & Kobayashi, 2011; Kobayashi & Kozumi, 2012; Yue & Hong,
2014; Alhamazawi & Yu, 2015; Zhao & Lian, 2015), and binary quantile regression (Benoit &
Poel, 2012; Benoit et al., 2013; Miguéis et al., 2013).

Whatever is chosen as the working likelihood, it is generally not the true data generating like-
lihood. Therefore, the validity of the posterior inference based on the working likelihood does
not follow automatically from the Bayes formula. Yang & He (2012) established the asymp-
totic validity of the posterior inference based on the empirical likelihood. However, the general
validity of the posterior inference is questionable. We wish to emphasise here that a direct use
of the posterior interval based on a misspecified likelihood can be misleading.

In this article, we focus on Bayesian quantile regression using the AL working likelihood, as
this is widely used in the literature. As we pointed out earlier, the posterior from this working
likelihood is not the conditional distribution of the parameter given the data so the credi-
ble intervals obtained from the posterior do not generally have the right Bayesian confidence
level. Furthermore, we show that the posterior based on the misspeficied AL likelihood does
not approximate the sampling distribution of the parameter estimates even as the sample size
increases, but asymptotically valid posterior inference can be achieved with a simple adjust-
ment. We present posterior variance adjustments in two cases, quantile regression for complete
data and for data with fixed censoring. The adjustments enable effective and valid posterior
inference without requiring the estimation of the unknown conditional density functions as in
the frequentist inference methods, and they are shown through simulation to have advantages
over other inference methods, especially for the cases of fixed censoring.

The rest of the paper is organised as follows. In Section 2, we review AL-based Bayesian
quantile regression methods including the recent development in computation. In Section 3,
we discuss the asymptotic properties of the posterior from the AL-based Bayesian quantile
regression and present adjustments on the posterior variance for complete data and for data with
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fixed censoring. To assess the finite sample performance, we evaluate the interval estimates
from the posterior with and without adjustments and compare them with the usual large sample
approximations under the frequentist approach through simulation studies and the analysis of a
women’s labour force data in Section 4. While the example on the women’s labour force data
is not meant to be comprehensive in any way, the alarming difference in the interval estimates
between the AL-based Bayesian quantle regression with and without adjustments shows that we
must remain vigilant in the interpretation of any posterior obtained from a working likelihood.
We hope that this paper plays a positive role in the promotion of Bayesian inference for quantile
regression in a wide variety of applications. Some concluding remarks are given in Section 5.
The technical details to support the asymptotic validity of the adjusted posterior inference are
provided in the Appendix.

2 Bayesian Quantile Regression with Asymmetric Laplace Likelihood

2.1 Basic Setup

Suppose that Y is the continuous response variable of interest and X is the p-dimensional
vector of covariates with the first element equal to one. At a given quantile level � 2 .0; 1/, we
consider the following linear quantile regression model

Q� .Y j X D x/ D x>ˇ.�/; (2.1)

where Q� .Y j X D x/ denotes the � -th conditional quantile of Y given X D x and ˇ.�/ is the
quantile coefficient vector.

Based on a random sample D D ¹.yi ; xi /; i D 1; : : : ; nº of .Y;X/, the unknown parameters
ˇ.�/ can be estimated by Ǒ .�/, which minimises

Rn.ˇ;D/ D
nX
iD1

��
�
yi � x>i ˇ

�
; (2.2)

where �� .�/ D �¹� � I.� < 0/º� is the quantile loss function given in Koenker & Bassett
(1978). In the rest of the paper, we omit the � in various expressions such as ˇ.�/ for the sake
of simplicity.

To incorporate quantile regression models into a Bayesian framework, we consider the AL
working likelihood

L.ˇID/ D �n.1 � �/n

�n
exp

´
�

Pn
iD1 �� .yi � x>i ˇ/

�

μ
;

where � is a fixed scale parameter. With a prior specified as p0.ˇ/ on ˇ, the posterior of ˇ can
be formally written as

pn.ˇ j D/ / p0.ˇ/ exp

´
�

Pn
iD1 �� .yi � x>i ˇ/

�

μ
: (2.3)

Any reasonable choice of the prior, including the flat prior, leads to a proper posterior under
some mild conditions (Yu & Moyeed, 2001; Tsionas, 2003; Choi & Hobert, 2013). For any
fixed prior, the asymptotic properties of the posterior are independent of the prior choices, even
though the computational algorithms may have to adapt to the choice of the prior.

�Correction added on 21 December 2015, after first online publication: “�” in equation corrected to “�”.
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The priors can also be used to enable a Lasso-type regularisation in quantile regression
from a Bayesian perspective. As proposed in Koenker (2004) and Li & Zhu (2008), the
Lasso-regularised quantile regression is given by

min
ˇ

nX
iD1

��
�
yi � x>i ˇ

�
C �

pX
jD1

jˇj j;

where ˇj is the j -th element of ˇ. To accommodate the penalty term �
Pp
jD1 jˇj j, Li et al.

(2010) proposed a Laplace prior p0.ˇ j �/ D .��=2/p exp
°
���

Pp
jD1 jˇj j

±
and suggested

a Gibbs sampling algorithm. Alhamzawi et al. (2012) further extended it to Bayesian adaptive
Lasso quantile regression.

2.2 Computation and Properties

It is natural to use MCMC methods for posterior sampling. The posterior of ˇ.�/ is in gen-
eral intractable, but sampling can be simplified by using a mixture representation of the AL
distribution.

Consider the working model

yi D x>i ˇ.�/C �i ; i D 1; : : : ; n; (2.4)

where �i are independent random variables following the AL distribution AL.0; �; �/
with density

f .�i / D
�.1 � �/

�
exp

²
�
�� .�i /

�

³
:

Here, � can either be fixed or considered as part of the parameter to be assigned a prior
distribution. By Kotz et al. (2001), �i can be represented by a scale mixture of normals,

�i D �
�
�1vi C �2´i

p
vi
�
; (2.5)

where �1 D .1 � 2�/=¹�.1 � �/º, �2
2 D 2=¹�.1 � �/º, ´i � N.0; 1/, vi follows the standard

exponential distribution, and ´i and vi are independent.
By using the representation (2.5) and assuming a proper Gaussian-Inverse Gamma prior on

.ˇ.�/; �/, Kozumi & Kobayashi (2011) proposed a three-variable Gibbs sampling algorithm.
More specifically, Model (2.4) can be rewritten as

yi D x>i ˇ.�/C �
�
�1vi C �2´i

p
vi
�
; i D 1; : : : ; n:

With a normal prior on ˇ.�/, the full conditional density of ˇ.�/ given y D .y1; : : : ; yn/
T and

v D .v1; � � � ; vn/
> is normal, and the conditional density of vi is a generalised inverse Gaussian

distribution. Consequently, a Gibbs sampler based on standard distributions can be applied. If
� is assigned a prior as inverse Gamma that is independent of ˇ.�/, then the conditional distri-
bution of � given the other quantities remains in the family of inverse Gamma, as detailed in
Kozumi & Kobayashi (2011). Khare & Hobert (2012) showed that the Markov chain underlying
this three-variable Gibbs sampling algorithm converges at a geometric rate.

If an improper prior on .ˇ.�/; �/ is used, Choi & Hobert (2013) used the same mixture rep-
resentation (2.5) to propose a data augmentation algorithm and showed that the Markov chains
associated with the algorithms are geometrically ergodic. In addition, Choi & Hobert (2013)

International Statistical Review (2016), 84, 3, 327–344
© 2015 The Authors. International Statistical Review © 2015 International Statistical Institute.



Bayesian Quantile Regression 331

showed that when the prior on .ˇ.�/; �/ takes the form p0.ˇ.�/; �
2/ / .�2/�.aC1/=2 on �2 > 0,

where a is a hyper-parameter, the posterior is proper if and only if (i) a > �n C p C 1, (ii)
the design matrix is of full column rank and (iii) y is not in the column space of the design
matrix. Currently, there are two R (R Core Team, 2014) packages, brq (Alhamzawi, 2012) and
bayesQR (Benoit et al., 2014), that utilise efficient Gibbs sampling algorithms for Bayesian
quantile regression.

Even though a prior distribution on � can be used in Bayesian computation, we find through
our empirical studies that fixing � at a pre-estimated value often makes the MCMC algorithm
more efficient. As we shall show in the following section, the proposed adjustments to the
posterior variance make the results asymptotically invariant to the choice of any fixed � . For a
specific choice of � to reflect the scale of the conditional distributions, we refer to Remark 1
in Section 3.1.

3 Posterior Variance Adjustment

Based on the AL working likelihood, the posterior mean and variance of ˇ.�/ can be com-
puted directly from the MCMC chains. Based on empirical evidence, Yu & Moyeed (2001)
argued that the use of the AL likelihood is satisfactory for quantile regression, even when the
likelihood is misspecified. Sriram et al. (2013) established sufficient conditions for the posterior
consistency of model parameters in Bayesian quantile regression with the AL likelihood. How-
ever, the posterior consistency results do not imply that the interval estimates constructed from
the posterior are automatically valid. It is tempting to construct interval estimates, whether they
are called credible intervals or confidence intervals, from the quantiles of the posterior or by nor-
mal approximations using the variance–covariance matrix of the posterior sequence, as reported
in Yu & Moyeed (2001), Li et al. (2010), Alhamzawi et al. (2012), Yue & Hong (2014) and Lum
& Gelfand (2012), among others. Here, we argue that the posterior variance–covariance must
be adjusted for the interval estimates to be asymptotically valid. We will present the proposed
adjustments for linear quantile regression with complete data in Section 3.1 and with fixed cen-
sored data in Section 3.2. The basic idea of asymptotically valid posterior inference goes back
to Chernozhukov & Hong (2003) and Yang & He (2012), but the specific results presented in
this section are new.

3.1 Quantile Regression with Complete Data

Consider the linear quantile regression model (2.1) with the true parameter ˇ.�/ D ˇ0.
Under the conditions that guarantee the asymptotic normality of the conventional quantile
regression estimator Ǒ .�/ that minimises (2.2), we show in the Appendix that for jjˇ � ˇ0jj D
O.n�1=2/, the posterior density (assuming any fixed � ) is

pn.ˇ j D/ / p0.ˇ/ exp

´
�
n¹ˇ � Ǒ .�/º>D1¹ˇ � Ǒ .�/º C op.1/

2�

μ
; (3.1)

where D1 D limn!1n
�1
Pn
iD1 fYi .x

>
i ˇ0 j xi /xix>i with fYi .� j x/ as the conditional density

of the response Yi given covariates x. The aforementioned expansion suggests that for large
n and p0.ˇ/ / 1, pn.ˇjD/ is approximately a normal density with mean Q̌ D Ǒ .�/ and
variance–covariance �D�1

1 =n. Let O†.�/ denote the posterior variance–covariance matrix with
n O†.�/ � �D�1

1 . On the other hand, it is known (for instance, Koenker 2005, Chapter 3) that the
asymptotic variance of n1=2 Ǒ .�/ is �.1��/D�1

1 D0D
�1
1 , whereD0 D limn!1 n

�1
Pn
iD1 xix>i :
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This explains why the posterior variance is not the right approximation to the sampling variance
of Ǒ .�/.

The good news is that we can use a simple adjustment to O†.�/ to obtain asymptotically valid
posterior inference,

O†adj D
n�.1 � �/

�2
O†.�/ OD0 O†.�/;

where OD0 D n
�1
Pn
iD1 xix>i provides a consistent estimator of D0. A posterior interval can be

constructed based on a normal approximation using O†adj.

Remark 1. The unadjusted posterior variance O†.�/ depends, in a rather complicated way,
on the specification of � , the scale parameter in the AL distribution. However, the adjusted
posterior variance, O†adj, is asymptotically invariant in the value of � . In practice, to adjust
for the scale of the data, we recommend fixing � at n�1Rn. Ǒ .0:5/;D/, which is the maximum
likelihood estimator of � under the AL working likelihood at the median.

The proposed adjustment not only applies to the posterior with the prior p0.ˇ/ / 1 but also
applies to other proper priors. For asymptotic analysis about a more general class of priors,
including sample-size-dependent priors, we refer to Yang & He (2012).

3.2 Quantile Regression with Fixed Censoring

Quantile regression is especially appealing for censored data, because many of the quantiles
are identifiable under censoring when the conditional mean is not identifiable without additional
(and often not verifiable) model assumptions. In this subsection, we discuss an important appli-
cation of quantile regression when the response variable is subject to fixed censoring because
of, for example, top or bottom coding.

Suppose that T is a latent continuous response variable of interest. Because of left cen-
soring, we only observe Y D max.T; C / and the censoring indicator ı D I.T > C/,
where C is a known censoring point. Without loss of generality, we assume C D 0. Let
D D ¹.yi ; xi ; ıi /; i D 1; : : : ; nº be a random sample of .Y;X; ı/. We consider the following
linear quantile regression model,

Q� .T j X D x/ D x>ˇ.�/: (3.2)

Various estimation methods have been developed for censored quantile regression, including
Portnoy (2003), Ying et al. (1995), Peng & Huang (2008) and Wang & Wang (2009) for random
censoring, Lin et al. (2012) for double censoring and Powell (1986) and Tang et al. (2012) for
fixed censoring. In this paper, we focus on the estimator of Powell (1986).

Because Y D max.T; 0/, by the equivariance property of quantiles to monotone transfor-
mations, model (3.2) implies that the � -th conditional quantile of the observed response Y is
Q� .Y j X D x/ D max.x>ˇ.�/; 0/: Motivated by this, Powell (1986) proposed to estimate
ˇ.�/ by Ǒ .�/, the minimiser of the following objective function

Rn.ˇ;D/ D
nX
iD1

��
®
yi �max.x>i ˇ; 0/

¯
: (3.3)

As pointed out in Womersley (1986) and Buchinsky & Hahn (1998), the objective function (3.3)
is highly non-convex in ˇ, and the optimisation is computationally challenging. Particularly, the
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existing computing methods become unstable when heavy censoring is present. More details
related to the computational issues can be referred to Buchinsky (1994), Fitzenberger (1997)
and Chernozhukov & Hong (2002) and Portnoy (2010).

Yu & Stander (2007) proposed a Bayesian Tobit quantile regression model, which employs
the AL likelihood based on the objective function in (3.3),

L.ˇID/ D �n.1 � �/n

�n
exp

´
�

Pn
iD1 ��

®
yi �max

�
x>i ˇ; 0

�¯
�

μ
:

The resultant posterior can be written as

pn.ˇ j D/ / p0.ˇ/ exp

´
�

Pn
iD1 ��

®
yi �max

�
x>i ˇ; 0

�¯
�

μ
: (3.4)

This is a direct extension of the AL working likelihood discussed in Section 3.1. Because the
optimisation of (3.3) is far more difficult than the quantile regression problem without cen-
soring, the Bayesian computation for the censored quantile regression is attractive from the
computational perspective. A Gibbs algorithm was described in Yu & Stander (2007) with
� D 1 and p0.ˇ/ / 1.

Assume the censored quantile regression model (3.2) with the true parameter ˇ.�/ D ˇ0.
Under the assumptions of Powell (1986), for any ˇ such that jjˇ � ˇ0jj D O.n�1=2/, we have
the following quadratic expansion,

pn.ˇ j D/ / p0.ˇ/ exp

´
�
n¹ˇ � Ǒ .�/º>D1¹ˇ � Ǒ .�/º C op.1/

2�

μ
; (3.5)

where D1 D limn!1

1

n

nX
iD1

fT
�
x>i ˇ0 j xi

�
xix
>
i I

�
x>i ˇ0 > 0

�
;

and fT .�jxi / denotes the conditional density of the latent response T given covariates xi ; see
the verification of this result in the Appendix.

The expansion (3.5) suggests that for large n and p0.ˇ/ / 1, the posterior is
approximately normal with mean Q̌ D Ǒ .�/ and variance �D�1

1 =n, which is differ-
ent from the asymptotic variance of Ǒ .�/, that is, �.1 � �/D�1

1 D0D
�1
1 =n, where D0 D

limn!1n
�1
Pn
iD1 xix>i I

�
x>i ˇ0 > 0

�
. Therefore, an interval estimate directly from the poste-

rior is not asymptotically valid, and a simple adjustment based on the posterior variance O†.�/
is needed,

O†adj D
n�.1 � �/

�2
O†.�/ OD0 O†.�/;where OD0 D n

�1
nX
iD1

xix
>
i I

�
x>i Ǒ.�/ > 0

�
:

Similarly as in Section 3.1, the adjusted posterior variance O†adj is asymptotically invari-
ant with respect to the value of the scale parameter � , and it can be used to construct an
asymptotically valid interval estimate for ˇ.�/ using normal approximations.
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4 Numerical Studies

We carry out two simulation studies to assess the finite sample performance of the pro-
posed posterior variance adjustments, one for complete data and the other for fixed censored
data. Each simulation study uses 1000 Monte Carlo replications, and the Bayesian methods use
MCMC chains of length 20 000 with a burn-in of 4000.

4.1 Simulation for Complete Data

In this study, we focus on two sample sizes n D 200 and 500. Three data-generating models
are specified below.

Case 1: yi D 2x1i C 2x2i C ei , where x1i and x2i are independent standard normal vari-
ables, and ei � t3, Student’s t-distribution with three degrees of freedom, is independent of
.x1i ; x2i /;
Case 2: yi D 2=3C4x1iC4x2iC.1C0:6x2

i1/ei , where x1i and x2i are independent standard
normal variables, and ei � N.0; 1/ is independent of .x1i ; x2i /;
Case 3: yi D a.ui / C b1.ui /xi1 C b2.ui /xi2, where ui � Unif .0; 1/ is independent of
.x1i ; x2i /, a.u/ D 0:5Cˆ�1.u/, b1.u/ D 2Cu2, b2.u/ D 2, xi1 � 	2

2=2 and xi2 � N.0; 1/
are independent, where 	2

2 denotes the chi-square distribution with two degrees of freedom.

Case 1 represents a homoscedastic error model, and Cases 2 and 3 represent heteroscedastic
error models. In both Cases 1 and 3, the conditional quantile function of Y takes the form
Q� .Y jx1; x2/ D a.�/ C b1.�/x1 C b2.�/x2 for any � 2 .0; 1/, where a.�/ D F �1

t3
.�/ and

b1.�/ D b2.�/ D 2 in Case 1. In Case 2, the linear conditional quantile function Q� .Y jx1; x2/
holds only at � D 0:5 with a.0:5/ D 2=3 and b1.0:5/ D b2.0:5/ D 4.

Based on normal approximations, we construct confidence intervals for a.�/, b1.�/, b2.�/
using the unadjusted posterior variance for the Bayesian quantile regression with the AL likeli-
hood and using the proposed adjustments to the posterior variance. For comparison, we include
two forms of confidence intervals from the conventional quantile regression obtained, respec-
tively, by using the default rank score method and by the Wald method based on the asymptotic
approximation to the variance–covariance matrix for models with heteroscedastic errors in the
R package quantreg (Koenker, 2015). Table 1 summarises the coverage probabilities and the
average lengths of confidence intervals of the competing methods in Cases 1–3 at � D 0:5, and
Table 2 summarises the results at two tail quantiles in Case 1 (� D 0:1) and Case 3 (� D 0:9).
The standard error of the coverage probabilities with a nominal level 90% is 1%. The results
confirm that the Bayesian intervals from the AL likelihood, if unadjusted, have poor coverage,
which is mainly due to the misspecification of the likelihood. In contrast, the intervals with the
proposed variance adjustments have coverage close to the nominal level 90% in all the sce-
narios considered. Although the two non-Bayesian methods also produce asymptotically valid
interval estimates, their performances are less stable, even at n D 500, because of the difficulty
in approximating the variance–covariance matrices of the quantile estimates.

4.2 Simulation for Data with Fixed Censoring

For censored quantile regression, we consider the following two data-generating models,

Case 4: Ti D 2:5C 5xi C ¹1C .xi � 0:5/2ºei , i D 1; : : : ; n, where ei � t3 is independent
of xi � N.0; 1/;
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Table 1. Empirical coverage probabilities and empirical mean lengths of different confi-
dence intervals with nominal level 90% in Cases 1–3 at � D 0:5 with n D 200; 500. The
standard errors for EML are no more than 0.005 in all entries.

100�ECP EML

Case n Method a.�/ b1.�/ b2.�/ a.�/ b1.�/ b2.�/

1 n D 200 BALadj 90 91 93 0.33 0.33 0.33
BAL 86 88 89 0.29 0.29 0.29
RQrank 87 89 90 0.31 0.31 0.31
RQnid 92 90 90 0.34 0.32 0.32

n D 500 BALadj 91 90 93 0.20 0.21 0.21
BAL 86 86 89 0.18 0.18 0.18
RQrank 89 89 90 0.20 0.20 0.20
RQnid 91 89 92 0.21 0.20 0.20

2 n D 200 BALadj 90 91 92 0.41 0.66 0.42
BAL 86 77 87 0.34 0.44 0.35
RQrank 89 90 89 0.39 0.64 0.40
RQnid 91 70 90 0.42 0.40 0.40

n D 500 BALadj 92 90 93 0.26 0.42 0.26
BAL 87 75 88 0.22 0.28 0.22
RQrank 91 90 91 0.25 0.41 0.25
RQnid 92 68 90 0.26 0.25 0.25

3 n D 200 BALadj 90 88 90 0.55 0.58 0.39
BAL 81 73 82 0.43 0.37 0.30
RQrank 87 87 89 0.51 0.55 0.38
RQnid 89 88 88 0.54 0.57 0.38

n D 500 BALadj 92 90 92 0.34 0.37 0.25
BAL 84 72 82 0.27 0.23 0.19
RQrank 90 91 89 0.32 0.35 0.24
RQnid 93 91 90 0.34 0.36 0.24

ECP, empirical coverage probability; EML, empirical mean length; BALadj and BAL, the
Bayesian quantile regression based on asymmetric Laplace likelihood, with and with-
out posterior variance adjustment, respectively; RQrank, the interval estimates based on
rank score test in quantile regression; RQnid, the Wald-type interval estimates in quan-
tile regression based on the asymptotic approximation to the variance–covariance matrix
under heteroscedastic errors.

Case 5: Ti D 0:2C 3xi1� 2xi2C .0:5C 0:5xi1C xi2/ei , i D 1; : : : ; n, where xi1 � 	2
1 and

xi2 � Bernoulli.0:5/ are independent, and ei � N.0; 1/ is independent of .xi1; xi2/.

Because of censoring, we observe yi D max.Ti ; 0/ instead of Ti , and in both cases, we
have the censoring proportions around 30%. In Case 4, the conditional quantile of T given x
is a.�/ C b.�/x only at � D 0:5 with a.0:5/ D 2:5 and b.0:5/ D 5 and is nonlinear in x at
the other quantiles. In Case 5, the conditional quantiles are a.�/ C b1.�/x1 C b2.�/x2 for all
� 2 .0; 1/ with a.�/ D 0:2C 0:5ˆ�1.�/, b1.�/ D 3C 0:5ˆ�1.�/ and b2.�/ D �2Cˆ�1.�/.
We present results for � D 0:5 in Case 4 at two sample sizes n D 200; 500, but for � D 0:25
and 0.5 with n D 500 in Case 5.

The posterior intervals from the AL working likelihood are constructed, and their perfor-
mances are compared with the bootstrap-based confidence intervals (based on 100 bootstrap
replications) for the Powell’s estimator. The simulation results are given in Tables 3 and
4. Clearly the interval estimates from the Bayesian method based on Powell’s objective
function, referred to as BP, have poor coverage probabilities, but the proposed posterior vari-
ance adjustment leads to respectable performance. The frequentist intervals from Powell
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Table 2. Empirical coverage probabilities and empirical mean lengths of different confi-
dence intervals with nominal level 90% in Cases 1 and 3 at tail quantiles (� D 0:1 or 0.9)
with n D 200 and 500. The standard errors for EML range from 0.004 to 0.008 in this table.

100�ECP EML

Case � n Method a.�/ b1.�/ b2.�/ a.�/ b1.�/ b2.�/

1 0.1 200 BALadj 91 92 92 0.76 0.71 0.73
BAL 83 85 84 0.55 0.54 0.54
RQrank 88 89 88 0.70 0.66 0.66
RQnid 95 89 90 0.90 0.72 0.72

500 BALadj 92 89 90 0.45 0.44 0.44
BAL 83 81 83 0.34 0.34 0.34
RQrank 90 88 89 0.43 0.42 0.41
RQnid 93 89 88 0.48 0.43 0.43

3 0.9 200 BALadj 93 89 93 0.76 0.74 0.55

BAL 90 82 91 0.66 0.55 0.47
RQrank 87 87 89 0.69 0.70 0.50
RQnid 88 83 86 0.73 0.66 0.49

500 BALadj 91 88 92 0.46 0.46 0.33
BAL 88 80 90 0.41 0.35 0.29
RQrank 88 88 90 0.43 0.44 0.31
RQnid 90 85 89 0.45 0.44 0.31

ECP, empirical coverage probabilities; EML, empirical mean lengths.
The notations follow Table 1.

Table 3. Empirical coverage probabilities and empirical mean lengths for confidence
intervals with nominal level 90% for Case 4 at � D 0:5. The standard errors for
EML are in the range of 0.004 to 0.008 in this table.

100�ECP EML 100�ECP EML

Method a.�/ b.�/ a.�/ b.�/ a.�/ b.�/ a.�/ b.�/

n D 200 n D 500

BPadj 91 90 0.71 1.16 90 91 0.44 0.72
BP 86 78 0.56 0.78 84 76 0.35 0.49
POWELL 85 87 0.59 1.04 84 85 0.36 0.63

ECP, empirical coverage probability; EML, empirical mean length; BPadj and BP,
the Bayesian quantile regression method using Powell’s objective function with and
without posterior variance adjustment, respectively; POWELL, the bootstrap-based
interval estimates of Powell (1986).

(denoted as POWELL in the tables) have undercoverage even with the bootstrap method. Part
of the issues with POWELL is that we might not find the right solution through optimisation
for every bootstrapped data set. Our empirical work shows that the Bayesian quantile regres-
sion method with the proposed posterior variance adjustment is attractive for inference when
Powell’s estimator is used for censored data.

4.3 Analysis of a Women’s Labour Force Data

We demonstrate the effect of the proposed posterior variance adjustment on a women’s labour
force participation data, which was analysed in Mroz (1987) and Yu & Stander (2007). We
aim to investigate the relationship between women’s working hours, annual non-wife household
income (i.e. the household income excluding the wife’s labour income) and education. The
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Table 4. Empirical coverage probabilities and empirical mean lengths for
confidence intervals with nominal level 90% for Case 5. For � D 0:25, the
standard errors for EML are around 0.005 with a.�/ and b1.�/ and are around
0.015 with b2.�/; for � D 0:5, they are around 0.003 with a.�/ and b1.�/
and are around 0.01 with b2.�/.

100�ECP EML

� Method a.�/ b1.�/ b2.�/ a.�/ b1.�/ b2.�/

0.25 BPadj 90 86 88 0.35 0.47 1.64
BP 80 58 59 0.25 0.22 0.80
POWELL 89 86 86 0.34 0.45 1.37

0.5 BPadj 90 89 89 0.31 0.40 1.07
BP 78 61 66 0.21 0.19 0.58
POWELL 90 89 83 0.31 0.39 0.87

ECP, empirical coverage probabilities; EML, empirical mean lengths.
The notations follow Table 3.

observed outcome variable Yhrs is the wife’s hours of work outside home in 1975, and the two
covariates are xinc (non-wife household income with units $1000) and xedu (wife’s educational
attainment in years). The data set contains a total of 753 observations, among which 325 (43%)
have zero work hours and thus are treated as left censored to fit a linear quantile model. The
sample means of xinc and xedu are 20.43 and 12.29, respectively. For easier interpretation, we
centre both covariates at zero by subtracting their means before carrying out the data analysis.

We consider the following linear quantile regression model:

Q� .Thrs j xinc; xedu/ D a.�/C b1.�/xinc C b2.�/xedu;

where Thrs is women’s latent total working hours with Yhrs D max.Thrs; 0/ with left censoring.
We focus on quantiles � D 0:5; 0:75 and 0.9.

The goodness-of-fit test in Wang (2008) suggests that the linear quantile functions are appro-
priate at the selected quantile levels. We used the Bayesian estimates based on the AL likelihood
with fixed � and find that the unadjusted posterior intervals depend significantly on the value
of � (Figure 1). In fact, when � D 1 as used in Yu & Stander (2007), the 95% intervals on the
quantile coefficients are remarkably narrow, but they cannot be taken seriously. With the pro-
posed posterior variance adjustments, the intervals are rather stable across different values of � .
Figure 2 shows the interval estimates of b2.�/ from the Bayesian methods with a pre-estimated
� D 429, that is, log � D 6:06, as suggested in Remark 1. The results show that education is
not statistically significant at � D 0:9. In this example, the Bayesian intervals after variance
adjustments are not far from the frequentist intervals from bootstrapping Powell’s estimate.

5 Discussion

The specification of the AL working likelihood relies on the value of the scale parameter
� . In this paper, we consider a fixed � for easier computation, instead of involving it in the
MCMC iteration, because the estimation and inference of � itself is not of interest in a quantile
regression model. It is shown in the paper that the posterior inference with a fixed � without
any variance adjustment can be misleading. However, when the proposed adjustment is used,
the posterior inference is asymptotically independent of the choice of � . In finite samples, a
reasonably chosen � that adapts to the scale of the residuals could help the mixing property of
the MCMC chain.

The Bayesian quantile regression methods are especially useful when the quantile loss func-
tion is non-convex, as in the case of censored data. The basic idea of posterior variance
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Figure 1. Ninety-five percent confidence intervals for the coefficients of xedu at � D 0:5 as � varies in BP, the Bayesian
quantile regression method using Powell’s objective function. The dashed lines correspond to the 95% confidence intervals
from BPadj with posterior variance adjustment; the solid lines correspond to the 95% confidence intervals from BP without
posterior variance adjustment.

Figure 2. The coefficient estimates and 95% confidence intervals of xedu at � D 0:5; 0:75; 0:9. The black circles and solid
lines represent the point estimates and the interval estimates from Powell (1986); the blue triangles and dashed lines represent
the estimates from the Bayesian method with posterior adjustment.

adjustments can be attributed to the work of Chernozhukov & Hong (2003), but we feel that the
need for adjustments is not widely appreciated yet. We hope that this article helps promote the
appropriate use of posterior inference in quantile regression.

When multiple quantiles are of interest, the proposed adjustment to posterior variances can
be extended to the Bayesian quantile regression with an AL likelihood employing a combined
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objective function over multiple quantiles, such as the objective function in the composite
quantile regression of Zou & Yuan (2008). The proposed adjustment can also be extended to
Bayesian quantile regression with longitudinal data or random censored data. Future research
is needed in those directions.
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Appendix

We provide the proofs for the quadratic expansions in (3.1) and (3.5). With these expansions,
the validity of the posterior inference with the proposed variance correction can be shown by
following Theorem 4 of Chernozhukov & Hong (2003).

A.1 Proof for (3.1)

The following assumptions are made.

A1. The conditional distribution FYi .�jxi / is absolutely continuous with continuous densities
fYi .�jxi / uniformly bounded away from 0 and 1 at the points Q� .Y jxi / D x>i ˇ0, for
i D 1; : : : ; n:

A2. There exist positive definite matrices D0 and D1 such that

limn!1n
�1

nX
iD1

xx>i D D0; limn!1n
�1

nX
iD1

fYi
�
x>i ˇ0jxi

�
xix
>
i D D1:

In addition, maxiD1;:::;nn
�1=2jjxi jj ! 0:

Define ı D n1=2.ˇ � ˇ0/, and

Zn.ı/ D

nX
iD1

®
��
�
yi � x>i ˇ

�
� ��

�
yi � x>i ˇ0

�¯
;

Following Knight (1998), we have

Zn.ı/ D Z1n.ı/CZ2n.ı/;

where Z1n.ı/ D �n
�1=2

nX
iD1

x>i ı
�
�
yi � x>i ˇ0

�
;
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and Z2n.ı/ D

nX
iD1

Z2ni .ı/ with Z2ni .ı/ D

Z �ni

0

�
1¹yi�x>

i
ˇ0�sº

� 1¹yi�x>
i
ˇ0�0º

�
ds;

and �ni D n�1=2x>i ı. For jjˇ � ˇ0jj D O.n
�1=2/, from the Bahadur representation in Chapter

4.3 of Koenker (2005), that is,

n1=2. Ǒ .�/ � ˇ0/ D D
�1
1 n�1=2

nX
iD1

xi
�
�
yi � x>i ˇ0

�
CO

�
n�1=4.log logn/3=4

�
;

we have Z1n.ı/ D �n
1=2. Ǒ .�/ � ˇ0/

>D1ı C op.1/:
For Z2n.ı/, following the proof of Theorem 4.1 in Koenker (2005), we first have

E.Z2n.ı/jx/ D .2n/
�1

nX
iD1

fYi
�
x>i ˇ0jxi

�
ı>xix

>
i ı C op.1/ D

1

2
ı>D1ı C op.1/:

Because

var.Z2ni .ı/jxi / � E
®
Z2ni .ı/

2
¯
� max

1�i�n
¹Z2ni .ı/ºE ¹jZ2ni .ı/jº� max

1�i�n
¹vniºE ¹Z2ni .ı/º ;

we have

var.Z2n.ı/jx/ � n
�1=2 max

1�i�n
¹jxiıjºE.Z2n.ı/jx/! 0

with jjıjj D O.1/ under condition A2. Therefore, we have

Z2n.ı/ D
1

2
ı>D1ı C op.1/;

and consequently,

Zn.ı/ D �n
1=2
°
Ǒ .�/ � ˇ0

±>
D1ı C

1

2
ı>D1ı C op.1/

D
n

2
.ˇ � Ǒ .�//>D1.ˇ � Ǒ .�//C Cn C op.1/;

where Cn D �
n
2 .
Ǒ .�/ � ˇ0/

>D1. Ǒ .�/ � ˇ0/. Because of
Pn
iD1 �� .yi � x>i ˇ/ D Zn.ı/ CPn

iD1 �� .yi � x>i ˇ0/, we have proved (3.1).

5.1 Proof for (3.5)

Define ı D n1=2.ˇ � ˇ0/, ui D yi �max¹x>i ˇ0; 0º, vni D max
�
x>i ˇ; 0

�
�max.x>i ˇ0; 0/,

and

Zn.ı/ D

nX
iD1

®
��
�
yi �max

®
x>i ˇ; 0

¯�
� ��

�
yi �max

®
x>i ˇ0; 0

¯�¯

D

nX
iD1

¹�� .ui � vni / � �� .ui /º :
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Following Knight (1998), we have Zn.ı/ D Z1n.ı/CZ2n.ı/, where

Z1n.ı/ D �

nX
iD1

vni
� .ui /; and Z2n.ı/ D

nX
iD1

Z vni

0
ŒI.ui � s/ � I.ui � 0/� ds:

By the definition of vni , we have

Z1n.ı/ D �n
�1=2

´
nX
iD1

x>i ı
� .ui /I.x
>
i ˇ > 0; x>i ˇ0 > 0/

�

nX
iD1

x>i ˇ
� .ui /I.x
>
i ˇ>0; x>i ˇ0 � 0/C

nX
iD1

x>i ˇ0
� .ui /I.x
>
i ˇ�0; x>i ˇ0>0/

μ
:

With bounded xi , and jjˇ � ˇ0jj D O.n
�1=2/, we have

jjn�1=2
nX
iD1

x>i ı
� .ui /
�
I
�
x>i ˇ > 0; x>i ˇ0 > 0

�
� I

�
x>i ˇ0 > 0

��
jj

� jjn�1=2
nX
iD1

x>i ı
� .ui /I
�
x>i ˇ � 0; x>i ˇ0 > 0

�
jj:

Because of Assumption R.2. in Powell (1986), E
�
I
�
x>i ˇ � 0; x>i ˇ0 > 0

��
can be controlled

by O.jjˇ � ˇ0jj/. Noting that E
�

� .yi � x>i ˇ0/I

�
x>i ˇ0 > 0

��
D 0, we have

jjn�1=2
nX
iD1

x>i ı
� .ui /I
�
x>i ˇ � 0; x>i ˇ0 > 0

�
jj D op.1/;

which leads to

�n�1=2
nX
iD1

x>i ı
� .ui /I
�
x>i ˇ > 0; x>i ˇ0 > 0

�
D�n�1=2

nX
iD1

x>i ı
� .ui /I
�
x>i ˇ0 > 0

�
Cop.1/:

The last two terms inZ1n.ı/ can be shown of order op.1/ noting that when x>i ˇ and x>i ˇ0 take
different signs, their magnitudes are both controlled by jjn�1=2x>i ıjj.

Therefore, we have

Z1n.ı/ D �n
�1=2

nX
iD1

x>i ı
� .ui /I.x
>
i ˇ0 > 0/C op.1/:

From (3.5) in Powell (1986),

Z1n.ı/ D n
1=2.ˇ � Ǒ .�//>D1ı C op.1/: (A.1)

In addition, we can partition Z2n.ı/ as
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Z2n.ı/ D

nX
iD1

I.x>i ˇ > 0; x>i ˇ0 > 0/
Z n�1=2x>

i
ı

0
ŒI.ui � s/ � I.ui � 0/� ds

C

nX
iD1

I.x>i ˇ > 0; x>i ˇ0 � 0/
Z x>

i
ˇ

0
ŒI.ui � s/ � I.ui � 0/� ds

C

nX
iD1

I.x>i ˇ � 0; x>i ˇ0 > 0/
Z �x>

i
ˇ0

0
ŒI.ui � s/ � I.ui � 0/� ds:

Following the same steps as in Section 5, we have

E

´
nX
iD1

I
�
x>i ˇ > 0; x>i ˇ0 > 0

� Z n�1=2x>
i
ı

0
ŒI.ui � s/ � I.ui � 0/� ds

μ

D
1

2n

nX
iD1

°
I
�
x>i ˇ > 0; x>i ˇ0 > 0

�
fYi .ui jxi /ı

>xix
>
i ı
±
C op.1/

D
1

2n

nX
iD1

°
I
�
x>i ˇ0 > 0

�
fYi .ui jxi /ı

>xix
>
i ı
±
C op.1/:

Note that under the Assumption R.2 in Powell (1986), E
�
I.x>i ˇ > 0; x>i ˇ � 0/

�
and

E
�
I.x>i ˇ > 0; x>i ˇ � 0/

�
can both be controlled byO.jjˇ�ˇ0jj/, and the expectations of the

last two terms in Z2n.ı/ are of op.1/ order. Using similar arguments as in Section 5, we can
show that

var.Z2n.ı/jxi / � max
iD1;:::;n

¹vniºE¹Z2n.ı/jxº ! 0:

Therefore, we have

Z2n.ı/ D
1

2
ı>D1ı C op.1/;

which together with (A.1) proves the quadratic expansion in (3.5).
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