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The authors are developing a computerized pulmonary vessel segmentation method for a computer-
aided pulmonary embolism �PE� detection system on computed tomographic pulmonary angiogra-
phy �CTPA� images. Because PE only occurs inside pulmonary arteries, an automatic and accurate
segmentation of the pulmonary vessels in 3D CTPA images is an essential step for the PE CAD
system. To segment the pulmonary vessels within the lung, the lung regions are first extracted using
expectation-maximization �EM� analysis and morphological operations. The authors developed a
3D multiscale filtering technique to enhance the pulmonary vascular structures based on the analy-
sis of eigenvalues of the Hessian matrix at multiple scales. A new response function of the filter was
designed to enhance all vascular structures including the vessel bifurcations and suppress nonvessel
structures such as the lymphoid tissues surrounding the vessels. An EM estimation is then used to
segment the vascular structures by extracting the high response voxels at each scale. The vessel tree
is finally reconstructed by integrating the segmented vessels at all scales based on a “connected
component” analysis. Two CTPA cases containing PEs were used to evaluate the performance of
the system. One of these two cases also contained pleural effusion disease. Two experienced
thoracic radiologists provided the gold standard of pulmonary vessels including both arteries and
veins by manually tracking the arterial tree and marking the center of the vessels using a computer
graphical user interface. The accuracy of vessel tree segmentation was evaluated by the percentage
of the “gold standard” vessel center points overlapping with the segmented vessels. The results
show that 96.2% �2398/2494� and 96.3% �1910/1984� of the manually marked center points in the
arteries overlapped with segmented vessels for the case without and with other lung diseases. For
the manually marked center points in all vessels including arteries and veins, the segmentation
accuracy are 97.0% �4546/4689� and 93.8% �4439/4732� for the cases without and with other lung
diseases, respectively. Because of the lack of ground truth for the vessels, in addition to quantitative
evaluation of the vessel segmentation performance, visual inspection was conducted to evaluate the
segmentation. The results demonstrate that vessel segmentation using our method can extract the
pulmonary vessels accurately and is not degraded by PE occlusion to the vessels in these test
cases. © 2007 American Association of Physicists in Medicine. �DOI: 10.1118/1.2804558�
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I. INTRODUCTION

Vascular diseases are very common, especially as people age.
Most vascular diseases are caused by conditions that clog or
weaken blood vessels or damage valves that control the flow
of blood in and out of the veins. Pulmonary embolism �PE�
is a common, potentially fatal condition in all age groups
associated with significant morbidity and mortality in un-
treated patients. Prompt and accurate diagnosis of PE greatly
influences patient outcome.1–3 Unfortunately, the clinical di-
agnosis of PE is difficult because symptoms are often vague
and nonspecific, leading to misdiagnosis. Computed tomog-
raphic pulmonary angiography �CTPA� is an effective means
for clinical diagnosis of PE.4–11 However, each CT scan for
PE produces an average of about 300 axial images with a
range of 200–600. Multiplanar reconstruction viewing of
vessels further increases the number of images to be read.

Interpretation of a CT study demands extensive reading time
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from a radiologist who has to visually track each vessel,
distinguish arteries from veins and bronchi, adjust window
and level settings, and inspect each artery for possible pul-
monary emboli �PEi� on a workstation. The advent of mul-
tidetector CT offers the possibility of detecting subtle PEi in
subsegmental arteries but it also makes CTPA interpretation
an even more demanding task. It is difficult to review small
subsegmental vessels not only because of the large number
of these vessels, but also because of their lower conspicuity
due to partial volume effects. False negatives �missed diag-
nosis� may occur due to the complexity of the images and the
large number of vessels to be tracked in each case.
Computer-aided diagnosis �CAD� may assist radiologists in
PE detection by reducing the chance of missing PEi. Using a
computer to automatically detect PE on CTPA images is a
new and challenging task. With advanced computer vision

techniques, the computer is expected to be able to automati-
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cally trace the pulmonary vessels, distinguish arteries from
veins, detect suspicious PE locations by searching along the
arteries, and finally alert the radiologists to the regions of
interest �ROI� for suspicious PEi.

Because PEi only occurs inside pulmonary vessels, seg-
mentation and tracking of vessels constitute the fundamental
steps to limit the search space for identifying ROIs that con-
tain suspicious PEi. Many of the published vessel segmenta-
tion and tracking methods provided accurate results in 2D or
3D images for vascular structures in the retina, brain, liver,
etc. However, few studies have been conducted for segmen-
tation, tracking, and reconstruction of the pulmonary vessel
tree on CTPA images because the pulmonary vessels are
more complicated compared to the vessels in other parts of
the body in several aspects: widely distributed CT values,
large variations of vessel sizes ranging from 1 to 20 mm, and
the complicated branching structures.

Multiscale filtering has been used for the segmentation of
curvilinear or tubular structures in 3D medical images12–19

and share a common approach: the images are convolved
with 3D Gaussian filters at multiple scales and the eigenval-
ues of the Hessian matrix at each voxel are analyzed in terms
of a response function to determine the shape of the local
structures in the image. The eigenvalues for the voxels that
correspond to a linear structure would be different from
those that correspond to a planar structure, blob, noise, or no
structure. The response of the enhancement filter reaches its
maximum when the scale of the filter matches the size of the
local structures. The local structures can then be extracted
using the local maxima.16 Other efforts in vessel segmenta-
tion and tracking include hysteresis thresholding,20 region
growing,6,21 statistical modeling, and matching methods22,23

using a priori knowledge provided by radiologists, direction
field based segmentation, and detection,24 and deformable
model approaches25,26 in which an initial surface estimate is
deformed iteratively to optimize an energy criterion so that
the model boundary is extended to the vessel wall as a so-
called minimal surface. However, for the PE diagnosis task,
it is difficult to track or segment vessel structures in 3D
volume using conventional methods because pulmonary ves-
sels cannot be accurately segmented and continuously
tracked if they are largely or totally obstructed by PE. The
problem becomes even more difficult if the PE appears to be
connected to its surrounding lymphoid tissues due to partial
volume effect, which can easily cause leaking to the soft
tissues during vessel segmentation.

We previously developed a vessel tracking method using
multi-level expectation-maximization �EM� estimation for
segmentation of the vessel in local volumes.27,28 In this study
we further improve the segmentation by developing an en-
hancement method based on the eigenvalues of the Hessian
matrix at multiple scales. A new response function was de-
signed specifically for the pulmonary vessel tracking prob-
lem. The effectiveness of the method was evaluated by com-
parison with vascular trees manually tracked by experienced

radiologists.
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II. MATERIALS AND METHODS

II.A. Materials

CTPA cases from patient files at the University of Michi-
gan were collected retrospectively without identification with
the approval of our Institutional Review Board. Two cases
were used as a test set in this study. Case 1 �67 years old
male� was acquired with a 16-slice GE LightSpeed16 CT
scanner, 140 kVp, 370 mAs, 1.25 mm collimation, and re-
constructed at 1.25 mm slice thickness. Case 2 �30 years old
female� was acquired with a four-slice GE LightSpeed Qx/i
CT scanner, 120 kVp, 370 mAs, 1.25 mm collimation, and
reconstructed at 1.00 mm slice thickness. The exams were
performed with injection of 135 cm3 of low osmolar non-
ionic contrast �300 mg/cm3 of iodine� at 4 ml/s.

The two CTPA cases were diagnosed as positive PE cases
during the patients’ clinical care. Two experienced thoracic
radiologists identified PEs at multiple levels of the pulmo-
nary arteries. The percentages of PE occlusion in the vessels
ranged from 20% to 100%. Both cases were judged by the
radiologists to have “good contrast” and minimal motion ar-
tifacts, but case 2 contained pleural effusion disease. The
radiologists �S.P. and P.C.� provided gold standards for the
pulmonary vessels including arteries and veins by manually
tracking the vessel tree and marking the center of the vessels
using a graphical user interface �GUI� developed in our labo-
ratory, as shown in Fig. 1. On the GUI, the sagittal view,
axial view, and coronal view of the CTPA scans correspond-
ing to the region where a vessel is being tracked are dis-
played on a monitor. The GUI has functions allowing the
user to cine-page through the CT slices, scroll in and out of
individual vessels, adjust window setting, and zoom to im-
prove visualization. The user can manually track the vessel
trees by marking the vessel center points in any one of the
three views at each vessel branch and the center point loca-
tion will automatically propagate to all three views. Using
the GUI, the radiologists marked the approximate centerline
for each branch, identified it as an artery or a vein, and la-
beled the anatomical level of the arteries �pulmonary trunk,
main, lobar, segmental, and subsegmental�. A total of 4689
and 4732 vessel center points were marked by radiologists,
respectively, for cases 1 and 2. Of the 4689 points in case 1,
2494 were marked as located in arteries. Of the 4732 points
in case 2, 1984 were marked as located in arteries. For case
2, they were not able to track the vessels into the denser part
of the small area of pleural effusion in the right lower lobe.
The two CTPA cases with radiologist-provided gold stan-
dards were used as an independent test set to evaluate the
performance of the vessel tree segmentation algorithm.

In addition to the two test cases, one CTPA patient case
was selected from the database and used as a training case
for algorithm development. Because manual tracking of the
vessel tree is very time consuming, the radiologists did not
provide manually tracked vessel tree for this case. The train-
ing process in our algorithm development was based on vi-
sual inspection of the vessel segmentation result. Visual in-
spection is important for evaluating the segmentation of

small vessels because many of those may be smaller than the
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sizes that the radiologists can track �see also Secs. III and
IV�. Although only one training case was used, each CTPA
case contained numerous vessels of similar sizes and differ-
ent sizes so that vessel segmentation could be trained with
effectively a large sample of vessels.

II.B. Methods

II.B.1. Vascular structure enhancement

Multiscale 3D filters have been used in several studies to
enhance local structures, such as tissue boundaries, cortices,
vessels, and nodules, in medical volumetric data.12–18 We
found that the conventional multiscale 3D filters are limited
to specific structures of interest because their filter response
functions are defined explicitly. For example, a filter de-
signed to enhance tubular structures cannot enhance the ves-
sel bifurcation which forms a blob-like structure when the
vessel splits into two or more branches, thus causing a gap
between the vessel branches. Similarly, a filter designed to
enhance blob-like structure cannot enhance tubular struc-
tures. In this study, we therefore designed a new multiscale

FIG. 1. A screen shot of our computer graphic use
3D filter using the eigenvalues of the Hessian matrix to en-
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hance all vascular structures including vessel bifurcations
and to suppress nonvessel structures such as the lymphoid
tissue surrounding the vessels.

Let I�r�� be a 3D image with voxels at points r�= �x ,y ,z�,
its Taylor series approximation up to second order for three
variables about a point r�=a� is

I�r�� � I�a�� + �I�a��T�r� − a�� +
1

2
�r� − a��T�2I�a���r� − a�� , �1�

where �I�a�� is the gradient and �2I�a�� is the Hessian matrix
H at point a� , given by the second-order partial derivatives of
the image I�r��,

�2I�r�� = �Ixx�r�� Ixy�r�� Ixz�r��
Iyx�r�� Iyy�r�� Iyz�r��
Izx�r�� Izy�r�� Izz�r��

� . �2�

To enhance local structures of variable sizes, the partial
second derivatives of I�r�� in the Hessian matrix can be cal-
culated by convolving I�r�� with the partial second derivatives
of Gaussian filters with variable standard deviation �, for

rface for manually tracking and marking vessels.
r inte
example,
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Ixx�r�;�� = � �2G�r�;��
�x2 	 * I�r�� . �3�

The Hessian matrix H describes the second-order local
intensity variations around each point of a 3D structure. Let
the eigenvalues of H be �1, �2, �3 �
�1
� 
�2
� 
�3
�, and
their corresponding eigenvectors be e1, e2, e3, respectively.
The eigenvector e1 corresponding to the largest eigenvalue
�1 represents the direction along which the second derivative
is maximum and �1 gives the maximum second derivative
value. For an ideal tubular structure in 3D volume, as shown
in Fig. 2 and summarized in Table I, the voxels at the cen-
terline of the tube will be signaled by �3 being approximately
zero and �1 and �2 of larger magnitudes. Similarly, for an
ideal sphere, the three eigenvalues �1, �2, �3 will be equal at
the center of the sphere. Analyzing the second derivatives
using eigenvalues thus has an intuitive explanation that the

FIG. 2. An ideal tubular structure and its eigenvectors.
structures can be approximated as
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three eigenvalues play an important role in discriminating
structures of different shapes. However, the studies of Sato et
al.,29 Lorenz et al.,15 and Li et al.17 only make use of two
eigenvalues in their 3D line filters for vessel enhancement.
Based on an analysis of the three eigenvalues, Frangi et al.14

combined three measurements to define a vesselness re-
sponse function for vessel enhancement. Two measurements
were designed as two geometric ratios, one for the discrimi-
nation between a blob-like structure and a tubular or plate-
like structure, and the other for the discrimination between a
tubular and a plate-like structure. The third measurement was
designed to measure the contrast of the structures. Three pa-
rameters have to be trained to control the sensitivity of the
line filter to the three measurements in their study.

Based on the characteristics of the three eigenvalues of
the Hessian matrix, we developed a new multiscale response
function R�r� ;�s ;�1 ,�2 ,�3� to enhance all vascular structures
including vessel bifurcations and to suppress nonvessel
structures such as the lymphoid tissue surrounding the
vessels,

TABLE I. Characteristics of the eigenvalues of the Hessian matrix corre-
sponding to structures of different shapes in 3D volume.

Tubular structure Blob-like �sphere� structure Plate-like structure


�3�r�
�0 
�3�r�
�
�2�r�
�
�1�r�
 
�2�r�
�
�3�r�
�0

�1�r�
�
�2�r�
� 
�3�r�
 
�3�r�
�0 
�1�r�
� 
�2�r�

R�r�;�s;�1,�2,�3� = � �
�1
 + 
�2
�
2

exp�− � 
�1


�1

2 + �2
2 + �3

2
− c�	 , �1,�2,�3 � 0

0, otherwise
� , �4�
where �1, �2, �3 �
�1
� 
�2
� 
�3
� are Hessian eigenvalues
at voxel r�= �x ,y ,z� in a 3D image, �s is the standard devia-
tion of the Gaussian kernel at scale s, and c is a constant. The
negativity of the eigenvalues is due to the fact that the vas-
cular structures are brighter than the background in the
CTPA images and occupy a relatively small volume.

The constant c plays an important role in enhancement of
both the tubular and the blob-like structures in Eq. �4�. As
summarized in Table I, for a branch of the vessels that has
tubular structure, 
�1
�
�2
, 
�1
� 
�3
, and 
�3
�0. The re-
sponse RC of tubular structures can be approximated as

RC �
2
�1


2
exp�− � 
�1



2�1
2

− c�	 = �
�1
 , �5�

where �=exp�−
1/
2−c
�.
Similarly, for the vessel bifurcation which forms a blob-

like structure when the vessel splits into two or more
branches, 
�1
�
�2
�
�3
. The response RB of blob-like
RB �
2
�1


2
exp�− � 
�1



3�1
2

− c�	 = �
�1
 , �6�

where �=exp�−
1/
3−c
�.
The lymphoid tissues surrounding the pulmonary vessels

which generally are plate-like structures with 
�1
� 
�2
, and

�2
�
�3
�0,

RP �

�1

2

exp�− � 
�1


�1

2
− c�	 = �
�1
 �7�

where �=1/2 exp�−
1−c
�.
The largest eigenvalue 
�1
 of a plate-like structure is usu-

ally much smaller than the largest eigenvalue of a tubular or
a blob-like structure at the same scale if the size of the local
structure of the lymphoid tissue is larger than that of vascular
structure, the response function RP is therefore even smaller.

The value of � is at its maximum of 1 when c=1/
2
=0.7071 and � is at its maximum of 1 when c=1/
3

=0.57735. The maximum of � is only 0.5 when c=1. To
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maximize the differences of RC and RB from RP, the value of
c should be set to between 0.57 and 0.71. For example, if c is
chosen to be 0.64, both RC and RB can be as high as 0.94
�1

and RP will be low at 0.35
�1
. Considering the real situation
in medical images that vascular structures are not an ideal
cylinder or sphere, c was set to 0.7 in our study.

II.B.2. Vessel segmentation

As shown in Fig. 3, the voxel value histogram of a typical
CTPA image slice of which the voxel values were trans-
formed to 0–4095 to facilitate image processing. The air re-
gion outside the patient body was excluded by thresholding
at a voxel value of 50. The histogram exhibits several peaks
that generally correspond to the lung region �P1�, the chest
wall �P2�, the soft tissue region �P3�, and vessels and bones
�P4�. To separate these regions, in our previous study,28 a 3D
multistage adaptive segmentation �MAS� method was devel-
oped to cluster voxels into soft tissue, chest wall, lung re-
gion, and vascular structures based on EM analysis. In this
study, the MAS method was modified into two EM segmen-
tation steps, one for extracting the volume of lung region and
the other for segmenting pulmonary vascular structures on
vessel enhanced images.

II.B.2.a. EM segmentation method EM was proposed as
an algorithm to be used for estimation of missing model
parameters.30 It can also be defined as a probabilistic coun-
terpart to fuzzy clustering. Image segmentation can be refor-
mulated as a “missing data” problem if we assume each im-
age pixel is produced by a probability density associated
with one of the segments.31 Assuming that the pixel values
associated with a given segment i has a probability density
p�
x
�i�, where �i is the set of parameters for the density
function associated with the ith segment. Using the total
probability theorem, the probability density for a pixel is

p�x� = �
i=1

S

p�
x
�i�	i, �8�

where S is the number of segments and 	i is the prior prob-
ability for the ith segment. Given a set of image pixels X
= �xk ,k=1, . . . ,n�, the segmentation task is the inverse prob-
lem of estimating the parameter set 
= ��i , i=1, . . . ,S�, 	i

and the labels for all the pixels. Assuming that the pixel

values are independent, the parameter set 
 of the density
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functions can be estimated by maximizing the likelihood of
the data set written as

p�
X

� = �
k=1

n

�
i=1

S

p�
xk
�i�	i, �9�

using EM iteration as follows. Each image segment is as-
sumed to be characterized by a Gaussian distribution
p�
x
�i�−G��i ,�i�. At the E step, EM computes the expected
value �of the complete data� of the probability that the kth
pixel comes from the ith segmented component as

p�
i
xk,
� =
	ip�
xk
�i�

�
j=1

S

	 jp�
xk
� j�

, �10�

and at the M step, EM maximizes the likelihood of the com-
plete data to estimate 
,

	i =
1

n
�
k=1

n

p�
i
xk,
� ,

�i =
1

n

�
k=1

n

xkp�
i
xk,
�

	i
,

�i
2 =

1

n

�
k=1

n

p�
i
xk,
��xk − �i�2

	i
. �11�

The EM algorithm iterates between these two steps until it
reaches convergence.

The segment labels Lk for all the pixels X= �xk ,k
=1, . . . ,n� can be estimated using the method of maximum a
posterior, given the density parameter set 
,

Lk = argmax
i

p�
i
xk,
�, ∀ xk. �12�

In our study, we assumed that the number of components
�or segments, classes� was known, based on a priori knowl-
edge of the regions being segmented, which was used to set
the number of Gaussians in the EM segmentation. Gaussians

FIG. 3. �a�: Typical CT slice image.
�b�: Histogram of thoracic region ex-
cluding air region outside the patient
body �CT value was converted to gray
level ranged from 0 to 4095�. P1: lung
regions, P2, P3: chest wall and soft tis-
sue, and P4: vascular structures and
bones.
with equal variances was evenly placed across the histogram
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of the image as the initial estimates. The EM segmentation
algorithm iterated until convergence was reached.

II.B.2.b. Lung region segmentation In our vessel seg-
mentation scheme, the lung region was first extracted to re-
duce computation time and avoid the effects caused by other
nonvascular structures such as ribs, motion artifacts of the
heart, and the edges of the heart and chest walls. The EM
segmentation method was applied to the volume of the scan
within the patient body �Fig. 3� to extract lung regions as-
suming there were two classes �S=2� in the volume: lung
regions �P1� as class 1, and other structures not belonging to
class 1 as class 2. A 3D rolling ball method32 employing
morphological “closing” operation �dilation followed by ero-
sion� was used to “fill” in the gaps along the boundary of the
lung region and “holes” inside the lung regions. Figure 4
shows an example of 3D volume rendering of the segmented
left and right lungs. The surfaces of the segmented lung re-
gions formed the boundaries of the volumes for subsequent
vessel segmentation. The chest wall, bones, and mediastinum
are thus excluded.

II.B.2.c. Integration of vessel segmentation at multiple
scales The pulmonary vascular structures within the lung
regions have sizes over a wide range. To adapt the 3D en-
hancement filter response to cover the various sizes, a widely
used method to integrate multiscale responses is to calculate
the second-order partial derivatives of the 3D image I�r�� in
the Hessian matrix by convolving I�r�� with the second-order
partial derivatives of Gaussians having variable standard
deviations.14,15,33,34 By adjusting the standard deviations of
the Gaussian kernels, the local structures with a specific
range of sizes can be enhanced by combining the local
maxima of the filter response at multiple scales.

In order to have a fair comparison of the responses among

FIG. 4. Example of segmented left and right lung volumes.
multiple scales, the filter responses have to be first
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normalized.35 The maximum response among the multiple
scales can then be selected as the optimal filter response that
matches the vessel size. To achieve this, a normalization pa-
rameter � can be incorporated in Eq. �2� when calculating the
Hessian matrix H of image I�r� at scale s and Eq. �2� can be
rewritten as

�2I�r�,s� = s��Ixx�r�� Ixy�r�� Ixz�r��
Iyx�r�� Iyy�r�� Iyz�r��
Izx�r�� Izy�r�� Izz�r��

� . �13�

Similarly, the second-order partial derivatives can be cal-
culated as a convolution with the corresponding derivatives
of Gaussians, for example,

Ixx�r�;s� = s�� �2G�r�;s�
�x2 	 * I�r�� . �14�

The normalization factors were determined in previous
studies by using Gaussian-shape models for the ideal step
edge, plate, line, and blob structures.12,17,29 However, the
normalization factors estimated from the idealized models of
the structures do not work well for real structures in clinical
images according to our experimental observations.

In this study, we developed a multiscale segmentation
scheme to integrate the segmented vascular structures at mul-
tiple scales. This scheme was based on the second EM seg-
mentation method used in our previous multistage adaptive
segmentation technique.28 If a given local volume contains
some structures, the response function in Eq. �4� may en-
hance the structures to different degrees at different scales.
The voxels with a high response value indicate that there is
an enhanced vessel and its size matches the given filter scale,
whereas the voxels with a low response value may belong to
a suppressed structure such as lymphoid tissue or a vessel of
a size that does not match the filter size. The EM segmenta-
tion algorithm is then applied to the volume containing the
response values to segment the vessels by extracting the high
response voxels and setting all low response voxels to zero at
this single scale. To integrate the segmented vessels at all
scales, the simplest way is to unite all the segmented voxels
on all scales. However, this will lose the vessel size informa-
tion which is useful in the analysis of vessel structures for PE
detection and other applications. We therefore designed a
hierarchical integration scheme to combine the segmented
vessels at all scales and retain their size information. We
assume that the sizes of the largest and the smallest vessels
that are expected to be extracted correspond to filter scales
from SMax down to SMin�SMax�SMin�. The process of inte-
grating the segmented structures at multiple scales begins
from the maximum scale SMaxdown to the minimum scale
SMin. Let the EM segmented vascular structure at scale Sk,
�k=Min, . . . ,Max� be T�x ,y ,z ;Sk� at voxel �x, y, z� in the 3D
volume of response values. The segmented V�x ,y ,z� is inte-
grated recursively as:
�1� First segmentation at scale SMax:
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V�x,y,z� = �SMax, if T�x,y,z;SMax� � 0;

0, otherwise.
�

�2� For scale Sk=SMax−1 down to SMin.
If V�x ,y ,z�=0, then:

V�x,y,z� = �Sk, if T�x,y,z;Sk� � 0;

0, otherwise.
�

The voxels in the integrated volume will be the first non-
zero segmented voxels and labeled as the scale value Sk�k
=Min, . . . ,Max� when going from the larger segmented vas-
cular structure down to the smaller structure, thus recursively
incorporating the smaller segmented structures to the inte-
grated volume. In our study, this process is performed for 12
scales ��=1,2 , . . . ,12�, corresponding to a vessel size rang-

FIG. 5. Example of vessel segmentation at different scales. �a� CT volume
after lung region extraction—only one slice is shown from demonstration,
�b� output of the response function at scale corresponding to vessels of about
6 mm in diameter, �c� output of the response function at scale corresponding
to vessels of about 14 mm in diameter, �d� and �e� segmentation of �b� and
�c� using EM segmentation method, and �f� the vessel image after combin-
ing the segmentation results from all scales by the hierarchical integration
scheme, the gray values, ranging from 0 to 12, indicate that the voxels were
segmented at different scales that corresponded to different vessel sizes.

TABLE II. Segmentation sensitivity estimated as the percentage of gold stand
for the entire vascular tree including both arteries and veins.

Case 1

No. of gold standard center points TPs

Artery 2494 2398
Artery and vein 4689 4546
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ing approximately from 2 to 24 mm in diameter. The voxels
in the integrated volume thus have values V�x ,y ,z�� �0,12�.

III. RESULTS

Figure 5 shows an example of the responses of our 3D
multiscale vessel enhancement filter at different scales and
the segmented vessels and structures of different sizes. The
example demonstrates that the multiscale filter can selec-
tively enhance the vessels that match the given filter scale
and the enhanced vessels can be segmented correctly using
EM analysis algorithm.

Two CTPA cases were used to evaluate the performance
of the pulmonary vessel segmentation method. Using radi-
ologists’ manually marked vessel center points as the “gold
standard,” the accuracy of the vessel segmentation was esti-
mated as the percentage of gold standard points overlapping
with the computer segmented vessels. This performance met-
ric is used to estimate the completeness of a vessel tree re-
constructed from the segmented vessels and the percentage
of missed vessels �false negatives�, which are useful mea-
sures for the application of computer-aided PE or lung nod-
ule detection utilizing pulmonary vessel segmentation. Table
II summarizes the accuracy of the segmentation for the two
test cases. The results show that 96.2% �2398/2494� of the
manually marked center points in the arteries overlapped
with the segmented vessels for the case without and 96.3%
�1910/1984� for the case with other lung diseases. For the
manually marked center points in all vessels including arter-
ies and veins, the segmentation accuracy was 97.0% �4546/
4689� for the case without and 93.8% �4439/4732� for the
case with other lung diseases. Figure 6 shows the pulmonary
tree segmented by our vessel segmentation method for the
test case without pleural effusion disease.

For the clinical cases, there is no “ground truth” to prove
the presence or absence of the vessels and their sizes. In our
study, the manually marked center points of the vessels by
radiologists were used as the gold standard for quantitative
evaluation of the segmentation accuracy of the vessels. How-
ever, the improved quality of the pulmonary vessels in mul-
tidetector CT scans with thinner collimation �1.25 mm� can
allow visualization up to the seventh order vessels.10 It is a
demanding task for radiologists to mark the center points
manually along small peripheral vessels on images displayed
on a computer monitor. The radiologists decided to stop
marking the center points on the peripheral vessels at certain
levels, leaving some vessels not marked. Therefore, a visual

oints overlapping with the computer-segmented vessels for arteries only and

Case 2

tivity
�

No. of gold standard center points TPs Sensitivity
�%�
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inspection was performed to evaluate those vessels that were
not marked by radiologists. Figure 7�a� shows an example of
the manually marked vessel center points �black points� su-
perimposed on the computer segmented vessels. Figures 7�b�
and 7�c� show two enlarged local regions of the vessel tree
shown in Fig. 7�a�. It can be seen that many of the small
vessels not marked by radiologists were extracted by our
segmentation method. These small vessels were estimated to
be smaller than 2 mm in diameter by manual measurement
using an electronic ruler on the computer graphical user in-
terface. Figures 8�a� and 8�b� show the false negative vessel
center points that were missed by our vessel segmentation
method in the two test cases. Both Figs. 8�a� and 8�b� illus-
trate that all of the missed vessels �the gold standard vessels
that were not segmented� were subsegmental peripheral ves-
sels and they were also estimated to be smaller than 2 mm in
diameter by manual measurement on the CT scans using the
GUI. Some of the vessels in the lower right lobe of case 2
could not be segmented by our computer algorithm, due to
the area of pleural effusion. However, these vessels are not
shown as false negatives in Fig. 8�b� because they could not
be tracked by the radiologists either.

In our study, experienced radiologists identified 13 and 7
PEi, respectively, in arteries from lobar down to the subseg-
mental level in test cases 1 and 2 and the percentages of
occlusion in the arteries by the PEi ranged from 10% to
100%. The segmented arteries that were occluded by the PEi
were visually inspected and no significant degradations were
observed. Figure 9 shows examples of the vessel segmenta-
tion for arteries obstructed by PEi at different occlusion per-
centage to the vessels as estimated by our experienced radi-
ologists. Two different sequences of CT slices are shown in

FIG. 6. Example of computer segmented pulmonary vascular trees for the
test case without pleural effusion disease.
the first row and the third row. The second and the fourth
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row are segmented vessels using our automated vessel seg-
mentation method. Multiple PEis found by experienced radi-
ologists are indicated by arrows. In the first row, the upper
PE occluded the artery at 100% and the lower one occluded
about 40%. Both PE occluded arteries were surrounded by
lymphoid tissues and the upper PE was also connected to its
surrounding lymphoid tissues. The example shown in the
third row contained two PEi: 100% occlusion to the artery by
the upper PE and about 95% occlusion by the lower one. As
shown in the segmented vessel images, the vessels occluded
by the PEi can be segmented accurately, even if the vessels
were fully �100%� obstructed by PEi or surrounded by lym-
phoid tissues.

IV. DISCUSSION

Segmentation and reconstruction of the pulmonary vessel
tree on CTPA images is a challenging task. The pulmonary
vessels are complicated compared to the vessels in other
parts of the body because of their widely distributed CT
values, large variations of vessel sizes, and complicated ana-
tomic structures. The conventional multiscale vessel segmen-
tation methods for 3D images share a common approach in
which the local behavior of an image �or 3D volume� is
approximated by its Taylor expansion up to the second order

12–18

FIG. 7. Comparison of radiologist’s marked vessel center points with the
computer-segmented vascular trees for the test case without pleural effusion
disease. �a� Computer-segmented vascular trees within the left and right
lungs superimposed with the gold standard vessel center points �black
points�; �b� the enlarged lower region of the left lung �lower right part in
�a��, and �c� the enlarged upper region of the right lung �upper left part in
�a�� showing the detail of the subsegmental peripheral vessels.
as shown in Eq. �1�. The analysis of eigenvalues of the
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Hessian matrix can thus be used to design a multiscale filter
to enhance tubular structures. The response of the enhance-
ment filter is maximal when its scale matches the size of the
vessel. The enhancement filter has to be normalized in order
to determine the local maximum of the response function at
multiple scales. However, it is difficult to select the normal-

FIG. 9. Examples of vessel segmentation for arteries occluded by PEi at
different occlusion percentage to the vessels. The PEi are indicated by ar-
rows. The images in the first and the third row are two different sequences
of CT slices from the same scan �test case 1�, the second and the fourth row
are segmented vessels. The vessel integration images were converted to
binary images to highlight the small vessels for displaying purpose. There
were two PEis in the first row. The upper PE occluded the artery at 100%
and the lower one was about 40% occlusion. Both PE-occluded arteries
were surrounded by lymphoid tissue, and the upper PE was connected to its
surrounding tissue. The example shown in the third row also contained two
PEis: 100% occlusion by the upper PE and about 95% occlusion by the

lower one.
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ization parameter � for an enhancement filter designed to
enhance a number of different structures. The analytical
models have to be established by studying the relationship
between the scales at which a specific structure needs to be
enhanced, the normalization parameter �, and the size of the
structure. Extensive studies were conducted to build and ana-
lyze these models.12,35

To avoid the selection of normalization parameter � in our
pulmonary vessel enhancement filter, we designed a multi-
scale vessel segmentation scheme to combine the vessel
structure enhancement and vessel segmentation processes. At
each scale, the 3D image output from the response function
defined in Eq. �4� is directly segmented using a multiscale
segmentation scheme based on EM segmentation
algorithm.28 Instead of finding the maximum response from
all scales at each voxel in the 3D images which would re-
quire normalized responses for all scales, our method only
finds the voxels with high responses at an individual scale
and segments those high response voxels using EM segmen-
tation method. Because there is no direct comparison of the
response between different scales, it is not necessary to nor-
malize the response values in our method.

PEi can obstruct an artery at any level and of any size up
to 100% occlusion to the vessel. It is difficult to segment a
vessel obstructed by PE accurately. This problem becomes
more severe when the PE appears to be connected to the
vessel wall and the lymphoid tissues surrounding the vessel
because the CT values of the PEi are very close to those of
the soft tissues. Our results demonstrate that the vessels oc-
cluded by PEi can be segmented accurately even if the ves-
sels were fully �100%� obstructed by PEi or surrounded by
lymphoid tissues. Although the number of PEis in our test set
is limited, the results indicate that our proposed method is
promising for segmentation of occluded vessels in CTPA im-
ages. The ability of excluding soft tissues that surround the
arteries is very important for PE detection because the CT
values of PEi are very close to those of the soft tissues. The
soft tissues may be detected as false positive PEi, or the true

28

FIG. 8. False negative vessel center
points indicating missed vessels by
our automated vessel segmentation
method compared to radiologist’s
manual tracking for �a� the test case
without other disease and �b� the test
case with pleural effusion disease.
All of the false negative vessel center
points were located in subsegmental
peripheral vessels for both test cases.
PE may be excluded as soft tissues.
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In our study, our vessel segmentation method was tested
on two CTPA cases acquired with PE diagnosis protocol in
our institution. We demonstrated that the pulmonary vessels
can be extracted accurately. It is still unknown if the perfor-
mance of our algorithm will be degraded in low dose CTPA
scans or noncontrast CTPA studies. In a separate study, we
applied our vessel segmentation method to false positive re-
duction for lung nodule detection by segmenting the detected
objects and extracting shape features to differentiate nodules
and pulmonary vascular structures.36 A data set of 58 non-
contrast CT scans acquired with mA s ranging from 50 to
570 were used as test set. We found that the new features
extracted from the segmented structures can significantly re-
duce the FPs in nodule detection. These results provide some
indication that our vessel segmentation method may be ap-
plicable to low dose noncontrast CTPA scans. However, the
generalizability of a CAD system to image data acquired
with different equipment and different imaging techniques is
an important issue in CAD. The performance of our vessel
segmentation method under different conditions has to be
investigated in future studies.

Quantitative evaluation of vessel segmentation accuracy
and the completeness of arterial tree reconstruction is a chal-
lenging problem because there is no ground truth for the
pulmonary vessel tree for clinical cases. Although a tubular
phantom can be constructed with known “vessels,” it is dif-
ficult to construct a realistic phantom with a complete arterial
tree mimicking complicated pulmonary vascular structures.
In a recent study by Shikata et al.,18 about 2000 points were
manually placed along the pulmonary vessels in each case as
true vessel points for quantitative evaluation of a pulmonary
vascular tree segmentation method. This method will provide
an estimate of the fraction of the vessel tree segmented by
the computer relative to that marked manually if the “repre-
sentative” points are placed with reasonably balanced distri-
bution in the entire pulmonary vascular tree. In our study,
two patient CTPA cases were chosen as representative cases
from our collected data set: an optimal case with good con-
trast, no visible motion artifacts, and no other lung diseases
and artifacts; and a suboptimal case containing small area of
pleural effusion diseases. Although the number of cases is
small, the total number of center points that mark the entire
pulmonary vessel tree down to very small vessels, for ex-
ample, the segmental and subsegmental levels of arteries, is
quite large �more than 4500 for both cases�. The evaluation
including quantitative comparison and visual inspection on
these two cases allows us to obtain a reasonable assessment
of the vessel segmentation performance in this preliminary
study.

Because the radiologists’ manually marked center points
were used as the gold standard for evaluation of the com-
pleteness of the vessel tree segmentation, it will not allow us
to report the false positive rate because it is difficult to de-
termine whether segmented vessels that did not overlap with
the radiologists’ center points were true or false vessels and
count the number of the false vessels quantitatively. The vi-
sual inspection, for example, as shown in Fig. 7, indicates

that many of the small vessels that were not marked by ra-
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diologists but segmented by the computer appeared to be true
vessels. Further work is underway to investigate methods for
estimation of false positive segmentation.

V. CONCLUSION

Three-dimensional multiscale filtering in combination
with a newly developed response function derived from the
eigenvalues of Hessian matrices can effectively enhance the
pulmonary vascular structures including vessel bifurcations.
A combination of multiscale enhancement with EM estima-
tion provides accurate segmentation of the pulmonary vascu-
lar tree having a wide range of vessel sizes. The results dem-
onstrate that vessel segmentation using our method can
extract the pulmonary vessels accurately and the perfor-
mance is not degraded by PE occlusion to the vessels in the
test scans used in this study. Automated pulmonary vessel
segmentation will provide the foundation for many thoracic
image analysis tasks in CAD applications including PE de-
tection and lung nodule detection.36 Further investigations
are being conducted to improve tracking of the arterial tree,
develop methods for differentiation of the arterial tree and
the venous tree, identify locations with PEi, and to evaluate
the performances with a larger data set.
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