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ABSTRACT 

 

Objective 

In observational epidemiologic studies, higher plasma high-density lipoprotein cholesterol (HDL-

C) has been associated with increased risk of intracerebral hemorrhage (ICH). DNA sequence 

variants that decrease cholesteryl ester transfer protein (CETP) gene activity increase plasma 

HDL-C; as such, medicines that inhibit CETP and raise HDL-C are in clinical development. 

Here, we test the hypothesis that CETP DNA sequence variants associated with higher HDL-C 

also increase risk for ICH. 

 

Methods 

We performed two candidate-gene analyses of CETP. First, we tested individual CETP variants 

in a discovery cohort of 1149 ICH cases and 1238 controls from 3 studies, followed by 

replication in 1625 cases and 1845 controls from 5 studies. Second, we constructed a genetic 

risk score comprised of 7 independent variants at the CETP locus and tested this score for 

association with HDL-C as well as ICH risk.  

 

Results 

Twelve variants within CETP demonstrated nominal association with ICH, with the strongest 

association at the rs173539 locus (odds ratio (OR) 1.25, standard error (SE) 0.06, p=6.0x10-4) 

with no heterogeneity across studies (I2=0%). This association was replicated in patients of 

European ancestry (p=0.03). A genetic score of CETP variants found to increase HDL-C by 

~2.85mg/dL in the Global Lipids Genetics Consortium was strongly associated with ICH risk 

(OR 1.86, SE 0.13, p=1.39x10-6).  

 

Interpretation 
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Genetic variants in CETP associated with increased HDL-C raise the risk of ICH. Given ongoing 

therapeutic development in CETP inhibition and other HDL-raising strategies, further exploration 

of potential adverse cerebrovascular outcomes may be warranted. 
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INTRODUCTION 

 

Serum levels of high density lipoprotein (HDL-C) are strongly and inversely associated with 

coronary artery disease (CAD) risk1. Of the many single nucleotide polymorphisms (SNPs) 

associated with HDL-C levels, those within cholesteryl ester transfer protein (CETP) have the 

strongest effect2-4. Inhibitory variants within CETP associated with increased HDL-C correlate 

with reduced risk of multiple cardiac risk factors, including metabolic syndrome and myocardial 

infarction (MI)5-8. Inhibitors of the CETP gene product, designed to raise HDL-C by limiting 

CETP-mediated exchange of cholesteryl esters and triglycerides between HDL and LDL/VLDL 

particles, are being investigated in ongoing Phase III trials as treatments to reduce CAD risk9,10. 

 

In contrast, substantial data suggest that elevations in HDL-C may increase risk of spontaneous 

intracerebral hemorrhage (ICH)11,12.Furthermore, clinical trial data suggests an increased risk of 

ICH on statins despite a lack of significant differences in lipid levels13,14. Because of small 

sample sizes and confounding by environmental or medical exposures, prior studies have not 

been able to resolve this potentially paradoxical role of elevated HDL-C in ICH. While ICH 

comprises only 15-20% of all strokes, it accounts for 50% of all stroke-related mortality and 30% 

of total costs15,16.  Blood pressure control remains the only available preventive strategy17. As 

HDL-C evolves as a cardiovascular treatment target and clinical trial data on therapeutic 

modifiers accrue, an improved mechanistic understanding of the pathways involved in 

hemorrhagic cerebrovascular disease could lead to alternative treatments and prevention 

strategies for ICH. 

 

It is not known whether CETP inhibitors, which endeavor to produce a biological effect similar to 

known genetic variants in CETP, increase ICH risk. The objective of this study was to use 

genome-wide genotypes from individuals with and without ICH from the International Stroke 
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Genetics Consortium to test genetic variants within CETP for association with ICH risk, under 

the hypothesis that the HDL-raising effects of inhibitory variants within CETP will result in 

increased ICH. CETP genetic variants that impact HDL-C are unconfounded by other 

exposures, remain constant throughout life, and may be more reflective of long-term levels than 

periodic lipid measurements18. Thus, examination of CETP genetic variation constitutes a 

valuable causal inference tool to help strengthen or disclaim prior observations of association 

between elevated HDL-C and ICH, and could provide additional clues about potential adverse 

effects of pharmacologic CETP inhibition.  
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METHODS 

 

Study Design 

We performed a two-stage (discovery and replication) case-control candidate-gene association 

study using both genome-wide data and direct genotyping. The discovery phase utilized data 

from 3 genome-wide association studies of ICH, sampling patients of European ancestry (Table 

1)19. Replication involved direct genotyping of variants of interest from individuals recruited 

through 5 case-control studies of ICH, with no overlap between individuals from the discovery 

phase (Table 2). Detailed description of discovery and replication case and control recruitment 

architectures can be found in Supplementary Table S1. 

 

All studies had approval from the local institutional review board or ethics committee at each 

participating institution. Informed consent was obtained from all patients, their legally authorized 

representatives, or was waived via protocol-specific allowance. 

 

Cases 

ICH was defined as a new and acute neurological deficit with compatible brain imaging. Enrolled 

patients were adult consenting primary acute ICH cases that presented to participating 

institutions with confirmation of primary ICH through computed tomography or magnetic 

resonance imaging. Exclusion criteria included trauma, brain tumor, hemorrhagic transformation 

of a cerebral infarction, vascular malformation, or any other cause of secondary ICH in all 

participating studies.  

 

Case Populations 

ICH cases w3ere recruited across multiple centers participating in the International Stroke 

Genetics Consortium from sites in the USA and Europe. For the purposes of reducing 
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confounding by population stratification, only individuals of self-reported European (Caucasian) 

ancestry were included in the analysis. Likewise, several studies (GOCHA, ESS, LINCHPIN) 

recruited ICH patients with ICH in the presence of anticoagulation (typically warfarin) exposure. 

These individuals were excluded from analyses due to the etiopathological distinctness of 

warfarin-related primary ICH from other forms. Discovery case populations were enrolled 

according to methods previously described19. Replication cases were recruited from ISGC 

participating centers using similar criteria as discovery cases (Supplementary Table S2). 

Briefly, UMC Utrecht ICH study included additional screening for secondary ICH cases in follow-

up. The Edinburgh Stroke Study recruited subjects aged > 55 years only, and specifically 

excluded individuals with antecedent illicit drug use or presentation > 1 week from onset of 

symptoms. The LINCHPIN study identified ICH cases aged > 16 with acute or chronic ICH from 

a prospective cohort of individuals living in the Lothian region of Scotland, UK. 

 

Neuroimaging 

Stroke neurologists and neuroradiologists at each participating site performed the neuroimaging 

assessment. Following known differences in underlying biology, ICH was classified as lobar or 

non-lobar according to location20. ICH originating in the cortico-subcortical junction (with or 

without involvement of subcortical white matter) was defined as lobar, whereas ICH selectively 

involving the thalamus, internal capsule, basal ganglia, brainstem or cerebellum was defined as 

non-lobar.  

 

Controls 

Controls were ICH-free individuals >18 years of age were enrolled from the same populations 

that gave rise to the cases. Controls were confirmed to have no history of previous ICH by 

interview and/or medical record review. Control population age restrictions were identical to 

case population age restrictions for all included studies. 
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Control Populations 

ICH-free controls were recruited from the same populations that gave rise to the ICH cases, 

through inpatient recruitment, ambulatory centers in the local communities, blood donation 

centers serving the same population, and in the case of the Lothian Birth Cohort, a population 

cohort study (Supplementary Table S3). The Genetic and Environmental Risk Factors for 

Hemorrhagic Stroke (GERFHS) and Ethic/Racial Variations of Intracerebral Hemorrhage 

(ERICH) studies19,21 used random digit dialing, the Lothian Birth Cohort individuals were 

matched to case samples by local investigators22, and UMC Utrecht identified controls from the 

local blood donor population. The remainder of studies used random selection from ambulatory 

clinics or geographically-matched populations where cases were being recruited. 

 

Exposure: common genetic variants within CETP 

In the discovery phase, we ascertained variants within CETP by means of genome-wide 

genotyping followed by imputation using methods and quality control procedures previously 

described19. Briefly, DNA was isolated from fresh or frozen peripheral whole blood collected 

from cases and controls at each participating institution at the time of consent, quantified with a 

quantification kit (Qiagen, Valencia, CA, USA), and normalized to a concentration of 30 ng/µL. 

Cases and controls were plated together and genotyped on Illumina 610 or Affymetrix 6.0 

platforms. Standard quality controls for genome-wide data were applied, and the resulting set of 

individuals and SNPs were carried forward to imputation, that was completed using IMPUTE2 

with 1000 Genomes-based reference panels (version March 2012)23. Post imputation exclusion 

filters were minor allele frequency (MAF) <0.01 and information score <0.5. SNPs were 

extracted from the CETP gene region according to the human genome reference GRCh38.p2 

annotated location (http://www.ncbi.nlm.nih.gov), +/- 50 kilobases.  
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Independent Replication 

CETP variants exceeding Bonferroni-corrected significance and without significant 

heterogeneity (I2<40%) for association with ICH in the discovery phase were selected for 

replication24. Replication SNPs were chosen based on proxy status with index SNPs. Because 

replication of CETP variants was carried out as part of an ongoing GWAS of ICH, a constraint 

for the selection of replication SNPs was predicted genotyping success using both Sequenom 

iPLEX (Sequenom, San Diego, CA, USA) and Taqman (Applied Biosystems, Foster City, CA, 

USA) methodologies, which were employed at the MGH and University of Miami genotyping 

centers, respectively (Table 2). Ancestry informative markers were also genotyped to facilitate 

adjustment for population admixture. 

 

Data Analysis 

We present discrete variables as counts (percentage [%]) and continuous variables as mean 

(standard deviation [SD]) or median (interquartile range [IQR]), as appropriate. 

 

Population Structure 

Principal component analysis was implemented in both discovery and replication to account for 

population structure, using genome-wide data in discovery and pre-specified ancestry-

informative markers in replication25,26. Caucasian population outliers were identified and 

removed by visual inspection of plots generated with principal components 1 and 2, and these 

principal components were included as covariates in regression models fitted for association 

testing. In GERFHS and ERICH samples, further refinement of population structure was 

achieved using the ADMIXTURE software tool to remove outliers27. 

 

Association Testing 
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Prior to discovery association testing, SNPs within CETP were clumped into loci sharing linkage 

disequilibrium (LD) r2>0.5 using PLINK to allow discrimination of semi-independent loci across 

the gene. Association testing for SNPs within the CETP locus and ICH risk was completed 

separately for all ICH, as well as for lobar and non-lobar hemorrhages. Logistic regression 

models were fitted assuming independent additive genetic effects for dosage of the minor allele 

(1-degree-of-freedom additive trend test), and adjusting for age, gender, and principal 

components 1 and 2. A similar analytic approach was undertaken for analysis of replication 

data, using additive allele genotype data rather than dosage. 

 

Meta-Analysis 

Fixed effects, inverse variance weighted meta-analysis was used to pool effect estimates across 

studies, assessing heterogeneity by computing Cochrane’s Q (with corresponding p) and I2 

(percent of effect size attributable to heterogeneity). Identical meta-analysis procedures were 

used for pooling of effects across studies in discovery, replication, and across all studies28. 

 

Genetic Risk Score Analysis 

Variants within the CETP locus with established association with HDL-C levels in the most 

recent Global Lipids Genetics Consortium (GLGC) analysis29 (Global Lipids Genetics 

Consortium, “Biological and clinical insights from exome array analysis of lipids in > 300,000 

individuals”, under review) were extracted from the discovery dataset and tested for association 

with ICH using an additive multi-SNP genetic risk score approach using the GTX package 

(http://CRAN.R-project.org/package=gtx) in R (version 3.0). 10 variants surpassing exome 

array-wide significance (p<2.1x10-7) and demonstrating independence using a sequential 

forward selection model in the GLGC dataset were identified, of which 7 were available in our 

ICH discovery dataset30. These 7 variants, on average, were associated with a 0.19 standard 

deviation increase in HDL-C (~2.85mg/dL) in the GLGC population (p<1x10-200). This 
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corresponds to a proportion of variance explained of 0.032. ICH risk was predicted from 

summary statistics, weighted according to the established HDL-C effect and oriented to the 

HDL-C increasing allele. 

 

Statistical Testing and Software 

We used a conservative Bonferroni-corrected threshold for statistical significance of p<0.004, 

adjusted for the number of semi-independent loci within CETP with r2<0.5 (12 tests in this 

analysis). Quality control procedures, genetic association testing for single variants, and score 

calculations were performed in SNPTest and PLINK v1.0726,31. Imputation was completed using 

IMPUTE223. All other statistical analyses were performed in SAS 9.2 (SAS Institute, Cary, NC 

USA). 
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RESULTS 

 

Following relevant exclusions during quality control and principal component analysis, 1149 ICH 

cases and 1238 controls from 3 case-control studies of ICH were included in the discovery 

phase, 43% of which were of the lobar ICH subtype (Table 1). 

 

CETP Genetic Variants 

After imputation using 1000 genomes reference panels and application of genome-wide quality 

control filters, a total of 390 common variants of MAF > 0.01 were extracted from the CETP 

gene and 50 kilobase flanking regions (Supplementary Table S4)32. These 390 variants were 

present either via array-based ascertainment or imputation in all 3 of the discovery datasets, 

and were used for association testing. 

 

Single-SNP Association Testing 

After testing all 390 SNPs within CETP clumped into regions sharing r2>0.5, 12 loci 

demonstrating nominal association with ICH (p<0.05) were identified (Supplementary Table 

S5). Three of these loci surpassed Bonferroni-correction (Table 3) with residual r2=0.25-0.39 

between them. Among these, only rs173539 (odds ratio (OR) 1.25, standard error (SE) 0.06, 

p=6.00x10-4) met prespecified criteria for replication due to its homogeneity across discovery 

datasets (I2=0%). Of note, rs173539 was in high LD with rs3764261 (r2=0.98), the strongest 

associated SNP with HDL-C in published GWAS of lipid levels (Figure 1)33. Comparison of 

effects of the rs173539 locus on risk of lobar vs. non-lobar hemorrhage revealed no significant 

differences by ICH subtype (Supplementary Table S6). 

 

Replication and Meta-analysis of the rs173539 Locus 
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1625 ICH cases and 1845 controls of Caucasian ancestry were available for replication. 

Following application of predictive algorithms for SNP genotype ascertainment success using 

both genotyping methodologies employed, four SNPs in LD with rs173539 locus were selected 

for replication genotyping according to the constraints described (Tables 4 and 5). Both 

rs173539 and rs3764261 were predicted to fail in one or both replication pools. All four selected 

SNPs were successfully genotyped in all replication datasets. All replication results showed 

minimal heterogeneity and consistent directions of effect, and two variants replicated at p<0.05. 

In meta-analysis, all four SNPs within the rs173539 locus chosen for replication were 

strengthened by addition of the replication SNP data, with minimal heterogeneity in the final total 

sample size of 2595 ICH cases and 3030 controls (Table 5). 

 

Genetic Risk Score Analysis 

An additive multi-SNP genetic risk score was constructed using independent HDL-association 

data29. 10 variants were selected, of which 7 were present in the ICH discovery dataset (Table 

6). 3 variants were unavailable in the ICH dataset due to differences in genotyping platforms 

(exome array vs. GWAS array) between the two studies. The genetic risk score of these 7 

variants demonstrated association with ICH (OR 1.86, SE 0.13, p=1.39x10-6).  
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DISCUSSION 

 

Our results demonstrate an association between CETP gene variants in the rs173539 locus and 

risk of ICH, opposite in direction to their effect on risk of CAD and metabolic syndrome5,7,8. 

Furthermore, an aggregated score of variants within CETP that raise HDL-C is strongly 

associated with increased ICH risk. These results suggest that there may be substantial 

differences in the roles of lipids in the progression of cerebrovascular and cardiometabolic 

diseases. Novel therapies targeting CETP along with other approaches to increase HDL-C are 

currently under active investigation in an effort to reduce the risk of CAD34. Because the 

cerebral small vessel diseases that lead to ICH are common in the aging population and 

frequently coincide with risk factors for cardiometabolic disease35,36, our observations supporting 

opposing effects of HDL-C on ICH and CAD underscore the need for a better understanding of 

which patients could be at increased risk of ICH on therapies aimed at increasing HDL-C. 

 

Our findings support prior studies linking elevated HDL-C with increased risk of ICH. Unlike prior 

studies, however, our genetic approach limits confounding by dietary, environmental, or 

medication exposures. A recent meta-analysis of epidemiological studies examining 

associations between cholesterol levels and ICH found a dose-response relationship between 

HDL-C and ICH risk, with each 1mmol/L increase in HDL-C associated with a 17% increase in 

ICH risk11. This result was nullified when studies of subarachnoid hemorrhage patients were 

included, but strengthened by restriction to studies from the United States, highlighting the 

potential confounds of case misspecification and unmeasured environmental exposures in 

testing associations of this nature. 

 

HDL-C appears to have a complex and context-dependent role in cerebrovascular disease. In 

contrast to ICH, elevated HDL-C is associated with reduced risk of ischemic stroke, particularly 
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strokes caused by large artery atherosclerotic disease, consistent with the observed 

associations of HDL-C in CAD37. However, Mendelian Randomization (MR) studies of genetic 

variants predisposing to elevated HDL-C have not demonstrated association with either 

ischemic stroke or CAD, suggesting the observed relationships may not be causal38,39. 

Unfortunately, the limited sample size of genetics efforts in ICH coupled with acute changes in 

lipid values around the time of ICH currently preclude the use of this MR approach in our 

analyses40. 

 

No study, including the present, has yet established a direct causal relationship between HDL-C 

and ICH risk. While associations between CETP genetic variants and ICH are almost certainly 

unidirectional due to the immutability of the genetic code, they still could impact an unseen risk 

factor that lies outside of the known HDL-C level determining effects of the gene. Even if 

causality can be ultimately established, the mechanism by which a CETP-mediated increase in 

HDL-C may worsen ICH risk remains unclear. Inhibition of CETP results in changes to HDL 

particle size and cholesterol efflux capacity in addition to the observed changes in HDL-C serum 

levels, and it may be through these accompanying changes in HDL function that ICH risk is 

conferred41. Furthermore, accumulating evidence suggests that HDL effects on endothelium are 

dynamic and modifiable, and can even become pro-inflammatory with the incorporation of 

serum amyloid A1, complement C3, and ceramides, resulting in altered immune regulation and 

reduced antioxidant effects42,43. It is therefore possible that elevated HDL-C provides a platform 

to further the vascular inflammatory processes that play a substantial role in the cerebral small 

vessel disease underlying ICH44. Further studies will be needed to dissect the pathways 

intersecting with HDL-C to clarify the foundational biology of its role in ICH. 

 

Therapeutic development of small molecule and biologic compounds designed to raise HDL-C 

continue45. While the first wave of Phase III trials of CETP inhibitors were plagued by off-target 
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effects and futility46, the REVEAL trial of anacetrapib was recently continued after unblinded 

interim review. Other HDL-raising strategies, including apolipoprotein-A1 (ApoA1)-rich 

reconstituted HDL particle infusions and ApoA1-mimetic peptides continue to be evaluated in 

preclinical and early-phase trials45. Given this pipeline of HDL-based therapeutic development, it 

is imperative that potential adverse clinical effects of such strategies be clarified. Early 

experiences with FDA-approved PCSK-9 inhibitors have led to predictions of widespread 

adoption of this new class of drugs and it is reasonable to expect that HDL-C targeted 

treatments would be no different, resulting in a potentially large population of aging individuals 

with pharmacologically-induced high HDL-C levels of uncertain long-term cerebrovascular risk47. 

The proportion of variance in HDL-C levels explained by our genetic risk score was 0.032. This 

is roughly commensurate with observed effects of statins, which in clinical trials raised HDL by 

0.04-0.1048. With emerging HDL-C modifying strategies likely to exert more profound effects, the 

impact on ICH risk, if confirmed and verified to be causal, could be more substantial than 

indicated by our CETP genetic risk score. 

 

As noted above, our study cannot determine whether the observed association between CETP 

and ICH risk is through HDL-C alone. While they exhibit their largest effect on HDL-C levels, 

CETP variants are also associated with low-density lipoprotein (LDL), triglycerides (TG), and 

total cholesterol (TC) levels3. While we cannot perform formal MR, the association between our 

HDL-C increasing genetic risk score at CETP and risk of ICH provides support for an HDL-

specific effect. Even with this suggestion of HDL-C specificity, the composition of HDL particles 

can vary with respect to ratios of esterified to unesterified cholesterol as well as apolipoprotein 

content. Genetic variation that determines circulating HDL-C does not necessarily capture these 

secondary characteristics, which could have a substantial impact on biological effects.  
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An additional limitation of our study is the aggregation of case and control data across multiple 

sites, which could result in biases between cases and controls. We have attempted to control for 

study demographics and population structure in our regression analyses, and performed 

independent replication, but unmeasured confounding could still have impacted the observed 

associations. Related to this point, all analyses presented were in individuals of European 

ancestry due to small study populations, and therefore low statistical power, in individuals of 

other racial and ethnic backgrounds. As a result, our findings cannot be extended to minority 

populations at this time.  

 

While our study utilized genomewide data for discovery and genetic risk score analyses, our 

approach was fundamentally a candidate gene study of CETP. Using GWAS data allowed for 

control of population stratification, which can be a major confounder in traditional candidate 

gene designs employing only direct genotyping. However, it was still based on an a priori 

hypothesis about CETP association with ICH. Therefore, the false discovery rate for association 

between variants at CETP and ICH risk, while stringently controlled using Bonferroni-correction 

at the CETP locus, may still be elevated in comparison with a standard GWAS. Due to the 

hypothesis-driven nature of our study, we by definition cannot provide novel results about lipid-

related genetic loci that lie outside of the tested gene region. 

 

Finally, the CETP gene contains several independent loci which have been associated with lipid 

levels and clinical endpoints3,5,7,33. This resulted in a more complex replication phase than would 

have been needed if the genetic architecture of the locus were centered about a single region of 

association. Coupled with the limitations of variant selection in our replication phase, we cannot 

distinguish a culprit variant to the exclusion of others. Although all variants chosen for replication 

demonstrated refined effect size estimates and greater statistical significance in meta-analysis 

with discovery data, replication was strongest for variants in slightly lower LD than the lead 
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variant from discovery, and with slightly higher between-study heterogeneity. Whether this 

observation represents true heterogeneity of effect at the replicated variants will depend on 

future validation and extension studies. 

 

We have demonstrated an association between genetic variants in CETP and risk of ICH, and 

have shown that CETP’s HDL-C raising effects could play a role in the pathogenesis of ICH. 

Further work will be needed to identify how the biological pathways impacted by HDL-C may 

impart increased risk of hemorrhage. These pathways may yield crucial novel targets for 

prevention of ICH and the cerebral small vessel diseases that lead to vessel rupture. 

Page 23 of 65

John Wiley & Sons

Annals of Neurology

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
Anderson CD et al.                                                                                                        CETP Genetic Variation and ICH 

23 

ACKNOWLEDGEMENTS 

The authors would like to acknowledge Miguel Hernan, from the Harvard T.H. Chan School of 

Public Health, for valuable counsel on research methods. 

 

No funding entities had involvement in study design, data collection, analysis, and interpretation, 

writing of the manuscript and in the decision to submit for publication. This work has been 

supported by the NIH-NINDS through K23NS086873, R01NS059727 and P50NS061343, 

R01NS36695, U01NS069763, and R01NS30678 and the NIH-NIA through R01AG26484. 

Project support for the Global Lipids Genetics Consortium through Drs. Willer and Kathiresan is 

provided by NIH-NHLBI R01HL127564. Lund Stroke Register (LSR) has been supported by the 

Swedish Heart and Lung Foundation, Skåne University Hospital, Region Skåne, the 

Freemasons Lodge of Instruction EOS in Lund, King Gustaf V and Queen Victoria's Foundation, 

Lund University, and the Swedish Stroke Association, and Spain’s Ministry of Health (Ministerio 

de Sanidad y Consumo, Instituto de Salud Carlos III FEDER, RD12/0042/0020). This report 

does not represent the official view of the National Institute of Neurological Disorders and Stroke 

(NINDS), the National Institutes of Health (NIH), or any part of the US Federal Government.  No 

official support or endorsement of this article by the NINDS or NIH is intended or should be 

inferred. 

 

AUTHOR CONTRIBUTIONS 

Conception and Design of Study 

CDA, GJF, CLP, FR, AB, GMP, SK, DW, JR 

 

Acquisition and Analysis of Data 

CDA, GJF, CLP, FR, HBB, TWKB, AB, GMP, DL, AMA, JNG, AV, SMG, MS, JFM, DLB, BBW, 

SLS, DLT, MLF, PK, JMJ, HS, BMH, JJC, EGS, RE, ECG, CS, KMvN, CJMK, KR, NS, RAS, 

Page 24 of 65

John Wiley & Sons

Annals of Neurology

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
Anderson CD et al.                                                                                                        CETP Genetic Variation and ICH 

24 

CLS, IJD, AM, AP, JP, AU, AP, CE, BN, JM, IFC, PD, JR, AL, AS, RS, CSK, SJK, SPW, CDL, 

GA, CJW, SK, DW, JR 

 

Drafting Manuscript and Figures 

CDA, GJF, CLP, FR, AB, GMP, AMA, SK, JR 

 

International Stroke Genetics Consortium Contributors 

Please refer to Supplementary Table S6 for ISGC contributors and affiliations 

 

 

POTENTIAL CONFLICTS OF INTEREST 

Nothing to disclose. 

 

Page 25 of 65

John Wiley & Sons

Annals of Neurology

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
 

REFERENCES 
 

1. Rader DJ, Hovingh GK. HDL and cardiovascular disease. Lancet. 2014 Aug 

16;384(9943):618-25. 

2. Asselbergs FW, Guo Y, van Iperen EP, et al. Large-scale gene-centric meta-analysis 

across 32 studies identifies multiple lipid loci. American journal of human genetics. 2012 Nov 

2;91(5):823-38. 

3. Global Lipids Genetics Consortium, Willer CJ, Schmidt EM, et al. Discovery and 

refinement of loci associated with lipid levels. Nature genetics. 2013 Nov;45(11):1274-83. 

4. Tada H, Won HH, Melander O, et al. Multiple associated variants increase the heritability 

explained for plasma lipids and coronary artery disease. Circulation Cardiovascular genetics. 

2014 Oct;7(5):583-7. 

5. Kraja AT, Vaidya D, Pankow JS, et al. A bivariate genome-wide approach to metabolic 

syndrome: STAMPEED consortium. Diabetes. 2011 Apr;60(4):1329-39. 

6. Chambers JC, Elliott P, Zabaneh D, et al. Common genetic variation near MC4R is 

associated with waist circumference and insulin resistance. Nature genetics. 2008 

Jun;40(6):716-8. 

7. Meiner V, Friedlander Y, Milo H, et al. Cholesteryl ester transfer protein (CETP) genetic 

variation and early onset of non-fatal myocardial infarction. Annals of human genetics. 2008 

Nov;72(Pt 6):732-41. 

8. Thompson A, Di Angelantonio E, Sarwar N, et al. Association of cholesteryl ester 

transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA. 

2008 Jun 18;299(23):2777-88. 

9. Barter PJ, Rye KA. Cholesteryl ester transfer protein inhibition as a strategy to reduce 

cardiovascular risk. Journal of lipid research. 2012 Sep;53(9):1755-66. 

Page 26 of 65

John Wiley & Sons

Annals of Neurology

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
Anderson CD et al.                                                                                                        CETP Genetic Variation and ICH 

26 

10. Kastelein JJ, Besseling J, Shah S, et al. Anacetrapib as lipid-modifying therapy in 

patients with heterozygous familial hypercholesterolaemia (REALIZE): a randomised, double-

blind, placebo-controlled, phase 3 study. Lancet. 2015 May 30;385(9983):2153-61. 

11. Wang X, Dong Y, Qi X, et al. Cholesterol levels and risk of hemorrhagic stroke: a 

systematic review and meta-analysis. Stroke; a journal of cerebral circulation. 2013 

Jul;44(7):1833-9. 

12. Raffeld MR, Biffi A, Battey TW, et al. APOE epsilon4 and lipid levels affect risk of 

recurrent nonlobar intracerebral hemorrhage. Neurology. 2015 Jul 28;85(4):349-56. 

13. Goldstein LB, Amarenco P, Szarek M, et al. Hemorrhagic stroke in the Stroke Prevention 

by Aggressive Reduction in Cholesterol Levels study. Neurology. 2008 Jun 10;70(24 Pt 2):2364-

70. 

14. Collins R, Armitage J, Parish S, et al. Effects of cholesterol-lowering with simvastatin on 

stroke and other major vascular events in 20536 people with cerebrovascular disease or other 

high-risk conditions. Lancet. 2004 Mar 6;363(9411):757-67. 

15. Taylor TN, Davis PH, Torner JC, et al. Lifetime cost of stroke in the United States. 

Stroke; a journal of cerebral circulation. 1996 Sep;27(9):1459-66. 

16. Ikram MA, Wieberdink RG, Koudstaal PJ. International epidemiology of intracerebral 

hemorrhage. Current atherosclerosis reports. 2012 Aug;14(4):300-6. 

17. Passero S, Burgalassi L, D'Andrea P, et al. Recurrence of bleeding in patients with 

primary intracerebral hemorrhage. Stroke; a journal of cerebral circulation. 1995;26(7):1189-92. 

18. Ference BA, Yoo W, Alesh I, et al. Effect of long-term exposure to lower low-density 

lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian 

randomization analysis. Journal of the American College of Cardiology. 2012 Dec 

25;60(25):2631-9. 

Page 27 of 65

John Wiley & Sons

Annals of Neurology

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
Anderson CD et al.                                                                                                        CETP Genetic Variation and ICH 

27 

19. Woo D, Falcone GJ, Devan WJ, et al. Meta-analysis of genome-wide association studies 

identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. American journal of 

human genetics. 2014 Apr 3;94(4):511-21. 

20. Martini SR, Flaherty ML, Brown WM, et al. Risk factors for intracerebral hemorrhage 

differ according to hemorrhage location. Neurology. 2012 Dec 4;79(23):2275-82. 

21. Woo D, Rosand J, Kidwell C, et al. The Ethnic/Racial Variations of Intracerebral 

Hemorrhage (ERICH) study protocol. Stroke; a journal of cerebral circulation. 2013 

Oct;44(10):e120-5. 

22. Deary IJ, Gow AJ, Pattie A, et al. Cohort profile: the Lothian Birth Cohorts of 1921 and 

1936. International journal of epidemiology. 2012 Dec;41(6):1576-84. 

23. Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3 

(Bethesda). 2011 Nov;1(6):457-70. 

24. Higgins JPT, Green S, Cochrane Collaboration. Cochrane handbook for systematic 

reviews of interventions. Chichester, England ; Hoboken, NJ: Wiley-Blackwell; 2008. 

25. Price AL, Patterson NJ, Plenge RM, et al. Principal components analysis corrects for 

stratification in genome-wide association studies. Nature genetics. 2006 Aug;38(8):904-9. 

26. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association 

and population-based linkage analyses. American journal of human genetics. 2007 

Sep;81(3):559-75. 

27. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in 

unrelated individuals. Genome research. 2009 Sep;19(9):1655-64. 

28. Evangelou E, Ioannidis JP. Meta-analysis methods for genome-wide association studies 

and beyond. Nature reviews Genetics. 2013 Jun;14(6):379-89. 

29. Global Lipids Genetics Consortium. Biological and clinical insights from exome array 

analysis of lipids in > 300,000 individuals. In review. 2016. 

Page 28 of 65

John Wiley & Sons

Annals of Neurology

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
Anderson CD et al.                                                                                                        CETP Genetic Variation and ICH 

28 

30. Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. 

Bioinformatics. 2007 Oct 1;23(19):2507-17. 

31. Pei YF, Zhang L, Li J, et al. Analyses and comparison of imputation-based association 

methods. PloS one. 2010;5(5):e10827. 

32. Hall JB, Cooke Bailey JN, Hoffman JD, et al. Estimating cumulative pathway effects on 

risk for age-related macular degeneration using mixed linear models. BMC bioinformatics. 

2015;16:329. 

33. Kathiresan S, Willer CJ, Peloso GM, et al. Common variants at 30 loci contribute to 

polygenic dyslipidemia. Nature genetics. 2009 Jan;41(1):56-65. 

34. Brinton EA, Kher U, Shah S, et al. Effects of anacetrapib on plasma lipids in specific 

patient subgroups in the DEFINE (Determining the Efficacy and Tolerability of CETP INhibition 

with AnacEtrapib) trial. J Clin Lipidol. 2015 Jan-Feb;9(1):65-71. 

35. Ding J, Sigurdsson S, Garcia M, et al. Risk Factors Associated With Incident Cerebral 

Microbleeds According to Location in Older People: The Age, Gene/Environment Susceptibility 

(AGES)-Reykjavik Study. JAMA neurology. 2015 Jun;72(6):682-8. 

36. Palacio S, McClure LA, Benavente OR, et al. Lacunar strokes in patients with diabetes 

mellitus: risk factors, infarct location, and prognosis: the secondary prevention of small 

subcortical strokes study. Stroke; a journal of cerebral circulation. 2014 Sep;45(9):2689-94. 

37. Amarenco P, Goldstein LB, Szarek M, et al. Effects of intense low-density lipoprotein 

cholesterol reduction in patients with stroke or transient ischemic attack: the Stroke Prevention 

by Aggressive Reduction in Cholesterol Levels (SPARCL) trial. Stroke; a journal of cerebral 

circulation. 2007 Dec;38(12):3198-204. 

38. Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of 

myocardial infarction: a mendelian randomisation study. Lancet. 2012 Aug 11;380(9841):572-

80. 

Page 29 of 65

John Wiley & Sons

Annals of Neurology

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
Anderson CD et al.                                                                                                        CETP Genetic Variation and ICH 

29 

39. Pikula A, Beiser AS, Wang J, et al. Lipid and lipoprotein measurements and the risk of 

ischemic vascular events: Framingham Study. Neurology. 2015 Feb 3;84(5):472-9. 

40. Phuah CL, Raffeld MR, Ayres AM, et al. Subacute decline in serum lipids precedes the 

occurrence of primary intracerebral hemorrhage. Neurology. 2016 May 31;86(22):2034-41. 

41. Mohammadpour AH, Akhlaghi F. Future of cholesteryl ester transfer protein (CETP) 

inhibitors: a pharmacological perspective. Clin Pharmacokinet. 2013 Aug;52(8):615-26. 

42. Weichhart T, Kopecky C, Kubicek M, et al. Serum amyloid A in uremic HDL promotes 

inflammation. J Am Soc Nephrol. 2012 May;23(5):934-47. 

43. Papageorgiou N, Zacharia E, Androulakis E, et al. HDL as a prognostic biomarker for 

coronary atherosclerosis: the role of inflammation. Expert Opin Ther Targets. 2016 Mar 1:1-15. 

44. Rouhl RP, Damoiseaux JG, Lodder J, et al. Vascular inflammation in cerebral small 

vessel disease. Neurobiology of aging. 2012 Aug;33(8):1800-6. 

45. Degoma EM, Rader DJ. Novel HDL-directed pharmacotherapeutic strategies. Nat Rev 

Cardiol. 2011 May;8(5):266-77. 

46. Johns DG, Duffy J, Fisher T, et al. On- and off-target pharmacology of torcetrapib: 

current understanding and implications for the structure activity relationships (SAR), discovery 

and development of cholesteryl ester-transfer protein (CETP) inhibitors. Drugs. 2012 Mar 

5;72(4):491-507. 

47. Rodriguez-Gutierrez R, Shah ND, Montori VM. Predicting the Overuse of PCSK-9 

Inhibitors. JAMA. 2015 Nov 10;314(18):1909-10. 

48. McTaggart F, Jones P. Effects of statins on high-density lipoproteins: a potential 

contribution to cardiovascular benefit. Cardiovasc Drugs Ther. 2008 Aug;22(4):321-38. 

 

  

Page 30 of 65

John Wiley & Sons

Annals of Neurology

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
Anderson CD et al.                                                                                                        CETP Genetic Variation and ICH 

30 

FIGURE LEGENDS 

 
Figure 1. ICH-associated variants in the rs173539 locus in CETP 
 

Figure 1 Legend: Regional association plot of rs173539 and SNPs exhibiting r2>0.5 in 

association with ICH. SNPs available for replication are circled. Mean recombination rate across 

the locus is represented by the continuous blue line. The rs3764261 variant identified was the 

leading SNP in prior genome-wide association studies of HDL-C. Chr = chromosome, cMMb = 

centimorgans per megabase, Mb = megabase. 
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TABLES 
 

 Table 1. Discovery populations 

Variable 

GOCHA  ISGC ICH Study  GERFHS  

Cases Controls Cases Controls Cases Controls 

 n 371 389 404 530 374 319 

 Age, mean (SD) 74 (10) 72 (8) 70 (13) 66 (16) 67 (15) 67 (14) 

 Female, n (%) 172 (46) 195 (50) 189 (47) 266 (50) 194 (52) 172 (54) 

 HTN, n (%) 274 (75) 227 (58) 278 (69) 247 (47) 241 (64) 166 (52) 

 T2D, n (%) 68 (18) 35 (9) 89 (22) 68 (13) 72 (19) 42 (13) 

 HL, n (%) 144 (39) 195 (50) 87 (22) 48 (9) 131 (35) 133 (42) 

 Smoking, n (%) 56 (15) 15 (4) 58 (14) 74 (14) 79 (21) 46 (14) 

 Genotyping 
 Platform 

Illumina  
610 

Illumina  
610 

Illumina  
610 

Illumina  
610 

Affymetrix 
6.0 

Affymetrix 
6.0 

 Lobar, n (%) 205 (55) - 135 (33) - 156 (42) - 

              

 Discovery totals 2387 individuals (1149 cases, 1238 controls), 43% lobar ICH 

Abbreviations: GERFHS = Genetic and Environmental Risk Factors for Hemorrhagic Stroke 
study; GOCHA = Genes and Outcomes of Cerebral Hemorrhage on Anticoagulation study; 
HL = Hyperlipidemia; HTN = Hypertension; ICH = Intracerebral hemorrhage; ISGC ICH study 
= International Stroke Genetics Consortium Intracerebral Hemorrhage Study; Lobar = Lobar 
ICH location; T2D = Type 2 Diabetes Mellitus 
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Table 2. Replication populations 

Variable 

MGH ERICH 
University of  

Brescia 
UMC Utrecht 

University of  
Edinburgh 

Case Ctrl Case Ctrl Case Ctrl Case Ctrl Case Ctrl 

n 240 458 920 826 198 185 157 160 110 216 

Age, n (SD) 
76 

(10) 
69 

(11) 
69 

(14) 
68 

(13) 
69 

(13) 
63 

(14) 
62 

(13) 
56 

(11) 
75 (9) 

76 
(10) 

Female, n 
(%) 

96 
(40) 

206 
(45) 

397 
(43) 

371 
(45) 

81 
(41) 

85 
(46) 

66 
(42) 

67 
(42) 

59 
(54) 

118 
(54) 

Lobar , n (%) 
120 
(48) 

- 
380 
(41) 

- 
82 

(41) 
- 

60 
(38) 

- 
61 

(55) 
- 

Genotyping 
platform 

iPLEX iPLEX 
Taq-
man 

Taq-
man 

iPLEX iPLEX iPLEX iPLEX iPLEX iPLEX 

 

Replication 
Totals 

     3470 individuals (1625 cases, 1845 controls), 42% lobar ICH 

 
Discovery + 
Replication 
Totals 

     5625 individuals (2595 cases, 3030 controls), 45% lobar ICH 

Abbreviations: Ctrl = Control; ERICH = Ethnic/Racial Variations of Intracerebral Hemorrhage; 
iPLEX = Sequenom MassARRAY iPLEX Platform; MGH = Massachusetts General Hospital; 
TaqMan = Applied Biosystems Taqman Genotyping Assay 
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Table 3. Discovery CETP loci demonstrating Bonferroni-significant association with ICH 

Lead SNP CHR 
Tested 
allele 

MAF 
Effect  

direction 
OR SE 

Discovery  
p 

I2 

rs173539 16 T 0.31 +++ 1.25 0.06 6.00E-4 0 

rs820299 16 G 0.38 --- 0.81 0.06 7.50E-4 48 

rs158478 16 A 0.48 +++ 1.21 0.06 1.48E-3 56 

CHR = chromosome, MAF = minor allele frequency, OR = odds ratio, SE = standard error, 
SNP = single nucleotide polymorphism, + = variant increases ICH risk, - = variant decreases 
ICH risk. 
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Table 4. Discovery SNP rs173539 and local proxies in association with ICH risk 

SNP CHR 
Tested 
allele 

MAF 
Effect  

direction 
OR SE 

Discovery  
p 

I2 

rs173539 16 T 0.31 +++ 1.25 0.06 6.00x10-4 0 

  -- rs247617 (r2=0.99) 16 A 0.31 +++ 1.24 0.06 8.74x10-4 0 

  -- rs17231506 (r2=0.99) 16 T 0.31 +++ 1.23 0.06 9.13x10-4 0 

  -- rs711752 (r2=0.62) 16 A 0.42 ++- 1.15 0.06 2.08x10-2 14 

  -- rs708272 (r2=0.61) 16 A 0.42 ++- 1.15 0.06 2.23x10-2 18 

Association results for rs173539 in association with ICH risk, as well as four additional SNPs 
in linkage disequilibrium (LD) with rs173539 chosen for replication. CHR = chromosome, MAF 
= minor allele frequency, OR = odds ratio, SE = standard error, r2 = degree of LD with 
rs173539. SNP = single nucleotide polymorphism, + = variant increases ICH risk, - = variant 
decreases ICH risk. 
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Table 5. Replication results for SNPs in LD with rs173539 and meta-analysis of all samples 

Replication  
Discovery/Replication  

Meta-analysis 

SNP Effect  OR SE p I2 Effect  OR SE p I2 

rs247617 +++++ 1.08 0.05 0.18 2 +++/+++++ 1.13 0.04 1.0x10-3 0 

rs17231506 +++++ 1.08 0.05 0.17 1 +++/+++++ 1.13 0.04 1.0x10-3 0 

rs711752 ++++- 1.12 0.05 0.03 7 ++-/++++- 1.13 0.04 1.0x10-3 0 

rs708272 ++++- 1.14 0.05 0.01 4 ++-/++++- 1.14 0.04 5.0x10-4 0 

OR = odds ratio, SE = standard error, SNP = single nucleotide polymorphism, + = variant 
increases ICH risk, - = variant decreases ICH risk. 
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Table 6. ICH association results for variants of known HDL-C effect used to compute genetic risk 
score 

SNP 
Ref 

Allele 
MAF 

ICH 
OR 

ICH 
Beta 

ICH 
SE 

ICH     
p 

HDL 
Effect 
Allele 

HDL 
Beta 

HDL 
SE 

Type 

rs173539 T 0.31 1.25 0.222 0.065 0.0006 T 0.230 0.0028 Intergenic 

rs3764261 A 0.31 1.23 0.210 0.063 0.0009 A 0.239 0.0028 Intergenic 

rs247616 T 0.30 1.22 0.196 0.064 0.0023 T 0.242 0.0028 Intergenic 

rs9989419 A 0.40 0.92 -0.079 0.059 0.1808 G 0.131 0.0026 Intergenic 

rs5880 C 0.04 1.22 0.202 0.151 0.1812 G 0.258 0.0067 Nonsyn. 

rs5882 G 0.32 1.06 0.057 0.065 0.3803 G 0.092 0.0028 Nonsyn. 

rs7499892 T 0.19 1.02 0.022 0.076 0.7758 C 0.230 0.0033 Intronic 

CETP = cholesterol ester transfer protein, HDL = High Density Lipoprotein, ICH = intracerebral 
hemorrhage, MAF = minor allele frequency, Nonsyn. = nonsynonymous, OR = odds ratio, Ref = 
reference, SE = standard error 
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Supplementary Table S1. ICH case and control recruitment architectures for participating 
studies 

Study Participating Centers Population 
Ages 

Case 
Recruitment 

Control 
Recruitment 

Brescia Stroke 
Registry 

University of Brescia, 
Brescia, Italy 

18+ Hospital-based, 
prospective 

Regionally 
matched, hospital 
and ambulatory 
clinics 

UMC Utrecht ICH 
Study 

University Medical Center 
Utrecht, Utrecht, The 
Netherlands 

18+ Hospital-based, 
prospective 

Regionally 
matched, blood 
donor population 

Edinburgh Stroke 
Study 

Western General 
Hospital, Edinburgh, 
Scotland, UK 

55+ Inpatient and 
outpatient 
hospital-based, 
prospective 

N/A 

LINCHPIN Western General 
Hospital, Royal Infirmary 
of Edinburgh, St. John’s 
Hospital at Howden, West 
Lothian, Scotland, UK 

16+ Community-based 
in areas served by 
NHS Lothian 
Health Board, 
prospective with 
hot-pursuit and 
retrospective 
augmentation 

N/A 

Lothian Birth 
Cohort 1936 

All centers serving the 
Lothian Area of Scotland 

76 years old 
(cohort 
assessed at 
ages 70, 73, 
and 76) 

N/A Community 
population born in 
1936 who took 
Scottish Mental 
Survey in 1947, 
living in Lothian, 
Scotland, UK 

ERICH 19 centers in USA, based 
at University of Cincinnati 

18+ Hospital-based, 
prospective with 
hot-pursuit 

Regionally 
matched, random-
digit-dialing 

GOCHA 6 centers in USA, based 
at Massachusetts General 
Hospital 

55+ Hospital-based, 
prospective 

Regionally 
matched, 
ambulatory clinics 

GERFHS 16 centers in the Greater 
Cincinnati/Northern 
Kentucky region of USA, 
based at University of 
Cincinnati 

18+ Hospital-based, 
prospective 

Regionally 
matched, random-
digit-dialing 

ISGC Europe Hospital del Mar ICH 
study, Vall d’Hebron ICH 
study in Barcelona, Spain, 
Jagiellonian University 
Hemorrhagic Stroke 
Study in Krakow, Poland, 
Lund Stroke Register in 
Lund, Sweden 

18+ Hospital-based, 
prospective 

Regionally 
matched, hospital 
and ambulatory 
clinics 
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Supplementary Table S2. ICH case inclusion and exclusion criteria by 
recruitment site 
Study Inclusion Criteria Exclusion Criteria 

Brescia Stroke Registry • Acute hospitalization 
for ICH 

• CT or MRI 
confirmation of ICH 

• Age > 18 

• Head trauma 

• Brain tumor 

• Ischemic stroke 

• Vascular malformation 

• Other cause of secondary ICH 

UMC Utrecht ICH Study • Acute hospitalization 
for ICH 

• CT confirmation of 
ICH 

• Age > 18 

• Head trauma 

• Brain tumor 

• Ischemic stroke 

• Vascular malformation 

• Other cause of secondary ICH 
present on admission or in follow-up 

Edinburgh - ESS • Acute hospitalization 
for ICH 

• CT or MRI 
confirmation of ICH 

• Age > 55 

• Head trauma 

• Brain tumor 

• Ischemic stroke 

• Vascular malformation 

• Presentation > 1 week from ICH 

• Antecedent drug use 

• Primary coagulopathy 

Edinburgh - LINCHPIN • Symptomatic ICH 
(acute or chronic) 

• CT or MRI 
confirmation of acute 
or chronic ICH 

• Age > 16 

• Resident in area 
served by NHS 
Lothian Health Board 
at time of ICH 

• Head trauma 

• Brain tumor 

• Ischemic stroke with hemorrhagic 
transformation 

• Vascular malformation 

• Other cause of secondary ICH 

ERICH • Acute hospitalization 
for ICH 

• CT or MRI 
confirmation of ICH 

• Age > 18 

• Head trauma 

• Brain tumor 

• Ischemic stroke 

• Vascular malformation 

• Other cause of secondary ICH 

GOCHA • Acute hospitalization 
for ICH 

• CT or MRI 
confirmation of ICH 

• Age > 55 

• Head trauma 

• Brain tumor 

• Ischemic stroke 

• Vascular malformation 

• Other cause of secondary ICH 

GERFHS • Acute hospitalization 
for ICH 

• CT or MRI 
confirmation of ICH 

• Age > 18 

• Head trauma 

• Brain tumor 

• Ischemic stroke 

• Vascular malformation 

• Other cause of secondary ICH 

ISGC Europe ICH studies 
(Hospital del Mar, Vall 
d’Hebron Hospital, 
Jagiellonian University, 
Lund University) 

• Acute hospitalization 
for ICH 

• CT or MRI 
confirmation of ICH 

• Age > 18 

• Head trauma 

• Brain tumor 

• Ischemic stroke 

• Vascular malformation 

• Other cause of secondary ICH 
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Supplementary Table S3. Control inclusion and exclusion criteria by recruitment 
site 
Study Ascertainment Methods Inclusion Criteria 

Brescia Stroke Registry • Screened and collected 
from the same hospital as 
ICH cases 

• Absence of stroke history, 
confirmed through interview and 
review of medical records 

UMC Utrecht ICH Study • Blood donors presenting 
to the same hospital as 
ICH cases, from same 
surrounding population 

• Healthy blood donor as 
confirmed through screening 
questionnaires at the donation 
facility 

Edinburgh - Lothian Birth 
Cohort 1936 

• Individuals in Lothian born 
in 1936, totaling 1091 
participants in Wave 1 at 
age 70 years, with follow-
up waves at ages 73 and 
76 

• Random selection matched 2:1 
with ICH cases from ESS and 
LINCHPIN, confirmed stroke-
free at age 76 

ERICH • Ascertained through 
random digit dialing in the 
regions surrounding 
centers where cases were 
recruited, age > 18 

• Absence of ICH history 
confirmed through interview at 
the time of consent 

GOCHA • Screened and collected 
from ambulatory clinics at 
the same centers that 
recruited cases, age > 55 

• Absence of ICH history 
confirmed through interview at 
the time of consent 

GERFHS • Ascertained through 
random digit dialing in the 
Greater Cincinnati-
Northern Kentucky region 
where cases were 
recruited, age > 18 

• Absence of ICH history 
confirmed through interview at 
the time of consent 

ISGC Europe ICH studies 
(Hospital del Mar, Vall 
d’Hebron Hospital, 
Jagiellonian University, 
Lund University) 

• Screened and collected 
from ambulatory clinics at 
the same centers that 
recruited cases, age > 18 

• Absence of ICH history 
confirmed through interview at 
the time of consent 
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Supplementary Table S4. Discovery phase association results for all SNPs in 
CETP 

SNP OR SE P Direction I2 

rs173539 1.25 0.06 0.00060 +++ 0 

rs183130 1.24 0.06 0.00066 +++ 0 

rs820299 0.81 0.06 0.00075 --- 48.1 

rs3764261 1.23 0.06 0.00086 +++ 0 

rs247617 1.24 0.06 0.00087 +++ 0 

rs17231506 1.23 0.06 0.00091 +++ 0 

rs821840 1.24 0.07 0.00111 +++ 0 

rs56156922 1.24 0.07 0.00111 +++ 0 

rs12446515 1.24 0.07 0.00123 +++ 0 

rs158478 1.21 0.06 0.00148 +++ 56 

rs72786786 1.24 0.07 0.00178 +++ 0 

rs60545348 0.82 0.07 0.00200 --- 36.2 

rs158479 1.20 0.06 0.00228 +++ 14.9 

rs247616 1.22 0.06 0.00229 +++ 0 

rs12597002 0.82 0.07 0.00248 --- 36.8 

rs708273 0.82 0.07 0.00272 --- 11.7 

rs4369653 0.83 0.07 0.00390 --- 51.7 

rs12149545 1.20 0.06 0.00467 +++ 0 

rs158477 1.19 0.06 0.00542 +++ 41 

rs56228609 1.19 0.07 0.00904 +++ 0 

rs4784745 0.85 0.06 0.00973 --- 0 

rs4784741 1.17 0.06 0.01014 +++ 16.6 

rs291044 0.85 0.06 0.01180 --- 0 

rs12444012 1.16 0.06 0.01211 ++- 26.5 

rs12720926 1.16 0.06 0.01338 +++ 0 

rs291043 0.86 0.06 0.01340 --- 0 

rs11508026 1.16 0.06 0.01611 +++ 3.8 

rs7187261 1.46 0.16 0.01636 +++ 0 

rs711752 1.15 0.06 0.02079 ++- 14 

rs708272 1.15 0.06 0.02231 ++- 18.5 

rs289751 1.50 0.18 0.02310 ++- 19.3 

rs711751 0.87 0.06 0.02725 --- 0 

rs4783962 0.86 0.07 0.02749 --- 0 

rs12447839 0.86 0.07 0.02944 --- 0 

rs11860407 1.14 0.06 0.03670 +++ 0 

rs12708980 1.13 0.06 0.03748 +++ 0 

rs891144 1.80 0.29 0.03975 +++ 0 

rs4587963 0.87 0.07 0.04051 --- 0 

rs2033254 1.13 0.06 0.04137 +++ 0 
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rs71387147 0.77 0.13 0.04162 --- 0 

rs247618 0.86 0.07 0.04195 --- 0 

rs12447924 0.87 0.07 0.04207 --- 0 

rs1800775 1.12 0.06 0.04412 +++ 0 

rs289746 1.16 0.07 0.04637 +++ 30.5 

rs1800776 0.79 0.12 0.04787 --- 14.4 

rs7187275 1.36 0.16 0.05059 +++ 0 

rs12934552 0.84 0.09 0.05069 --- 0 

rs3816117 1.12 0.06 0.05256 +++ 0 

rs12708985 1.18 0.09 0.05326 +++ 0 

rs13337445 0.80 0.12 0.05934 --+ 58.5 

rs1122390 0.87 0.07 0.05950 --- 0 

rs289742 1.18 0.09 0.06317 +++ 0 

rs12447620 1.17 0.09 0.06683 +++ 0 

rs1800777 1.31 0.16 0.07862 +++ 27.7 

rs17369163 0.81 0.12 0.07962 --+ 41.9 

rs1800774 1.11 0.06 0.08460 +++ 0 

rs4784751 1.12 0.06 0.08496 ++- 25.9 

rs7197864 0.85 0.09 0.08917 --- 0 

rs17290922 0.85 0.09 0.08959 --- 0 

rs4784750 1.11 0.06 0.10300 ++- 22.6 

rs1651663 1.12 0.07 0.10340 ++- 0 

rs7205459 0.86 0.09 0.10340 --- 0 

rs35926917 0.82 0.12 0.10970 --+ 30 

rs74023630 0.86 0.10 0.11230 --- 0 

rs9936680 0.83 0.12 0.11520 --+ 27 

rs158617 1.15 0.09 0.11720 +++ 0 

rs72786778 0.78 0.16 0.11730 +-- 0 

rs158480 1.15 0.09 0.12480 +++ 0 

rs56208677 1.21 0.12 0.12670 +++ 0 

rs12924030 0.87 0.09 0.12750 --- 0 

rs77751805 1.41 0.23 0.12930 +++ 0 

rs12445252 1.10 0.07 0.13250 ++- 12.7 

rs12444396 1.10 0.07 0.13630 ++- 22.1 

rs12923459 0.91 0.06 0.13720 --- 0 

rs9924087 0.84 0.12 0.13980 --+ 35 

rs289734 0.89 0.08 0.14040 --- 0 

rs1436425 1.10 0.07 0.14810 +++ 0 

rs17231534 0.80 0.15 0.15140 --+ 31.6 

rs74021897 1.10 0.07 0.15200 +++ 0 

rs289736 1.13 0.09 0.15400 ++- 0 

rs1684576 1.09 0.06 0.16500 ++- 43.4 

rs72778371 0.89 0.08 0.16690 --+ 0 
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rs5030708 0.77 0.19 0.17420 --+ 0 

rs12448528 0.90 0.08 0.17550 --- 0 

rs11862052 1.13 0.09 0.17610 +++ 0 

rs9989419 0.92 0.06 0.18080 +-- 0 

rs5880 1.22 0.15 0.18120 ++- 33.3 

rs117398617 0.90 0.08 0.18750 --+ 5.5 

rs891140 0.92 0.06 0.18850 --+ 33.2 

rs1875236 1.16 0.11 0.19390 +++ 0 

rs11644475 1.33 0.22 0.19900 ++- 44.9 

rs289735 1.09 0.07 0.20350 +-- 59 

rs4471669 1.09 0.07 0.20370 +++ 0 

rs11644171 1.09 0.07 0.20530 ++- 34.7 

rs7203984 1.10 0.08 0.20690 -++ 61.6 

rs289750 1.09 0.07 0.20860 +-- 61.5 

rs1875235 1.15 0.11 0.21210 +++ 0 

rs78921879 1.13 0.10 0.22040 ++- 0 

rs1684575 1.08 0.06 0.22380 ++- 78.5 

rs289749 1.09 0.07 0.22420 +-- 64.5 

rs9925054 0.93 0.06 0.22660 --- 0 

rs1549669 0.93 0.06 0.23250 --- 0 

rs166017 1.08 0.07 0.25260 ++- 32 

rs289714 1.10 0.08 0.25690 +++ 0 

rs7200805 0.81 0.19 0.26620 --- 0 

rs37025 0.93 0.06 0.27070 --+ 0 

rs289741 1.07 0.07 0.27560 +++ 0 

rs28504436 1.08 0.07 0.28780 ++- 0 

rs1672865 1.06 0.06 0.29450 ++- 79.6 

rs4783961 1.06 0.06 0.29560 -++ 70.3 

rs72773107 1.17 0.15 0.30590 +++ 0 

rs61738710 0.87 0.13 0.30930 --+ 0 

rs7194225 0.88 0.12 0.31030 --+ 43.4 

rs9921780 1.06 0.06 0.31310 +-+ 46.7 

rs172337 1.12 0.12 0.32300 ++- 0 

rs247610 0.94 0.06 0.32320 --- 0 

rs13339199 1.14 0.13 0.32340 -++ 24.2 

rs193695 0.94 0.06 0.32410 +-- 0 

rs12924331 1.06 0.06 0.32650 +-+ 46.6 

rs289743 1.07 0.07 0.32800 +++ 0 

rs34218679 1.09 0.09 0.32910 -++ 0 

rs247614 1.07 0.07 0.33000 ++- 0 

rs74931918 1.17 0.16 0.33020 +++ 0 

rs190324 0.94 0.06 0.33060 --+ 0 

rs56816073 1.07 0.07 0.33200 ++- 0 
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rs9925265 1.06 0.06 0.33440 +-+ 38.7 

rs821470 0.94 0.06 0.34020 --+ 57.2 

rs289718 1.06 0.07 0.34430 +++ 0 

rs289719 1.06 0.07 0.34430 +++ 0 

rs72780003 1.13 0.13 0.34750 -++ 35.5 

rs1167742 0.94 0.06 0.34760 --+ 55.5 

rs247611 1.06 0.07 0.35030 ++- 6.7 

rs16965077 0.87 0.15 0.35110 --- 0 

rs56353889 1.06 0.07 0.35280 ++- 6.6 

rs173537 1.06 0.07 0.35650 ++- 11.2 

rs1651666 0.94 0.06 0.36570 --+ 49.6 

rs193694 1.08 0.09 0.37040 ++- 28.2 

rs4474668 1.06 0.07 0.37100 ++- 10.2 

rs866038 1.06 0.07 0.37100 ++- 10.2 

rs861884 1.06 0.07 0.37480 ++- 8.7 

rs4783965 0.94 0.08 0.37950 --- 0 

rs5882 1.06 0.06 0.38030 +++ 0 

rs117910159 0.85 0.18 0.38260 +-- 0 

rs12920974 0.95 0.07 0.38690 --- 0 

rs955513 0.95 0.06 0.38930 -+- 16 

rs117427818 1.14 0.15 0.39120 ++- 39.8 

rs75911530 1.21 0.23 0.39520 ++- 0 

rs34946873 1.11 0.12 0.39740 +-+ 55 

rs247612 1.06 0.07 0.39750 ++- 0 

rs1820787 1.06 0.07 0.39760 ++- 0 

rs736274 1.08 0.10 0.40520 +++ 0 

rs247613 1.06 0.07 0.40650 ++- 0 

rs16970107 0.94 0.07 0.41030 --+ 48.4 

rs2133783 1.05 0.07 0.41850 ++- 23.6 

rs952440 1.05 0.07 0.41850 ++- 23.6 

rs37024 0.95 0.06 0.42090 -+- 4.7 

rs1864163 0.95 0.07 0.42110 -+- 0 

rs289716 1.05 0.07 0.42210 +++ 0 

rs16965150 0.84 0.22 0.42370 0 0 

rs2115429 0.94 0.08 0.42840 -+- 0 

rs37023 1.05 0.07 0.42950 ++- 35.2 

rs289715 1.08 0.09 0.43000 +++ 0 

rs12720873 1.16 0.20 0.44100 ++- 0 

rs16942393 0.96 0.06 0.44590 +-- 0 

rs8058353 1.13 0.16 0.44950 +++ 0 

rs8059595 1.13 0.16 0.44950 +++ 0 

rs36229787 0.95 0.07 0.45140 --+ 0 

rs28495885 0.93 0.10 0.45220 -+- 0 
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rs7203286 0.95 0.06 0.45290 --- 0 

rs3764263 0.96 0.06 0.45570 -+- 0 

rs12720897 0.91 0.13 0.45660 +-+ 72.9 

rs247606 1.07 0.08 0.45690 ++- 57.5 

rs193693 1.06 0.08 0.45940 ++- 54.3 

rs12708983 1.17 0.22 0.46050 ++- 0 

rs6499863 0.94 0.08 0.46090 -+- 0 

rs2518058 1.06 0.08 0.46140 ++- 59.3 

rs2052880 0.96 0.06 0.46370 +-+ 0 

rs7185561 1.05 0.07 0.46480 ++- 0 

rs12720898 0.91 0.13 0.46540 +-+ 74.7 

rs289748 1.04 0.06 0.46790 -++ 0 

rs711747 0.96 0.06 0.46810 -+- 0 

rs247609 1.05 0.07 0.46880 ++- 24.3 

rs12446867 1.05 0.07 0.46950 ++- 0 

rs17239354 0.91 0.13 0.46960 +-+ 72.4 

rs12373120 0.95 0.07 0.47300 --+ 22 

rs9931176 1.05 0.07 0.47440 ++- 0 

rs58124158 0.96 0.06 0.47870 --+ 52.3 

rs952439 1.06 0.08 0.48010 ++- 56.9 

rs821465 0.95 0.07 0.48170 -+- 0 

rs1820788 1.05 0.07 0.48180 ++- 27.5 

rs12720918 0.96 0.07 0.48520 --+ 0 

rs37029 0.96 0.06 0.48530 -+- 0 

rs37030 0.96 0.06 0.48530 -+- 0 

rs1428847 0.96 0.06 0.48540 -+- 0 

rs4784738 0.88 0.18 0.49100 +-- 12.4 

rs3903056 1.06 0.08 0.49130 ++- 54.2 

rs8059431 1.12 0.17 0.49370 ++- 0 

rs1167514 0.95 0.07 0.49730 +-- 0 

rs247608 1.06 0.09 0.49860 ++- 58 

rs289707 0.95 0.07 0.50100 -+- 0 

rs289703 1.05 0.07 0.50320 ++- 0 

rs16942394 1.04 0.06 0.50340 +++ 0 

rs881598 1.06 0.08 0.50530 ++- 49.8 

rs2518056 0.96 0.06 0.50540 -+- 0 

rs3812963 1.06 0.09 0.51130 -+- 10.4 

rs62035509 0.95 0.08 0.51430 -+- 21.6 

rs3794647 0.96 0.06 0.51640 -+- 0 

rs711748 0.96 0.06 0.51640 -+- 0 

rs37026 0.96 0.06 0.51740 -+- 0 

rs289747 1.04 0.06 0.51790 ++- 0 

rs1801706 0.95 0.08 0.51820 --+ 0 
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rs9924286 0.96 0.06 0.51890 -+- 0 

rs9926292 0.96 0.06 0.51890 -+- 0 

rs3794648 0.96 0.06 0.51910 -+- 7.3 

rs4784749 0.95 0.08 0.52130 --+ 27.1 

rs2217332 1.06 0.08 0.52310 ++- 56.9 

rs7196436 0.91 0.15 0.52670 +-- 0 

rs12598913 0.96 0.06 0.52970 --+ 55.5 

rs17245715 0.94 0.10 0.53240 +-- 9.6 

rs1366544 1.05 0.08 0.53380 ++- 57.2 

rs4548848 0.96 0.06 0.53980 -+- 0 

rs176532 0.96 0.07 0.54270 -+- 13.7 

rs75429044 0.94 0.09 0.54520 -+- 0 

rs2562126 1.05 0.08 0.55100 ++- 50.5 

rs55664802 0.95 0.09 0.55110 ++- 63 

rs74023644 0.91 0.16 0.55230 +-- 0 

rs74023645 0.91 0.16 0.55230 +-- 0 

rs16965220 0.96 0.06 0.55270 --+ 56.5 

rs3812964 0.97 0.06 0.55270 -+- 0 

rs12596509 0.97 0.06 0.55320 -+- 0 

rs708270 0.97 0.06 0.55320 -+- 0 

rs711749 0.97 0.06 0.55320 -+- 0 

rs821466 1.04 0.06 0.55600 +-- 19.3 

rs2518055 1.05 0.09 0.55830 ++- 62.2 

rs37031 0.97 0.06 0.55880 -+- 0 

rs17369468 0.96 0.07 0.56980 --+ 72.2 

rs62035538 0.96 0.07 0.57000 --+ 32.2 

rs55634433 0.92 0.15 0.57080 +-- 0 

rs75974417 0.96 0.07 0.57220 --+ 0 

rs247607 1.05 0.08 0.57390 ++- 62.3 

rs5805 0.97 0.06 0.57750 -+- 4 

rs56079121 0.95 0.09 0.58250 -+- 0 

rs11076176 1.05 0.08 0.58280 -++ 0 

rs39718 0.97 0.06 0.58610 -+- 0 

rs55726180 1.03 0.06 0.59180 +-+ 34.5 

rs58337780 0.92 0.16 0.59220 +-- 0 

rs12149572 1.03 0.06 0.59380 --+ 15 

rs1651665 0.97 0.07 0.59500 --+ 65 

rs9931252 0.95 0.09 0.59580 -+- 0 

rs711746 0.97 0.06 0.59610 -+- 0 

rs9932164 0.95 0.09 0.59750 -+- 0 

rs289754 0.97 0.06 0.59820 +-+ 0 

rs9927820 1.03 0.06 0.59860 +-+ 27 

rs112039804 1.06 0.11 0.59940 -++ 0 
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rs13330423 0.97 0.06 0.60360 --+ 0 

rs11863728 1.03 0.06 0.60370 +-+ 26.3 

rs12708968 0.95 0.10 0.60460 +-- 4.2 

rs12598522 1.03 0.06 0.60610 -0+ 6.3 

rs718620 0.95 0.10 0.60770 -+- 0 

rs28168 0.97 0.06 0.60860 -++ 2.4 

rs17370142 0.95 0.10 0.62360 -+- 63.3 

rs5808 0.97 0.06 0.62620 -++ 6.6 

rs13335668 0.95 0.10 0.62800 ++- 63.4 

rs72780004 0.97 0.07 0.62840 --+ 0 

rs1167741 0.97 0.06 0.63080 --+ 0 

rs37027 0.97 0.06 0.63100 -+- 25 

rs66495554 1.03 0.07 0.63350 -+- 0 

rs28880001 1.03 0.06 0.63540 +-+ 20.7 

rs12149414 1.03 0.06 0.63640 +-+ 20.6 

rs12149520 1.03 0.06 0.63640 +-+ 20.6 

rs3764262 1.03 0.06 0.63910 +-+ 21.4 

rs2399594 1.03 0.06 0.64040 +-+ 0 

rs56172892 0.95 0.10 0.64400 -+- 59.1 

rs11866974 1.03 0.06 0.64440 +-+ 12.7 

rs2518054 1.04 0.09 0.64590 -+- 7 

rs9927174 1.03 0.06 0.64680 +-+ 18.9 

rs76994065 0.94 0.14 0.65070 ++- 30.4 

rs56132500 1.06 0.12 0.65240 -++ 0 

rs9921645 1.03 0.06 0.65590 +-+ 18.3 

rs13333567 1.03 0.06 0.66610 +-+ 11.2 

rs62038195 1.03 0.06 0.66610 +-+ 11.2 

rs6499862 0.97 0.08 0.67060 -+- 0 

rs58138751 1.06 0.13 0.67380 -++ 0 

rs112952893 1.04 0.09 0.67450 -++ 0 

rs4783963 0.96 0.10 0.67460 -++ 39.7 

rs74023632 0.94 0.16 0.67490 +-- 0 

rs74611520 1.04 0.09 0.67580 -+- 10.9 

rs28438857 1.04 0.10 0.67760 ++- 50.9 

rs34531240 1.04 0.10 0.67760 ++- 50.9 

rs17369768 1.03 0.07 0.67840 --+ 50.2 

rs173538 0.97 0.06 0.67850 -++ 0 

rs6499861 0.97 0.08 0.68360 -+- 0 

rs60169561 0.97 0.07 0.68840 --+ 64 

rs72786781 0.91 0.25 0.69420 -+- 0 

rs117199686 0.95 0.14 0.69470 ++- 36.2 

rs7198642 1.03 0.07 0.69540 -+- 13.1 

rs11642606 0.98 0.06 0.69850 --+ 0 
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rs1549670 0.98 0.06 0.69980 --+ 22 

rs72773119 0.94 0.15 0.70100 +-- 0 

rs72773120 0.94 0.15 0.70100 +-- 0 

rs12708967 0.97 0.08 0.70330 -++ 0 

rs12934632 0.97 0.08 0.70990 --- 0 

rs8056195 1.02 0.06 0.71110 +-+ 25.2 

rs9938413 1.03 0.09 0.71190 -+- 0 

rs72778395 1.05 0.13 0.71880 -++ 0 

rs11076175 1.03 0.08 0.72010 -+- 61.6 

rs62035546 0.97 0.10 0.72510 ++- 59.6 

rs62035547 0.97 0.10 0.72510 ++- 59.6 

rs9931755 1.02 0.06 0.72880 +-+ 0 

rs55958623 1.03 0.09 0.73290 ++- 68.2 

rs12444708 1.04 0.11 0.74060 -++ 0 

rs37028 1.02 0.06 0.74230 +-+ 0 

rs28439729 0.95 0.14 0.74340 ++- 39 

rs9938543 0.97 0.10 0.74640 ++- 54.9 

rs72773124 0.95 0.16 0.75040 +-- 0 

rs7195863 0.95 0.16 0.75200 +-- 0 

rs11076174 1.03 0.11 0.75460 -++ 61.2 

rs12720922 1.02 0.08 0.75480 -+- 62.5 

rs176533 1.02 0.06 0.75480 +-- 14.1 

rs9937834 0.97 0.10 0.75750 ++- 57.8 

rs56096618 1.04 0.13 0.75850 -++ 0 

rs34760410 0.97 0.11 0.76310 +-+ 20.7 

rs289708 0.98 0.08 0.76560 -++ 0 

rs291040 0.98 0.06 0.76990 +-+ 0 

rs9923854 0.97 0.11 0.77100 -++ 33.9 

rs7499892 1.02 0.08 0.77580 -+- 65.5 

rs1991515 0.98 0.06 0.79010 -++ 27.7 

rs9930761 0.97 0.13 0.79220 -++ 33 

rs11644125 0.98 0.06 0.79850 --+ 65.6 

rs12445769 1.02 0.06 0.79860 +-+ 11.5 

rs7499911 0.96 0.14 0.80040 ++- 43.8 

rs5883 0.97 0.15 0.81220 -++ 60.1 

rs12149408 1.02 0.06 0.81240 +-+ 0 

rs28888131 0.98 0.08 0.81300 -+- 0 

rs9788873 0.99 0.06 0.81520 +-+ 16.7 

rs12928552 1.03 0.12 0.81890 -++ 0 

rs1566439 1.01 0.06 0.81980 --+ 0 

rs7204290 0.99 0.06 0.82070 +-+ 25.2 

rs821463 1.01 0.06 0.82460 +-- 6.3 

rs56315364 1.01 0.06 0.82880 --+ 26.8 
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rs72771478 0.95 0.23 0.83030 -+- 0 

rs72771479 0.95 0.23 0.83030 -+- 0 

rs12708974 1.02 0.10 0.83470 +-+ 55.5 

rs62035542 0.98 0.10 0.83840 ++- 65.5 

rs2399597 0.98 0.09 0.84060 -++ 0 

rs74439742 0.98 0.08 0.84680 --+ 9.4 

rs117426126 0.97 0.15 0.84760 ++- 39.3 

rs76691037 0.97 0.16 0.84890 +-- 0 

rs863706 1.01 0.07 0.85560 ++- 35.9 

rs80195568 1.03 0.14 0.85600 ++- 0 

rs75378421 0.97 0.14 0.85750 ++- 28.1 

rs118146573 1.02 0.09 0.85860 -+- 0 

rs1651667 0.99 0.07 0.85910 --+ 66.4 

rs80327887 0.98 0.14 0.85920 ++- 0 

rs78459786 0.98 0.14 0.86240 ++- 37.2 

rs16965070 0.98 0.12 0.86280 -++ 0 

rs9929488 0.99 0.07 0.86460 -+- 60.2 

rs56285233 0.98 0.12 0.86890 -++ 0 

rs16965037 1.01 0.06 0.87340 --+ 58.5 

rs62038194 1.01 0.07 0.88320 ++- 31.6 

rs16965039 1.02 0.12 0.88380 -+- 0 

rs62035543 0.99 0.10 0.88690 ++- 65.4 

rs4544228 1.01 0.07 0.88820 ++- 40.5 

rs116889966 1.02 0.14 0.89070 ++- 0 

rs1151265 1.02 0.13 0.89260 -+- 0 

rs16965033 0.98 0.12 0.89270 -+- 0 

rs80103996 1.02 0.14 0.89800 ++- 0 

rs36229786 0.99 0.08 0.90440 -++ 0 

rs17310296 0.98 0.14 0.90770 ++- 34.2 

rs8044804 0.99 0.06 0.91290 +-+ 25.9 

rs11861555 1.01 0.06 0.91590 +-+ 0 

rs62035537 0.99 0.09 0.91610 -++ 3.3 

rs62035545 1.01 0.10 0.92080 ++- 65.8 

rs7500979 0.99 0.06 0.92890 +-+ 33.7 

rs7205692 0.99 0.09 0.93500 -++ 0 

rs9939318 0.99 0.10 0.94140 ++- 63.1 

rs11864751 1.00 0.06 0.96150 +-+ 28.6 

rs74912812 0.99 0.14 0.96220 ++- 46.4 

rs289737 1.00 0.07 0.96920 ++- 0 

rs1167513 1.00 0.13 0.97280 -+- 0 

rs291042 1.00 0.08 0.97420 -+- 0 

rs62035544 1.00 0.10 0.97520 ++- 61.3 

rs76631084 1.00 0.14 0.97580 ++- 0 
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rs17369578 1.00 0.14 0.97700 ++- 57.9 

rs289752 1.00 0.06 0.97820 +-- 39.6 

rs74613568 1.00 0.14 0.98330 ++- 0 

rs55744249 1.00 0.09 0.98600 ++- 72.4 

rs56273021 1.00 0.06 0.98790 --+ 62.8 

OR = odds ratio, SE = standard error, SNP = single nucleotide polymorphism, + = 
variant increases ICH risk, - = variant decreases ICH risk. 
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Supplementary Table S5. Discovery phase results for top SNPs within each semi-independent CETP locus with ICH risk 

Allele information Meta-analysis results Study specific odds ratios 

Lead SNP CHR BPP 
Tested 
allele 

OR SE P I2 GOCHA 
ISGC 
ICH 

GERFHS 

rs173539 16 56988044 T 1.25 0.0646 0.00060 0 1.19 1.34 1.22 

rs820299 16 57000284 G 0.81 0.0628 0.00075 48 0.82 0.71 0.97 

rs158478 16 57007734 A 1.21 0.0611 0.00148 56 1.16 1.43 1.05 

rs4784745 16 57014875 G 0.85 0.0635 0.00973 0 0.89 0.80 0.87 

rs7187261 16 57031716 T 1.46 0.1588 0.01636 0 1.34 1.67 1.33 

rs289751 16 57026775 G 1.50 0.1777 0.02310 19 1.48 1.93 0.96 

rs711751 16 56993909 A 0.87 0.0617 0.02725 0 0.88 0.83 0.93 

rs4783962 16 56995038 T 0.86 0.0697 0.02749 0 0.89 0.80 0.91 

rs891144 16 57011936 T 1.81 0.2872 0.03975 0 1.77 2.09 1.48 

rs71387147 16 57010382 G 0.77 0.1269 0.04162 0 0.79 0.77 0.75 

rs1800775 16 56995236 A 1.12 0.058 0.04412 0 1.20 1.11 1.05 

rs289746 16 57020205 T 1.16 0.0728 0.04637 30 1.38 1.07 1.05 

Association results by locus for variants displaying association with ICH with p<0.05, clumped into regions with r2>0.5. BPP = 
base pair position, CHR = chromosome, GERFHS = Genetic and Environmental Risk Factors for Hemorrhagic Stroke study, 
GOCHA = Genes and Outcomes of Cerebral Hemorrhage on Anticoagulation study, ISGC = International Stroke Genetics 
Consortium, OR = odds ratio, SE = standard error, SNP = single nucleotide polymorphism 
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Supplementary Table S6. Discovery phase association results for top SNPs within each semi-independent CETP 
locus, stratified by ICH location 

Allele information All ICH Lobar ICH Non-lobar ICH 

SNP CHR 
Tested  
allele 

OR SE p I2 OR SE p I2 OR SE p I2 

rs173539 16 T 1.25 0.06 0.00060 0 1.27 0.08 0.00309 0 1.22 0.08 0.01151 0 

rs820299 16 G 0.81 0.06 0.00075 48 0.83 0.08 0.02348 0 0.80 0.08 0.00348 55 

rs158478 16 A 1.21 0.06 0.00148 56 1.12 0.08 0.12610 0 1.28 0.07 0.00067 70 

rs4784745 16 G 0.85 0.06 0.00973 0 0.81 0.08 0.01099 0 0.86 0.08 0.05479 0 

rs7187261 16 T 1.46 0.16 0.01636 0 1.49 0.20 0.04468 0 1.40 0.19 0.08000 17 

rs289751 16 G 1.50 0.18 0.02310 19 1.16 0.24 0.53900 0 1.71 0.20 0.00761 45 

rs711751 16 A 0.87 0.06 0.02725 0 0.83 0.08 0.02132 0 0.92 0.07 0.27480 0 

rs4783962 16 T 0.86 0.07 0.02749 0 0.88 0.09 0.16880 0 0.83 0.08 0.02928 8 

rs891144 16 T 1.81 0.29 0.03975 0 2.02 0.53 0.18860 0 2.45 0.49 0.06926 0 

rs71387147 16 G 0.77 0.13 0.04162 0 0.75 0.17 0.08241 0 0.81 0.15 0.16250 0 

rs1800775 16 A 1.12 0.06 0.04412 0 1.14 0.07 0.06925 0 1.13 0.07 0.08727 0 

rs289746 16 T 1.16 0.07 0.04637 30 1.17 0.09 0.08431 60 1.15 0.09 0.09409 0 

CHR = chromosome, OR = odds ratio, SE = standard error, SNP = single nucleotide polymorphism 
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Supplementary Table S7. International Stroke Genetics Consortium Contributors 

Name Affiliation and ISGC Role 

Sylvia Smoller, PhD  Albert Einstein College of Medicine, Site co-investigator 

John Sorkin, MD  Baltimore VA Medical Center, Site co-investigator 

Xingwu Wang, MD  Beijing Hypertension League Institute, Site co-investigator 

Magdy Selim, MD, PhD  Beth Israel Deaconess Medical Center, Site co-investigator 

Aleksandra Pikula, MD, PhD  Boston University Medical Center, Site co-investigator 

Philip Wolf, MD, PhD  Boston University School of Medicine, Site co-investigator 

Stephanie Debette, MD  Boston University School of Medicine, Site co-investigator 

Sudha Seshadri, MD  Boston University School of Medicine, Site co-investigator 

Paul de Bakker, PhD  Brigham and Women's Hospital, Site co-investigator 

Daniel Chasman, MD  Brigham and Women's Hospital, Site co-investigator 

Kathryn Rexrode, MD  
Brigham and Women's Hospital, Harvard Medical School, 

Site co-investigator 

Ida Chen, MD  Cedars Sinai Medical Center, Site co-investigator 

Jerome Rotter, MD  Cedars Sinai Medical Center, Site co-investigator 

May Luke, MD  Celera, Site co-investigator 

Michelle Sale, MD  University of Virginia, Site co-investigator 

Tsong-Hai Lee, MD  
Chang Gung Memorial Hospital, Linkou Medical Center, Site 

co-investigator 

Ku-Chou Chang, MD  
Chang Gung Memorial Hospital, Chang Gung University, Site 

co-investigator 

Mitchell Elkind, MD, MS  Columbia University, Site co-investigator 

Larry Goldstein, MD, PhD  Duke University, Site co-investigator 

Michael Luke James, MD Duke University, Site co-investigator 

Monique Breteler, MD  Erasmus University, Site co-investigator 

Chris O'Donnell, MD  Framingham Heart Study, Site co-investigator 

Didier Leys, MD  France, Site co-investigator 
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Cara Carty, MD  
Fred Hutchinson Cancer Research Center, Site co-

investigator 

Chelsea Kidwell, MD  Georgetown University, Site co-investigator 

Jes Olesen, MD  Glostrup Hospital, Site co-investigator 

Pankaj Sharma, MD, PhD  
Hammersmith Hospitals & Imperial College London, Site co-

investigator 

Stephen Rich, MD, PhD  University of Virginia Health System, Site co-investigator 

Turgot Tatlisumak, MD  Helsinki University Central Hospital, Site co-investigator 

Olli Happola, MD  Helsinki University Central Hospital, Site co-investigator 

Philippe Bijlenga, MD  Hìpitaux Universityersitaires de Genäve, Site co-investigator 

Carolina Soriano, MD  IMIM-Hospital del Mar, Site co-investigator 

Eva Giralt, MD  IMIM-Hospital del Mar, Site co-investigator 

Jaume Roquer, MD  IMIM-Hospital del Mar , Site co-investigator 

Jordi Jimenez-Conde, MD  IMIM-Hospital del Mar , Site co-investigator 

Ioana Cotlarcius, MD  Imperial College London, Site co-investigator 

John Hardy, MD  Institute of Neurology, UCL, Site co-investigator 

Michal Korostynski, MD  
Institute of Pharmacology, Krakow, Poland , Site co-

investigator 

Giorgio Boncoraglio, MD  IRCCS Istituto neurologico Carlo Besta , Site co-investigator 

Elena Ballabio, MD  IRCCS Istituto neurologico Carlo Besta , Site co-investigator 

Eugenio Parati, MD  IRCCS Istituto neurologico Carlo Besta , Site co-investigator 

Adamski Mateusz, MD  Jagiellonian University, Site co-investigator 

Andrzej Urbanik, MD  Jagiellonian University, Site co-investigator 

Tomasz Dziedzic, MD  Jagiellonian University, Site co-investigator 

Jeremiasz Jagiella, MD  Jagiellonian University, Site co-investigator 
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Jerzy Gasowski, MD  Jagiellonian University, Site co-investigator 

Marcin Wnuk, MD  Jagiellonian University, Site co-investigator 

Rafael Olszanecki, MD  Jagiellonian University, Site co-investigator 

Joanna Pera, MD  Jagiellonian University, Site co-investigator 

Agnieszka Slowik, MD  Jagiellonian University, Site co-investigator 

Karol Jozef Juchniewicz , MD  Jagiellonian University, Site co-investigator 

Christopher Levi, MD  
John Hunter Hospital, University of Newcastle, Site co-

investigator 

Paul Nyquist, MD, PhD  Johns Hopkins School of Medicine, Scientific committee 

Iscia Cendes, MD  Joinville Biobank, Site co-investigator 

Norberto Cabral, MD  Joinville Biobank, Site co-investigator 

Paulo Franca, MD  Joinville Biobank, Site co-investigator 

Anderson Goncalves, MD  Joinville Biobank, Site co-investigator 

Lina Keller, MD  Karolinska Institutet , Site co-investigator 

Milita Crisby, MD  Karolinska Institutet, Sweden, Site co-investigator 

Konstantinos Kostulas, MD  
Karolinska Institutet, Karolinska University Hospital, 

Huddinge unit, Site co-investigator 

Robin Lemmens, MD  Leuven, Site co-investigator 

Kourosh Ahmadi, MD  London, Site co-investigator 

Christian Opherk, MD  
Ludwig-Maximilians-Univeritat Munchen , Site co-

investigator 

Marco Duering, MD  
Ludwig-Maximilians-Univeritat Munchen , Site co-

investigator 

Martin Dichgans, MD  
Ludwig-Maximilians-Univeritat Munchen , Site co-

investigator 

Rainer Malik, PhD  
Ludwig-Maximilians-Univeritat Munchen , Site co-

investigator 

Mariya Gonik, MD  
Ludwig-Maximilians-Univeritat Munchen , Site co-

investigator 

Julie Staals, MD  
Maastricht University Medical Centre, Maastricht, the 

Netherlands, Site co-investigator 

Olle Melander, MD, PhD  Malmo University Hospital, Site co-investigator 

Page 57 of 65

John Wiley & Sons

Annals of Neurology

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
Anderson CD et al.                                                                                                        CETP Genetic Variation 
and ICH 

 
21

Philippe Burri, MD  Malmo University Hospital, Site co-investigator 

Ariane Sadr-Nabavi, MD  
Mashhad University of Medical Sciences, Site co-

investigator 

Javier Romero, MD, PhD  Massachusetts General Hospital, Site co-investigator 

Alessandro Biffi, MD  Massachusetts General Hospital, Site co-investigator 

Chris Anderson, MD  Massachusetts General Hospital, Site co-investigator 

Guido Falcone, MD  Massachusetts General Hospital, Site co-investigator 

Bart Brouwers, MD  Massachusetts General Hospital, Site co-investigator 

Jonathan Rosand, MD, MSc  Massachusetts General Hospital, Site co-investigator 
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Figure 1. Regional association plot of rs173539 and SNPs exhibiting r2>0.5 in association with ICH. SNPs 
available for replication are circled. Mean recombination rate across the locus is represented by the 

continuous blue line. The rs3764261 variant identified was the leading SNP in prior genome-wide association 
studies of HDL-C. Chr = chromosome, cMMb = centimorgans per megabase, Mb = megabase.  
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