Generalized conservation equation for multicompartmental systems
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A projection operator technique is used to derive an equation for local tissue tracer content Q(t),
assuming linear multicompartmental kinetics for tracer utilization. The resulting equation has
the form (d /dt) Q(¢) = FC,(¢) — AQ(t) — §odt[£(r)C, (1 — 1) — ¢(7)Q(t — 1) |, where F
and C, () denote local blood flow and concentration of tracer, respectively. Tissue complexity is
contained within the new parameters A, £(¢), and ¥ (¢), where the time-dependent coefficients are
expressed as sums of exponentials. Two simple applications are considered: tissue heterogeneity
and internal trapping of tracer. The relationship to effective single compartmental analysis, as is
used for local cerebral blow flow determination, is evaluated.

. INTRODUCTION

Physiological imaging schemes rely heavily on a basic under-
standing of the mechanisms whereby a radiolabeled sub-
strate is utilized. Analysis of data obtained in this way pro-
vides a mean for estimating important system parameters. In
many situations, mathematical description by linear com-
partmental models is sufficient. A simple example is the eva-
luation of local cerebral flow F from tomographic data ob-
tained from'> O-labeled water. Solution of the first-order
differential equation'~""'

£.0) =F[C.(0) = Q01/¥, ), (L1
where Q(¢) and C, () represent tissue tracer content and
arterial concentration of tracer at times #, respectively, re-
sults in an estimate for F. V is the local distribution volume
estimated from the data or taken as a specific value. More
complex models are applied to determination of local tissue
oxygen and glucose utilization.®*'° Since one cannot sample
individual compartments, parameters are extracted from
two measured quantities: local tissue tracer content Q(¢)
and the measured arterial input C, (2).

Generalization of Eq. (1.1) to include more complex si-
tuations is readily accomplished. Inasmuch as one only mea-
sures Q(¢) and C, (1), an equation in terms of these quanti-
ties alone is sufficient to describe a given measurement. To
this end, a projection operator technique is employed to
transform a class of multicompartmental models (Sec. II) to
a single equation in Q(z) and C,(¢).'*'* The resulting
expression bears a formal resemblance to Eq. (1.1). Tissue
complexity is contained in two new time-dependent func-
tions #(z) and £(¢), and an effective partition coefficient
A, General expressions for ¢/(¢), £(¢), and A are derived.

The general formalism derived in Sec. II is then applied to
two specific examples: internal trapping of tracer'* repre-
sented by a two-compartment model and tissue heterogen-
eity.® In the former, only a fraction of tissue tracer activity is
available for washout at a given time. One supposes that
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within the cellular-interstitial space other processes occur
which bind tracer. Such analysis indicates that short-time
and steady-state determination of compartment parameters
from an effective “one compartmental” model can be in dis-
agreement.

Tissue heterogeneity is of particular importance when
sampling at an interface (i.e., grey—white matter). An equa-
tion for local tissue activity is derived for the model consid-
ered by Herscovitch et al. The nature of time dependence
introduced by tissue elements with different blood flows is
evaluated, as well as conditions fo% which such time depen-
dence may be neglected.

The relationship between the technique presented herein
and deconvolution schemes for the tissue transfer function is
evaluated.

il. GENERALIZED CONSERVATION EQUATION

Consider the situation in which radiolabeled pharmaceu-
tical is delivered to a tissue element. Suppose that the tissue
element is divided into N compartments, a subset A of which
may exchange directly with the plasma. Let F, denote the
blood flow to the ith compartment, then the corresponding
input function if F; C, (1). C, (¢) is the instantaneous arteri-
al concentration of tracer at time ¢. Furthermore, let Q, ()
represent the tracer activity in compartment j at time 7. We
shall consider the following class of kinetic equations for
Qj (#):

d N
EQ; = — z M, Q. (1) + (1),

k=1

where the matrix element M, describes the rate of substrate
exchange between compartments j and k, and

F,C,(1),

2.1)

JeA,

(1) = (2.2)
fj( ) [O, otherwise.
Expressed in matrix form, Eq. (2.1) becomes
2.0 = - MO + ), (2.3)
© 1987 Am. Assoc. Phys. Med. 218



219 Ronaid S. Adier: Generalized conservation equation for muiticompartmental systems 219

with Q(#)=col {Q;(0)}, f(£) =col {f(H)}, M={p;}
and col=column. Equation (2.3) is in a form particularly
amenable to the application of projection operator tech-
niques. Such methods have proven to be useful in reducing
equations with multiple degrees of freedom to a few relevant
variables.'>'? Inasmuch as total tissue element activity is
sampled, the relevant variable is

(1) = 2 Q;(t) =a™Q(z). (2.4)
ji=1

a is a column vector whose elements are unity and T denotes

transpose operation. Given these relations, it is demonstrat-

ed in Appendix A that Q(¢) satisfies the equation

L (1) =FC, (1) — AQ(1)
dt

—f dr[§(r)C, (1 — 1) —P(7)Q(t —7)],
0
(2.5)

where Fis the total blood flow to the tissue element and the
coefficients A, £(¢) and ¥(¢) are defined by

_—z i (2.6a)

v = —iia(t)TMza, (2.6b)
Nd

&) = ——-d—Za (1)F, (2.6¢)

jEA

and the time-dependent vector &(¢) is given by Eq. (A9).
The entire system of Eqs. (2.1) are reduced to a single
expression for the measured substrate and arterial input. Tis-
sue complexity is contained within the coefficients A, 1(¢),
and £(¢) given by Eqs. (2.6).

We next demonstrate that 1(¢) and £(¢) are expressable
as sums of exponentials:

Nt 174
Wy =3 ge ',

j=1

(2.7a)

£ = Z Ee T, (2.7b)

i=1

where the set {1,, £;} are constant coefficients and the set
{1/7,} are the characteristic values for M2, Egs. (B2)—(B4).

This decomposition contains N — 1 terms corresponding to
the remaining N — 1 degrees of freedom projected out of Eq.

(2.1). The details are presented in Appendix B. The set
{¢;, #;, 7;} are therefore easily calculated for a specific mod-
elor alternatlvely may serve as parameters to be determined
empirically.

Equations (2.5) and (2.7) form a basis for experimentally
characterizing a tissue element in a manner analogous to
deconvolution techniques. Let I(#) denote the tissue re-
sponse function to the unit impulse input, then for arbitrary
input, C, (1),

o) =f drC, (t — 1) I(7). (2.8)
0

Defining the Laplace transform of a function g(t) by
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S’(S)Efw dte S'g(1), (2.9)
0
results in

0(s) = C, (5)I(s). (2.10)

Taking the Laplace transform of Egs. (2.5)-(2.7) and solv-
ing for Q(s) allows identification of T (s):

I(s) = [F—Es)1/[s+ A — 9(s)], (2.11)

with

=S & ( ) (2.12a)
j=1 7;

=314 /(s+1). (2.12b)
i=1 75

In the subsequent sections, two simple applications of this
general formalism are considered.

lll. TWO-COMPARTMENT MODEL: INTERNAL
TRAPPING OF TRACER

Two basic assumptions of the Kety-Schmidt equa-
tion,'"> Eq. (1.1), are

(1) Rapid equilibration across the blood-brain barrier.

(2) Structureless tissue element.
We extend the latter assumption by supposing that within
the cellular-interstitial space, other processes occur which
bind tracer. The amount of tracer available for exchange
with the plasma is thereby reduced. The representative equa-
tions are then given by'*

g; Q,(6) = F[C, (1) — Q,(6)/V ]

— k1 Qs (1) + k30, (2), (3.1a)

%Qb(l) =lef(t) —k,0, (), (3.1b)

where the subscripts fand b designate “free” and “bound”
components, respectively. In addition the following local
quantities have been introduced:

Qs(#) = local tracer activity that freely exchanges with
the plasma,
@, (t) = nonfreely exchangeable tracer,

ki,k, = rate constants for accumulation and decline of
tracer, respectively,

and V has dimensions of volume. Equations (3.1) are trans-
formed into matrix form by making the identifications:

Qf)

= , 3.2

Q (Q,, (3.22)

f— (0 C. (1), (3.2b)
| k+F/wV - k2>

M= (_ k, k) (3.2¢)

With this definition, it is demonstrated in Appendix B that
the local tissue tracer content satisfies the conservation
equation:
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% Q) =F[C, () —Q()/2V]

—J dr{§(t —nC, (1) — ¢t —7)Q(N) ],
(1]

(3.3)
with §(7), ¥(7) given by
F2
£ =—pe (3.42)
v =35 (554 b k) (345
F
ﬂ=?+2(k1 + k). (3.4¢)

Further analysis of Q(¢) is facilitated in the Laplace do-
main. Applying Eq. (2.9) to Egs. (3.3) and (3.4) results in
the following expression for the tissue transfer function,

I(s) = [F—E'(S)]/[s+(2—1;—z~ﬁ(s))], (3.5a)
2
) = Y% (s +u/2), (3.5b)
P(s) = (i-f—k ) (s +u/2) (3.5¢)
YAV 4 Bl ‘

For short times, the high-frequency (s— o ) components of
I(s) are most important. The leading behavior of I(s) in
powers of 1/sis

7(s)~(1 —i)ﬁ,
sV/ s

5§~ oo,

indicating that V is the effective “short-time” distribution
volume; incorporation of tracer into a bound compartment
has not yet occurred. Alternatively, for times such that ur> 1
(i.e.,.>s), we may approximate E(s) ~§(0), {b(s) ~{p(0).
Making these replacements in Eq. (3.5) and reconverting to
an equation for Q(¢) results in the asymptotic equation,

%Q(t)=3§ [k + k)C (1) — 2,0(0/2V ], (3.6)

or in situations for which C, (#) approaches a steady-state
value,

(3.7)

Q(oo)/Ca(oo)—vV(m).

k,
Equation (3.6) reflects the additional volume occupied by
bound tracer at steady-state conditions.

Several authors have commented on a nonphysiologic de-
cline of cerebral blood flow as a function of time when deter-
mined from single compartmental analysis. 716 Suppose that
F( t) denotes the estimated blood flow obtained by assuming
the validity of Eq. (1.1); then for a given data set {Q(7),
C, (O}

F(1) =Q(r)/f dr[C, (1) — Q(r)/V] (3.8)
0

provides an estimate of local blood figw. In the presence of
internal trapping of tracer, we expect F should approximate
F for sufficiently short times. Solution of Eq. (3.3) for F
results in a relatively complicated nonlinear expression for
local flow which greatly simplifies for ut> 1,
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k,+k

F=0t)/{| ——"2— 'd
o )/[<F/2V+k1+k2)fo 7

Sl
C(n LT ( K
X[ (N == (k,+k2 ’

where Eq. (3.6) has been used. This expression becomes
similar to Eq. (3.8) provided we replace V' by the steady-
state distribution volume V(1 + k,/k,), and the coefficient
(ki + k,)/(F72V + k{ + k,) can be set approximately to
unity. The latter condition holds when there is rapid equili-
bration within the internal compartment. Actual variation
of F (#) may then be detected in nonflow limited situations.
Alternatively, comparison of short-time and asymptotic de-
terminations of flow and distribution volume may be used to
validate single compartmental analysis.

(3.9)

IV. TWO-COMPARTMENT MODEL: TISSUE
HETEROGENEITY

Consider a tissue element as consisting of two compart-
ments, each receiving a separate blood flow. The analogous
experimental situation is a measurement of local tracer con-
tent at a tissue interface. This model was numerically evalu-
ated by Herscovitch et al., in order to validate the single
compartment analysis for cerebral blood flow determina-
tion.® Let Q,(#) and Q,(¢) denote local tracer content in
each component, and also suppose that Eq. (1.1) is valid in
each regime, then

%le = F,[C,(t) — Q,(D/V,], (4.12)

%Qz(t) =F[C,(t) — Q,(8)/ V], (4.1b)

where {F,,V,} refer to local blood flow and distribution vol-
ume. Application of the general formalism, Eq. (2.5), to this
situation results in an exact equation for Q(¢). Equation
(4.1) is placed into matrix form by defining

Q,m)
= 4.2
Q) (sz (4.2a)
£(2) :Ca(t)(i‘), (4.2b)
2
_(F/V, 0 )
M_(O F/V, . (4.2¢)

Utilizing these definitions, it is demonstrated in Appendix B
that Q(r) is a solution of Eq. (2.5), where the coefficients A,
¥(2), and £(t) are given by

A=YF/V,+F/V) (4.3a)
E(1) = (Fy/V, — Fy/Vy) (Fy, — Fy)e ™, (4.3b)
W(t) = WF/V, — Fy/Vy)%e M (4.3¢)

The quantity A is the mean rate of transit through the tissue
element. Intrinsic time dependence introduced by the func-
tions £(¢) and ¥(¢) is negligible when transit rates through
each component are comparable, F,/V, ~F,/V,. If we sup-
pose the latter to be true, Eq. (1.1) is satisfied provided we
define an effective distribution volume V_; by
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1 a, a,
=L+ =2 (4.4)
Veﬂ' Vl V2
with
a; = %(E/F)’ i= 1’2’ (4'5)

Fbeing the total flow. In the situation for which ¥, ~ V,, the
correction introduced by the time-dependent coefficients
£(t) and ¥(r) is second order in (F, — F,)/F (ie., O
[(F, — F,)/F]*.

V. DISCUSSION

Projection operator techniques have proven to be a useful
means of reducing dynamical descriptions of complex sys-
tems to several relevant variables. Application to linear mul-
ticompartmental analysis results in a simple appearing equa-
tion for local tissue tracer content (Sec. II). Tissue
complexity is buried in the functions ¥(¢) and £(¢), which
may be reduced to expansions involving the characteristic
values of the modified evolution matrix M,, Eq. (A9).

We have considered two particular examples herein, that
of tissue heterogeneity and internal trapping of tracer. In the
latter, tracer washout is primarily determined by the mean
rate of transit through the conglomerate tissue element,
A=1/2 (F,/V, 4+ F,/V,). The time-dependent corrections
to the resulting single compartmental equation are roughly
second order in the relative fractional flow [i.e,
~ (F, — F,)?/F?]. When internal trapping of tracer is of
importance, the asymptotic distribution volume reflects the
additional bound tracer, ¥V, ~ ¥(1 + k,/k,). Furthermore,
flow determination by dynamic single-compartment analy-
sis is approximately valid at sufficiently short times or as-
ymptotically, provided the appropriate distribution volume
is used. Time dependence in flow determined from a single
compartment analysis should be observed in nonflow-limit-
ed situations, as would be expected.

A potential application of this technique relates to situa-
tions in which a specific mathematical model for tracer utili-
zation is unavailable. The generalized conservation equa-
tion, Eq. (2.5), may then serve as a starting point for data
analysis. Empirical determination of the parameters
{¥;, &, 7.} characterize the functions #(¢) and £(¢). Such
an approach is similar to deconvolution schemes for the tis-
sue transfer function.
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APPENDIX A
Recall the vector a defined by
o = col{1,1,...}. (A1)
Consider operators p and ¢ defined by
1 r
=—aa’, A2
p N (A2)
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g=l—p, (A3)

| being the identity operator. The operators p and g satisfy
the idempotence property, p* = p and ¢* = g, and therefore,
qualify as projection operators.'” Furthermore, p and ¢ are
readily demonstrated to be complementary in the sense that
pq=4qp=0.

We next show that the operators p and ¢ taken with Eq.
(2.3) can be used to derive Eq. (2.5). The methods em-
ployed are well known within the context of derivations of
transport theory in statistical physics.'>'? Define the follow-
ing quantities:

Q, =pQ, (Ada)
Q,=4Q, (A4b)
M, =pM, (A4c)
M, =gM, (A4d)
f, = pf, (Ade)
f, =gf. (A4f)

Applying p and g individually to Eq. (2.3) and using Eqgs.
(A4) yields equations for Q, and Q,:

(% + Ml)Ql(t) =1£,() — M,Q,(1), (ASa)
(% + Mz)Qz(t) =£,(1) — M,QL(1). (ASb)

Itis convenient to eliminate Q, in the above equations there-
by resulting in a single expression for Q,:

d
(E+ Ml)Ql(t)

=f,(¢) —f drMe~™:[f,(t — 1) — M, Q,(t — 7)1,
0
(A6)

where the initial condition Q(0) =0 has been used. We
make use of the relations,

a’Q, (1) = Q(1), (A7a)
1 1
a"f,(8) =FC, (1) = C,(1) 3 F, (A7c)

JjeA
where Eq. (A7b) defines A, and F is the total flow to the
tissue element. Now consider evaluation of the term

(ITMIGQ TMzqul(t —7) E¢(T)Q(t —7),
with the new function ¥(7) being defined by

1//(7—)5% oa’Me = ™M:M, 0. (A8)

This expression is further simplified by introducing two new
definitions:
M,=gM7, (A9a)
a(r)=e ™q, (A9)

Utilizing the idempotence of g, as well as the property
a’gb = (ga) ™, the vectors a and b being arbitrary, allows us
to write
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a™e ™ ™:M,a = (gM7a) e = ™:M,a.

Expanding the exponential as a power series and again em-
ploying idempotence property results in

(gMTa) e~ ™:M,a = (gM7e "M 'a) M, a,
which by Eq. (A9) becomes

1 d .
Y(r) = _FE“(T)TMza' (A10)
Similarly, we define a function £(7) by
E(r) = —d—za(f) (All)

jeA

Then Eq. (A6) simplifies to

d
e = FC _
i o) L (1) — AQ(1)

—f dr[E(r)C, (1 —7) — (1)t —7)].
(¢)
(A12)

APPENDIX B

Further decomposition of the functions #(¢) and §(¢) is
accomplished in terms of the characteristic values of the ma-
trix Mz, Eq. (A9). Since M is in general not symmetric, we
must separately define left and right eigenvectors by

MV, =1V, (Bla)
VM, =4V, (B1b)
By virtueA of Eq. (A9), I\?I2 has at least one zero eigenvalue
since «'M, = 0. Let us assume that the remaining N — 1

eigenvalues are distinct, then an orthonormal set is easily
constructed:

ViVE=46,, (B2)
where
1, i=j,
5.:{
N (O ()

is the Kronecker delta. By convention choose VY = a’, then
the vector d /dt &(t) is equivalent to
N-—1
1

———a(t)— — Z —

ji=1 T

e” Vi)V, (B4)
where the set {1/7;} are the nonzero eigenvalues of |\712. Sub-
stitution of Eq. (B4) into Egs. (A10) and (A11l) and com-
parison to Egs. (2.7) yields general expressions for the coef-

ficients {¢,, & }:

¥, _1 (Via) (V! Ma), (BSa)
7
£ =~ (Vi®) S VIF, (B5b)

Tj peA
We next apply these decompositions to the particular mod-
els considered in Secs. Il and IV. For M given by Egs. (3.2),
evaluation of M, results in

lolzzz(“F/V+kl+k2

(F/V+ki+ky)
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s

— (k, +k2)) (B6)

(ki + k)

which has a nonzero eigenvalue

U F
=tk + k.
Y% + (B7)
The corresponding left and right eigenvectors are
1/ 1
V, = —( 1), (B8a)
\/;1_ —
1 (F
Vi=—o\—=+ki+ky —(i+k)]|. (B8b)
e \V

Applying this to Eq. (B4) then results in
—ia(t)— F e~pt/2( 1 )’
dt 2V —1

which when substituted into Egs. (BS) yields Egs. (3.4).
Similarly, for M given by Eq. (4.2), we find

N EF/V —E/V.
M’) :( 1 1 2: 2)
2=\_Fsv, Fyv, (B9)
with eigenvalue
2A = (F\/V, + F,/V,) (B10)
and eigenvectors
1
. L( ) , (Blla)
VAN~ 1
= 1 (F —Fz)’ (B11b)
CBA\V, 1,

which results in
ia( )_(-F_l_i)e_b\'( 1 )
dt ve v, -1/’

and Eq. (4.3) when applied to Egs. (B4-B5).
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