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Purpose: The authors are developing a computerized system for bladder segmentation on CTU, as a
critical component for computer aided diagnosis of bladder cancer.
Methods: A challenge for bladder segmentation is the presence of regions without contrast (NC)
and filled with intravenous contrast (C). The authors have designed a Conjoint Level set Analysis
and Segmentation System (CLASS) specifically for this application. CLASS performs a series of
image processing tasks: preprocessing, initial segmentation, 3D and 2D level set segmentation, and
postprocessing, designed according to the characteristics of the bladder in CTU. The NC and the
C regions of the bladder were segmented separately in CLASS. The final contour is obtained in
the postprocessing stage by the union of the NC and C contours. With Institutional Review Board
(IRB) approval, the authors retrospectively collected 81 CTU scans, in which 40 bladders contained
lesions, 26 contained diffuse wall thickening, and 15 were considered to be normal. The bladders were
segmented by CLASS and the performance was assessed by rating the quality of the contours on a
10-point scale (1 = “very poor,” 5 = “fair,” 10 = “perfect”). For 30 bladders, 3D hand-segmented
contours were obtained and the segmentation accuracy of CLASS was evaluated and compared to that
of a single level set method in terms of the average minimum distance, average volume intersection
ratio, average volume error and Jaccard index.
Results: Of the 81 bladders, the average quality rating for CLASS was 6.5 ± 1.3. Thirty nine bladders
were given quality ratings of 7 or above. Only five bladders had ratings under 5. The average minimum
distance, average volume intersection ratio, average volume error, and average Jaccard index for
CLASS were 3.5 ± 1.3 mm, (79.0 ± 8.2)%, (16.1 ± 16.3)%, and (75.7 ± 8.4)%, respectively, and
for the single level set method were 5.2 ± 2.6 mm, (78.8 ± 16.3)%, (8.3 ± 33.1)%, (71.0 ± 15.4)%,
respectively.
Conclusions: The results demonstrate the potential of CLASS for segmentation of the bladder.
© 2013 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4823792]
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1. INTRODUCTION

Bladder cancer produces substantial morbidity and mortal-
ity among both men and women. It causes 14 880 deaths per
year in the United States.1 If bladder cancers are detected and
treated early, patient survival is high.1 Early diagnosis and
treatment improves morbidity, mortality, and their attendant
costs, compared to diagnosis at a later, more symptomatic
stage at which time muscular invasion and/or metastasis may
be present. Although early detection of bladder cancers is im-
portant, currently only about 75% are detected before they
have become invasive and/or metastatic.

Multidetector row CT (MDCT) urography is a promising
imaging modality for evaluation of urothelial neoplasms,2–5

which offers the distinct advantage of providing essentially
complete imaging of the urinary tract in a single study. CT
urography (CTU), therefore, may spare the patient the consid-
erable effort of undergoing a potentially large number of alter-
native imaging studies [intravenous pyelogram (IVP), ultra-
sound, conventional abdominal CT, and even MRI], thereby
reducing health care costs.

Preliminary studies6 have demonstrated that CTU may
have superior sensitivity to other imaging studies in detecting

urinary tract lesions, especially urothelial neoplasms, that are
very small (2–3 mm in diameter) compared with all available
alternative imaging studies. In fact, CTU can occasionally de-
tect bladder lesions missed by cystoscopy, a procedure which
has been traditionally considered to be the “gold standard” for
nonsurgical diagnosis of bladder abnormalities.

The interpretation of a CTU study demands careful image
analysis, which often requires extensive time for interpreta-
tion. On average, usually, at least 300 slices are generated for
each CTU scan at a slice interval of 1.25 mm (range: 200–600
slices). The interpreting radiologists have to visually track the
upper and lower urinary tracts, look for lesions that may be
quite small in size, and frequently need to adjust window set-
tings and use zooming on a display workstation to improve
visualization. The possibility that multiple lesions may be
present (since some patients have multifocal tumors) requires
that the radiologists pay close attention throughout the urinary
tract. Despite the improved sensitivity of CTU in assessment
of the urothelium, substantial variability exists among radiol-
ogists in detection of bladder cancer in CTU, with reported
sensitivities ranging from 59% to 92%.7, 8

Additionally, in any individual CTU scan many differ-
ent urinary tract findings may be present. Not only must the
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interpreting radiologist spend extensive time and effort iden-
tifying these findings, but he or she must also then determine
how likely each of the findings is to represent a urothelial neo-
plasm. Any technique that can assist the radiologist in iden-
tifying areas of the urinary tract that may contain urothelial
neoplasms will be useful.

With the continuing increased demands on radiologists’
workloads, the chance for oversight of subtle lesions may not
be negligible. Computer-aided detection (CAD) might play
an important role in the interpretation of CTU, by serving as
an adjunct for the radiologist. We are developing a CAD sys-
tem for detection of bladder cancer in CTU. A critical compo-
nent of such CAD system is the accurate segmentation of the
bladder from the surrounding anatomical structures in order
to define the search space and analyze the bladder wall.

Li et al.9 and Duan et al.10, 11 automatically segmented the
bladder wall and then analyzed it for suspected lesions on
magnetic resonance (MR) cystography in six patients. In a
different study Duan et al.12 proposed an adaptive window-
setting scheme for segmentation of bladder inner wall and
tumor surface on MR scans from ten patients. Song et al.13

proposed a method for globally optimal surface segmenta-
tion of multiple mutually interacting objects on CT—the blad-
der and the prostate, using a 3D graph-theoretic approach.
They used 21 CT scans for evaluation of the approach. Chai
et al.14, 15 developed a statistical-shape-based segmentation
approach to segment 23 bladders on CT. They also devel-
oped a voxel-based finite element model for the prediction
of bladder deformation on 10 MRI scans. Hadjiiski et al.16, 17

reported preliminary results for bladder segmentation in CTU
scans of 15 and 70 patients using active contour models and
level sets evaluated, respectively. The segmentation of blad-
der in CTU is challenging. Some bladders are fully or par-
tially opacified with intravenous (IV) contrast material and
some are not opacified. The boundaries between the blad-
der and the adjacent normal tissues have very low con-
trast. The bladders often have different shapes and different
sizes.

The purpose of this study is to develop a task-based com-
puterized system for bladder segmentation in CTU and to
evaluate its segmentation accuracy.

2. MATERIALS AND METHODS

An example of a 3D reconstruction of the urinary tract us-
ing CTU is illustrated in Fig. 1(a). The bladder is visible in
the 3D volume. An axial CTU slice of the same case with
the bladder partially filled with IV contrast material is shown
in Fig. 1(b). A malignant lesion is identified in the contrast-
enhanced portion of the bladder and it is also visible in the
3D volume in Fig. 1(a) (bold white arrow). The presence of
a large lesion near the bladder wall in the area filled with IV
contrast material may be challenging for bladder segmenta-
tion because of the large edge gradients resulting from the
substantial differences in intensity between the lesion bound-
ary and the IV contrast material. These large edge gradients
may stop the segmentation procedure prematurely.

2.A. Bladder segmentation using CLASS

Region of interests (ROIs) on a CTU slice containing the
bladder from different cases are shown in Figs. 2 and 3. The
bladders are partially filled with IV contrast material and a
malignant lesion is present within the opacified lower part of
the bladder in Fig. 2. In comparison, a malignant lesion is
present within the nonopacified upper part of the bladder in
Fig. 3. A challenge for bladder segmentation is the presence of
two distinct areas that have very different attenuation values:
an area filled with IV contrast material and an area without
contrast material (Figs. 2 and 3).

We are developing a new segmentation package, specifi-
cally designed based on the characteristics of the bladder in
CTU images, which we refer to as the Conjoint Level set
Analysis and Segmentation System (CLASS). An introduc-
tion of CLASS with preliminary qualitative evaluation was
presented previously.17 In the current study, our focus is on

FIG. 1. CTU scan. (a) Volume rendered image from the CTU scan. The bladder is visible in the 3D volume. A malignant lesion is identified and marked by the
bold white arrow. (b) Axial slice of the CTU scan from Fig. 1(a) showing the bladder partially filled with IV contrast material. The malignant lesion is identified
in the contrast enhanced part of the bladder (bold white arrow).
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FIG. 2. ROI containing a bladder partially filled with IV contrast material.
A malignant lesion is present in the contrast enhanced part of the bladder
(pointed by a white arrow).

the quantitative assessment of the performance of CLASS,
comparing its segmentation accuracy to radiologist’s man-
ual outlines of the 3D volumes, in addition to their qualita-
tive visual judgment on an enlarged data set. Furthermore, we
compared the CLASS performance to that of the open source
ITK-SNAP method18 in terms of a number of quantitative
measures.

CLASS consists of four stages: (1) preprocessing and ini-
tial segmentation, (2) 3D level set segmentation, (3) 2D level
set segmentation, and (4) postprocessing. The block diagram
of CLASS is presented in Fig. 4.

CLASS used as an input an approximate bounding box for
the bladder. The box was defined manually using a Graphic
User Interface (GUI) by drawing a bounding rectangle at a

FIG. 3. Malignant lesion in the noncontrast part of the bladder (white
arrow), which is partially filled with IV contrast.

FIG. 4. Block diagram of the CLASS. Segmentation is performed separately
in two 3D volumes of interest (VOIs); one contains the noncontrast (NC)
region (VOINC), and the other the contrast-filled (C) region (VOIC) of the
bladder. The segmented contours of the NC and C regions are then combined
into a complete contour of the bladder.

central slice where the bladder was the largest and by mark-
ing the top and the bottom slice that enclose the bladder. The
process of defining the 3D bounding box is simple and fast.
In those instances in which the bladder was partially filled
with contrast material, the bounding box was split into two
boxes—one enclosing the noncontrast-enhanced (NC) region
and the other enclosing the contrast-filled (C) region of the
bladder (Fig. 4). The splitting of the box was done also man-
ually. The two boxes were defined to have an overlapping re-
gion at the transition between the C and NC regions. The time
required to set the two boxes was negligible compared to man-
ually outline the entire bladder. Following the above method
the bounding boxes were defined efficiently over the bladder
cases in the dataset. The splitting location between the con-
trast and noncontrast regions is not critical, as long as they
overlap and do not cutoff one region or the other too early so
that the two segmented volumes can overlap and be connected
smoothly across the transition, as described below.

The NC and the C regions of the bladder were segmented
in CLASS by applying stages 1, 2, and 3 separately to the pre-
defined NC and C volumes of interest (VOINC and VOIC, re-
spectively) (Fig. 4). Stages 1, 2, and 3 are functionally equiva-
lent for both the VOINC and VOIC branches in Fig. 4. CLASS
is briefly described below. More details for stages 1, 2, and 3
can be found in the literature.19
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In the first stage, preprocessing techniques are applied to
the predefined volume of interest (VOINC or VOIC) (Fig. 4)
in the original 3D volume to obtain a set of smoothed images
and a set of gradient images. Smoothing, anisotropic diffu-
sion, gradient filters and rank transform of the gradient mag-
nitude are used to generate a 3D edge image. The 3D edge
image is used to generate the scalar speed term P(x) and the
vector field image A(x) used in the level set [see Eq. (1)]. A
subset of voxels in the image is then selected based on at-
tenuation, gradient, and location.19 These procedures select a
subset S of voxels that belong to smooth (low gradient) areas
and are relatively close to the center of the lesion. The voxels
in S are a statistical sample of the full population of voxels in
the object of interest. The mean μ and standard deviation σ of
the voxel values from the smoothed image within S are then
computed. A subset of voxels that satisfy the criteria of falling
within 3.0 standard deviations of the mean of the voxel val-
ues in S and with values above −400 HU is extracted from S.
Morphological dilation filtering, 3D flood fill algorithm, and
morphological erosion filtering are applied to this subset of
voxels to connect neighboring components, fill holes, and ex-
tract an initial segmentation surface C.

In the second stage, the initial segmentation surface C is
propagated using a 3D level set method.19 Our chosen level
set implementation evolves according to the equation:

∂

∂t
ψ(x) = −αA(x) · ∇ψ(x) − βP (x)|∇ψ(x)|

+ γ κ(x)|∇ψ(x)|, (1)

where α, β, and γ are the coefficients for the advection,
propagation, and curvature terms, respectively, A(x) is a vec-
tor field image (assigning a vector to each voxel in the im-
age) which drives the contour to move toward regions of
high gradient, P(x) is a scalar speed term between 0 and
1 causing the contour to expand at the local rate, and κ(x)
= div (∇ψ(x) / |∇ψ(x)|) is the mean curvature of the level
set at point x. The symbol ∇ denotes the gradient operator
and div is the divergence operator.

Three 3D level sets with predefined sets of parameters are
applied in series to the initial contour C. The corresponding
parameters of the three level sets are presented in Table I. The
first level set slightly expands the initial contour and keeps
it smooth. The second level set pulls the contour toward the
sharp edges, but at the same time it expands slightly in regions
of low gradient. The parameter “q” in Table I is defined to
be a linear function σM + φ of the 2D diagonal distance
M of the VOI box in millimeters (mm), where σ = 0.06,
φ = −0.11 (based on our previous work19). Thus, larger VOIs

TABLE I. Parameters for the bank of level sets.

Level set α β γ n

First 1.0 2.0 1.0 4
Second 1.0 0.4 q 150
Third 0 1.0 0 5
2D slices 4.0 0.3 0.5 400

will lead to larger γ for the second level set, and the curvature
term of which will increase with the VOI diameter. Therefore,
the level set will ignore fine inhomogeneities and focus more
on the overall bladder shape when segmenting the bladder.
The third level set further expands slightly the contour toward
regions of low gradient.

In the third stage, a 2D level set is applied to every slice
of the segmented object from the second stage. The 2D level
set is allowed to propagate for a number of time steps in order
to maintain a degree of interslice cohesion. The main purpose
of the 2D level set is to refine the 3D contours at the top and
the bottom of the object. The 3D level sets searched for the
bladder surface using 3D information and constraints, which
are more general and less prone to local noise and the 2D level
set refined the 3D surface locally to make it more specific to
local features.

In the fourth stage, a union operation is performed to com-
bine the C and NC contours into the final contour.

In those cases in which the bladder is completely filled
with contrast material or completely unenhanced, a single
VOI, C or NC, will be defined to enclose the entire bladder
and only the C or NC branch of CLASS without the fourth
stage (Fig. 4) will be used for segmentation.

Examples of the CLASS segmentation of the partially
filled bladders with contrast material from Figs. 2 and 3 are
shown in Figs. 5 and 6, respectively. The segmented NC blad-
der regions are shown in Figs. 5(a) and 6(a), and the seg-
mented C bladder regions are shown in Figs. 5(b) and 6(b).
The final contours are shown in Figs. 5(c) and 6(c).

The cascaded 3D level sets and the 2D level set can guide
the segmentation contour to go across the lesion boundaries
within the bladder and correctly reach the bladder boundary.
The first and the third 3D level sets tend to expand the con-
tour toward regions of low gradient and go over some edges,
which help propagate the contour over large or small lesions.
The second 3D level set can ignore fine inhomogeneities and
focus more on the overall bladder shape, which allows it to
include small lesions within the segmented bladder contour
while constraining against oversegmentation. We found ex-
perimentally that the specific functional order of the three 3D
and the 2D level sets is important in order to successfully
handle various bladder shapes with various lesions of differ-
ent sizes, shapes and contrasts, as shown in the examples in
Sec. 3.

2.B. Bladder segmentation using ITK-SNAP

For comparison purpose, the bladders were also segmented
by using ITK-SNAP 2.4,18 which is a publicly available open
source software application used to segment structures in 3D
medical images. The segmentation was performed by using
the edge-based level sets (snakes). The approximate bound-
ing box for the bladder was used as the required input for the
ITK-SNAP segmentation. The preprocessing included Gaus-
sian blurring, edge contrast, and edge mapping exponent. The
level sets were initialized by a sphere placed inside the ob-
ject being segmented. ITK sparse field level set algorithm was
used to guide the contour propagation. After experimentation
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FIG. 5. Bladder segmentation using CLASS: (a) segmentation of the noncontrast-enhanced (NC) portion of the bladder (highlighted contour); (b) segmentation
of the contrast-enhanced (C) portion of the bladder (highlighted contour); and (c) entire bladder segmentation (highlighted contour) is then obtained from the
union of the NC contour (a) and C contour (b). The same bladder, without the segmented contour, is shown in Fig. 2.

with the bladder cases, the coefficients for the advection,
propagation, and curvature terms of the level set were chosen
to be the values shown in Table II. The number of level set
iterations was set to be 4500, where in general convergence
was observed. The radius of the initial sphere was set to be 1

4
of the smallest sidelength of the 3D bounding box. The sphere
was manually placed at the boundary between the C and NC
parts of the bladders with C and NC regions, and in the middle
of the bladders that had only C or NC region.

2.C. Data set

In this study, a data set of 81 patients undergoing CTU who
subsequently underwent cystoscopy and biopsy was utilized.
The cases were collected retrospectively from the Abdominal
Imaging Division of the Department of Radiology at the Uni-
versity of Michigan with approval of the Institutional Review
Board. Of the 81 bladders, 40 bladders contained focal mass-
like lesions (32 malignant and 8 benign), 26 bladders had wall
thickening (20 malignant and 6 benign) and 15 were normal.
Sixty one bladders were partially filled with excreted contrast
material, eight were completely filled with excreted contrast

material, and 12 had no visible excreted contrast material. The
bladder conspicuity was medium to high.

The MDCT urography scans used in this study were ac-
quired with GE Healthcare LightSpeed MDCT scanners. Ex-
cretory phase images, obtained 12 min after the initiation of
the first bolus of a split-bolus intravenous contrast injection
and 2 min after the initiation of the second bolus of 175 ml
of nonionic contrast material at a concentration of 300 mg io-
dine per ml, were utilized. The images used were acquired at
an interval and slice thickness of 1.25 mm using 120 kVp and
120–280 mA. Since patients were not turned prior to image
acquisition, dependently layering IV contrast material that
had been excreted into the renal collecting systems partially
filled the bladder on the CTU images.

2.D. Evaluation methods

The performance of the segmentation was evaluated by
a quantitative and a qualitative method. For the quantitative
assessment, an experienced radiologist provided manual out-
lines on the CT slices for a random subset of 30 of the 81
bladders using a graphic user interface (GUI). The radiolo-
gist outlined the bladder on every 2D CT slice on which the
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FIG. 6. Bladder segmentation using CLASS: (a) segmentation of the noncontrast-enhanced (NC) portion of the bladder (highlighted contour); (b) segmentation
of the contrast-enhanced (C) portion of the bladder (highlighted contour); and (c) entire bladder segmentation (highlighted contour) is then obtained from the
union of the NC contour (a) and C contour (b). The same bladder, without the segmented contour, is shown in Fig. 3.

bladder was visible, resulting in a 3D surface contour. There
were a total of 2904 slices manually outlines by the radi-
ologist for the 30 bladders. Several different performance
metrics19–21 that quantify the similarity of a pair of contours
were used for evaluating the system, including the average
distance, the volume intersection ratio, the volume error be-
tween the radiologist contours, and CLASS segmented con-
tours and the Jaccard index.22 The average distance between
two 3D surface contours G and U is defined as

AVDIST(G,U ) = 1

2

(∑
x∈G min{d(x, y) : y ∈ U}

NG

+
∑

y∈U min{d(x, y) : x ∈ G}
NU

)
, (2)

TABLE II. Parameters for the ITK-SNAP level set.

Level set α β γ n

ITK-SNAP 3.5 0.4 0.17 4500

where G is the gold standard 3D surface contour marked by
the radiologist and U is the 3D contour being evaluated. NG

and NU denote the number of points (voxels) on G and U,
respectively. The function d is the Euclidean distance. For a
given voxel along the contour G, the distance to the closest
point along the contour U is determined. The minimum dis-
tances obtained for all points in G are averaged. This process
is repeated by switching the roles of G and U. The two aver-
age minimum distances are then averaged.

The volume intersection ratio is defined as the ratio of the
intersection between the gold standard volume and the seg-
mented volume to the gold standard volume:

R3D = VG ∩ VU

VG

, (3)

where VG is the volume enclosed by the gold standard contour
G and VU is the volume enclosed by the contour U. A value
of 1 indicates that VU completely overlaps with VG, whereas
a value of 0 implies VU and VG are disjoint.

The volume error is defined as the ratio of the difference
between the two volumes to the gold standard volume, i.e.,
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FIG. 7. Histogram for the quality ratings of the CLASS segmented contours:
61 bladders partially filled with excreted contrast material (NC/C) with av-
erage segmentation quality rating of 6.4; 12 bladders which did not contain
any excreted contrast material (NC) with average quality rating of 6.9; eight
bladders completely filled with excreted contrast material (C) with average
quality rating of 6.1.

E3D = VG − VU

VG

, (4)

where negative error indicates oversegmentation and vice
versa. Because the over- and undersegmentation tend to mask
the actual deviations from the gold standard when the average
is taken, the absolute (unsigned) error |E3D| is also calculated.

The Jaccard index is defined as the ratio of the intersection
between the gold standard volume and the segmented volume
to the union of the gold standard volume and the segmented
volume:

JACCARD3D = VG ∩ VU

VG ∪ VU

, (5)

A value of 1 indicates that VU completely overlaps with
VG, whereas a value of 0 implies VU and VG are disjoint.

Note that there is no single measure that can describe com-
pletely the agreement between the two volumes. However, by
combining two performance measures, one can derive a num-
ber of performance measures that can assess different aspects
of the performance; for example, the Jaccard index, the over-
lap and nonoverlap fractions with the gold standard, can be
derived from the volume intersection ratio and the volume
error.21

Because of the extensive effort required to manually out-
line each bladder, which on average amounted to 94 slices
(range: 32–161 slices) in the CTU scan, we obtained the ref-
erence standards for quantitative evaluation only for a subset

FIG. 8. Histogram for the quality ratings of the 81 CLASS segmented con-
tours with an average quality rating of 6.5.

of the 81 bladders. A qualitative assessment was performed
to evaluate the segmentation of the entire data set by CLASS.
The quality of each 3D contour was visually judged by over-
laying the computer-segmented 3D contour on the CT images
slice by slice on the display workstation. The overall close-
ness of the 3D contour to the bladder boundary was rated on
a scale from 1 to 10 (1 = “very poor,” 2 = “poor,” 5 = “fair,”
7 = “good,” 9 = “excellent,” 10 = “perfect”).

3. RESULTS

Examples of the CLASS segmentation of two blad-
ders with a segmentation quality rating of 8 are shown in
Figs. 5 and 6. For the 61 bladders partially filled with ex-
creted contrast material (NC/C), the average quality rating
for the CLASS segmented contours was 6.4 ± 1.1 (Fig. 7).
Twenty nine of the contours were given quality ratings of 7
or above. Only three contours were given a rating under 5
(“fair”). For the eight bladders completely filled with excreted
contrast material (C) or the 12 that did not contain any ex-
creted contrast material (NC), the average quality ratings were
6.1 ± 1.2 and 6.9 ± 1.7, respectively (Fig. 7). Only 1 NC and
1 C contour were given a rating of 4. For the entire set of 81
bladders, the average quality rating of the CLASS segmenta-
tion was 6.5 ± 1.3 (Fig. 8). Thirty nine bladders were given
quality ratings of 7 or above. Only five bladders had ratings
under 5.

For the subset of 30 bladders randomly selected for quan-
titative analysis, the average quality rating of the CLASS seg-
mentation was 6.4 ± 0.9. The segmentation results averaged
over 30 bladders are presented in Table III. Figure 9 shows

TABLE III. Segmentation results for CLASS and ITK-SNAP, averaged over the subset of 30 bladders randomly selected for quantitative analysis.

Segmentation method R3D E3D |E3D| AVDIST (mm) JACCARD3D

CLASS (79.0 ± 8.2)% (16.1 ± 16.3)% (19.9 ± 11.1)% 3.5 ± 1.3 (75.7 ± 8.4)%
ITK-SNAP (78.8 ± 16.3)% (8.3 ± 33.1)% (24.2 ± 23.7)% 5.2 ± 2.6 (71.0 ± 15.4)%
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FIG. 9. Histogram of the volume intersection ratio R3D. The average was
79.0%.

the histogram of the volume intersection ratios, R3D. Twenty
two bladders had R3D higher than 75%. The histogram of the
volume errors, E3D, is shown in Fig. 10. Eleven bladders had
an absolute volume error |E3D| smaller than 15%. Fourteen
of the bladders had an average distance measure, AVDIST of
less than 3 mm (Fig. 11). Eighteen bladders had JACCARD3D

higher than 75%.
The ITK-SNAP segmentation results averaged over the

30 bladders are also presented in Table III. The perfor-
mance measures of ITK-SNAP segmentation were consis-
tently inferior to that of CLASS. In comparison to ITK-SNAP,
the CLASS segmentation yield smaller average distance er-
ror, smaller absolute error, larger JACCARD3D and smaller
standard deviations for all the measures. However, only the
AVDIST difference between ITK-SNAP and CLASS was sta-
tistically significant (p < 0.001 by two-tailed paired t-test).

Additional examples of the CLASS and the ITK-SNAP
segmented bladders are shown in Figs. 12 and 13. The seg-
mentation quality ratings of these examples are based on
CLASS segmentation and range from the best (9) to the

FIG. 10. Histogram of the volume error E3D. The average was 16.1%.

FIG. 11. Histogram of the average distance measure AVDIST. The average
was 3.5 mm.

FIG. 12. Bladder segmentations using CLASS (highlighted bold contour)
and ITK-SNAP (highlighted thin contour). The segmentation quality ratings
are based on the CLASS segmentation: (a) bladder partially filled with con-
trast material (NC/C) with quality rating of 9; (b) bladder filled with very
small amount of contrast (almost NC) with quality rating of 9; (c) NC/C
bladder with quality rating of 8 (the same bladder, without the segmented
contour, is shown in Fig. 2); (d) NC/C bladder with quality rating of 8 (the
same bladder, without the segmented contour, is shown in Fig. 3); (e) bladder
without contrast (NC) with quality rating of 8; (f) NC/C bladder with quality
rating of 7. The white arrows point to the bladder lesions.
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FIG. 13. Bladder segmentations using CLASS (highlighted bold contour)
and ITK-SNAP (highlighted thin contour). The segmentation quality ratings
are based on the CLASS segmentation: (a) NC bladder with quality rating of
6; (b) NC/C bladder with quality rating of 5; (c) bladder with small amount of
contrast material with the quality rating of 4; (d) NC/C bladder with quality
rating of 3. The white arrows point to the bladder lesions.

worst (3) ratings in our data set (Figs. 7 and 8, respectively).
The contours in Fig. 12 cover a quality rating range of 7–9.
The contours in Fig. 13 cover a quality rating range of 3–6.
Figure 13(d) shows the segmentation result of the only blad-
der with a segmentation quality rating of 3.

4. DISCUSSION

In this study, our CLASS segmentation system was applied
to a data set containing bladders in CTUs having a wide range
of image quality. Most of the bladders were partially filled
with excreted contrast material. However, some bladders were
entirely filled with excreted contrast material and others did
not contain any contrast-enhanced urine. Our segmentation
system performed well for the variety of bladder images with
different degrees of contrast opacification, different shapes,
different sizes, and different abnormalities [Figs. 5, 6, 12, and
13(a)]. About half of the bladder segmentations were given
quality ratings of 7 (“good”) or above. CLASS was able to
segment successfully the majority of both the NC and C blad-
ders. The NC bladder contours had the highest number of seg-
mentation quality ratings of 9 (“excellent”). More than 70%
of the bladders with manual outlines had large volume inter-
section ratio (R3D > 75%) (Fig. 9), 60% had large Jaccard
index (JACCARD3D > 75%), and about half had small aver-
age distance measure (AVDIST < 3 mm) (Fig. 11). A blad-
der with a large malignant lesion within the contrast-enhanced
area was successfully segmented [Fig. 5(c)]. Another bladder

with a malignant lesion in the noncontrast part of the blad-
der and partially filled with contrast material was also seg-
mented successfully [Fig. 6(c)]. Even though the bladders in
Figs. 12(e) and 13(a) did not contain IV contrast material, had
irregular shapes, and most of the boundaries between the blad-
ders and the adjacent normal tissues were of very low con-
trast, the CLASS segmented contours were considered to be
reasonable.

There were cases for which the CLASS method did
not produce good contours. For example, the bladders in
Figs. 13(b)–13(d) were oversegmented. The low quality of the
segmentation may be attributed to the very low contrast be-
tween the bladders and the surrounding complex background
of perivesical tissue, especially when loops of bowel were lo-
cated directly adjacent to the bladder [Fig. 13(b)]. The blad-
der in Fig. 13(c) was also undersegmented, with the small
contrast-containing area being excluded. Due to the strong
gradient at the location where the bladder without contrast
bordered the dense contrast-containing portion of the blad-
der, the segmentation system in this instance excluded the
contrast-enhanced portion and was not able to find the cor-
rect bladder boundary.

CLASS is not fully automated and requires the place-
ment of two bounding boxes for the contrast and noncon-
trast regions of the bladder. The placement of the boxes needs
minimal effort and is much more efficient than manual seg-
mentation of the 32 to 161 slices of the bladder following
the irregular boundaries. The CLASS segmentation offers a
practical way for further quantitative analysis of bladder ab-
normalities. The segmentation results may depend on the
bounding box locations and sizes to a certain extent. The de-
pendence may be stronger for the cases with very irregular
bladder boundary, especially when the CT values of the ad-
jacent tissue are very similar to that of the bladder where the
chance of segmentation leak is high.

The ITK-SNAP segmentations achieved varied levels of
accuracy. In a number of cases the segmentation was good
as shown in Fig. 12(a). The segmentation of the bladder in
Fig. 13(c), which is a difficult case, was better with ITK-
SNAP than with CLASS. However, there are a number of
cases, for which ITK-SNAP oversegmented the bladders as
shown in Figs. 12(e) and 12(f) and Figs. 13(a) and 13(d),
or undersegmented the bladders as shown in Figs. 12(c)
and 12(d) and Fig. 13(b). In most of the cases the contrast
part of the bladder was undersegmented as seen in Figs. 12(c)
and 12(d), and 12(f) and Figs. 13(b)–13(d) due to the steep,
rapid change of the gray level intensity. The ITK-SNAP also
tended to exclude lesions as shown in Figs. 12(b) and 12(c)
and Fig. 13(b) again due to due to rapid change of the gray
level intensity at the lesion location.

This pilot study has several limitations. One limitation
is the relatively small data set. A second limitation is that
the number of manual 3D bladder outlines was also rela-
tively small, although this study already has the largest data
set among those in the literature. Another limitation is that
the CLASS method was not able to reliably stop the con-
tour at the bladder boundary when a complex background is
present. Better criteria to prevent leakage into adjacent normal
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tissue across low contrast boundaries are needed. It may also
be necessary to develop additional local refinement meth-
ods to improve segmentation accuracy. We are in a process
of collecting a larger database to further improve the blad-
der segmentation method, and also collecting additional man-
ual outlines for more reliable quantitative evaluation of the
performance of CLASS.

5. CONCLUSION

The preliminary results demonstrate the feasibility of the
CLASS for the segmentation of bladders on CTU scans.
CLASS performs segmentation of the contrast and noncon-
trast filled regions of the bladder separately to overcome the
large difference in the CT intensities of the two regions, and
uses a combination of 3D and 2D level sets to achieve ini-
tial segmentation and refinement. Further study is underway
to improve and evaluate quantitatively the segmentation per-
formance with a larger data set and a larger number of manual
bladder outlines to be used as a reference standard. This study
is the first step toward the development of a reliable and effi-
cient system for segmentation of bladders, which is a critical
component of a CAD system for detection of malignant and
benign urothelial lesions imaged with CT urography.
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